

Coronal Magnetic Field Measurements – Optical / IR

S. Tomczyk High Altitude Observatory National Center for Atmospheric Research

High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR)

NCAR The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

Motivation

"The most striking aspect of the subject of magnetic fields in the corona is the frequency and variety of situations for which they are postulated, compared to the scarcity of any definite information concerning them."

from Donald E. Billings, *A Guide to the Solar Corona*, 1966.

Coronal Magnetic Field Measurement Techniques

Gyroresonant Emission: Radio Observations of Strong Field Regions (>250 G) (Kundu, Schmahl, Gerassimenko 1980) Hanle Effect: O VI 103.2 nm (Sahal-Bréchot et al. 1986) Faraday Rotation: Radio Observations (eg Hollweg et al. 1982) Longitudinal Zeeman Effect: (V, I) Coronal Emission Lines (Harvey 1968; Lin, Penn and Tomczyk 2000) (Q, U, I) Coronal Emission Lines Resonance Scattering:

(KELP Instrument: Querfeld and Smartt 1984)

Few Measurements Exist

Methodology

Line-of-Sight Field Strength derived from Longitudinal Zeeman effect in Stokes *V* profile. (Extremely difficult)

Plane-of-Sky Direction derived from Resonance Scattering effect in Stokes *Q* and *U* profiles

Line-of-Sight Velocity derived from Doppler effect in Stokes I

Plasma Density derived from Line Ratio in Stokes I

With *I*,*Q*,*U*,*V*, **vector magnetometry** is possible if information is available about the plasma

Challenges

- Low Coronal Photon Flux: for 1074.7, 20 cm aperture,
 20 millionths Corresponds to 10⁵ photons s⁻¹ arcsec⁻²
- Weak Fields ~ 10 G, $Q, U/I \sim 10^{-1}, V/I \sim 10^{-3} 10^{-4}$
- Large Temporally Varying Background for Ground-Based Observations
- Need Large Aperture Telescope and Simultaneous Measurement of Quantities

Methodology

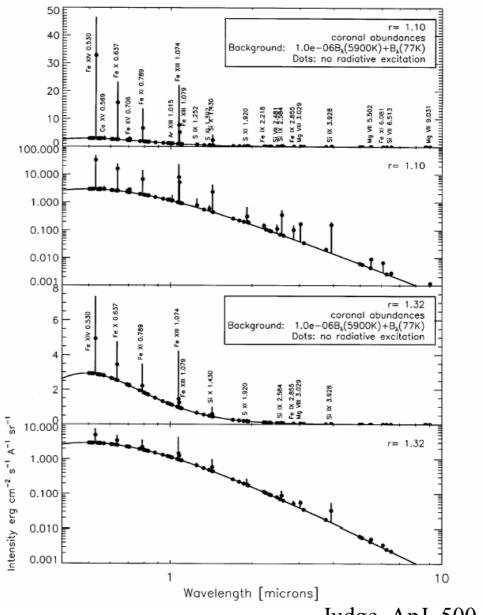
$$I \propto [1 + a\sigma(\cos^2\Theta - \frac{1}{3})] \varphi(\omega - \omega_0)$$
$$Q \propto a\sigma \sin^2\Theta \cos 2\Phi \varphi(\omega - \omega_0)$$
$$U \propto a\sigma \sin^2\Theta \sin 2\Phi \varphi(\omega - \omega_0)$$
$$V \propto (\overline{g} + b\sigma) B \cos\Theta \varphi'(\omega - \omega_0)$$

- $a,b \equiv \text{constants depending on the spectral line}$ (for Fe XIII 1074.7 nm, a = 1, b = 1.06)
- $\sigma \equiv atomic alignment$, depending on scattering geometry and density (for 1074.7 nm, $\sigma < .707$)
- $\overline{g} \equiv effective Landé factor (for 1074.7 nm, \overline{g} = 1.5)$ $\Theta \equiv \text{inclination}, \ \Phi \equiv \text{azimuth}, \ \varphi \equiv \text{line profile (gaussian)}$

Methodology

If $\sigma \ll 1$ the magnetograph formula is obtained:

$$V \approx \overline{g} B \cos \Theta_B \frac{dI}{d\omega}$$


whereas from *I*, *Q*, and *U*, we get:

$$U/Q = \tan 2\Phi_B \qquad \text{valid for all } \sigma \neq 0$$
$$P/I \equiv \frac{\sqrt{Q^2 + U^2}}{I} \approx |a\sigma| \sin^2 \Theta_B$$

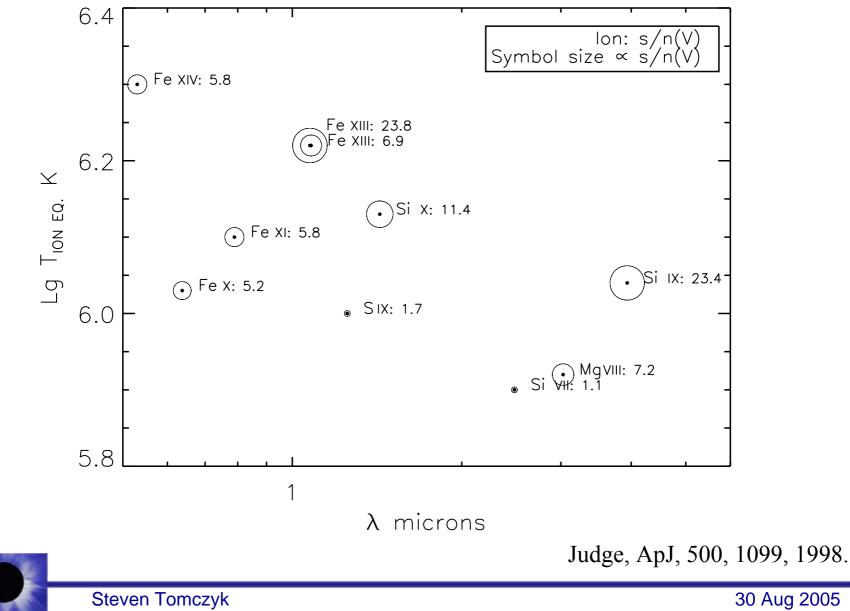
Note: $\sigma \approx 0$ at the Van Vleck angle, Q,U subject to 90 degree ambiguity

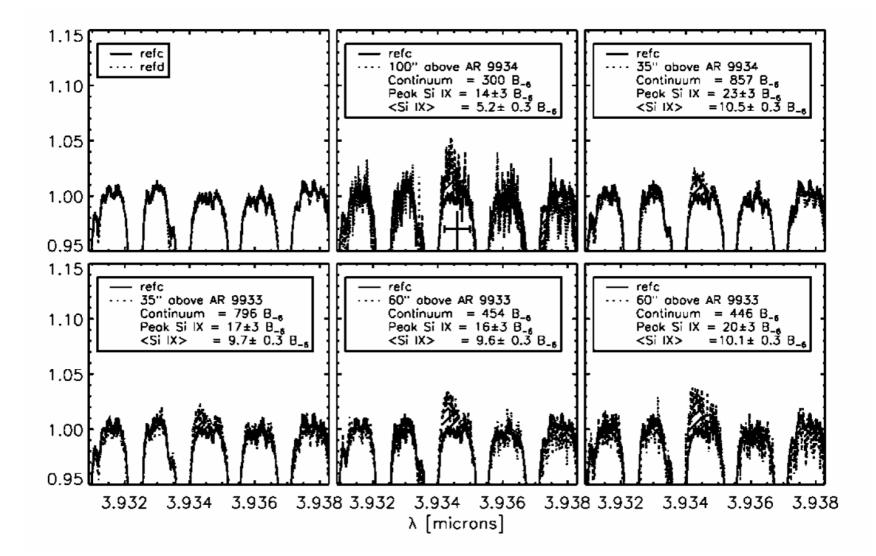
Judge, ApJ, 500, 1099, 1998.

Steven Tomczyk

Stokes V Expected Precision

Table 8: Figures of Merit (Mauna Loa D = 40 cm at $1.1R_{\odot}$)

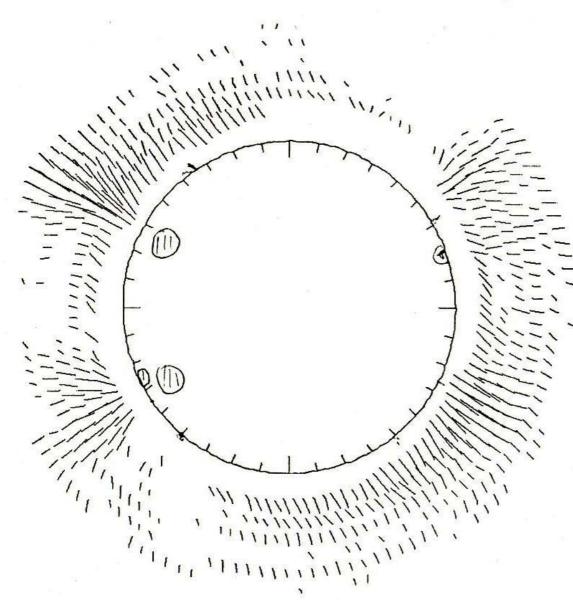

Ion	λ	Log I	Figure of merit	Max V/I	$\log T_{\rm e}$
	$\mu { m m}$	${\rm erg} {\rm \ cm^{-2} \ s^{-1} \ sr^{-1}}$	$(\max s/n (V))$		
Fe XIII	1.0746	1.35	23.8	5.6-4	6.22
Si IX	3.9346	-0.17	23.4	1.5-3	6.04
Si X	1.4300	0.73	11.4	4.5 - 4	6.13
Mg VIII	3.027	-0.36	7.2	5.6-4	5.92
Fe XIII	1.0797	0.72	6.9	2.3-4	6.22
Fe XIV	0.5303	1.36	5.8	1.5-4	6.30
Fe XI	0.7891	0.96	5.8	1.8-4	6.10
${ m Fe} { m X}$	0.6374	1.12	5.2	1.5-4	6.03
S IX	1.252	-0.07	1.7	7.2-5	6.0
Si VII	2.481	-0.71	1.1	7.0-5	5.8


Note: The values of the "Figures of Merit" are simply maxima in the signal-to-noise ratios in Stokes V: therefore exceed the "typical" signal-to-noise ratios estimated in Section 3.2 above.

Steven Tomczyk

Judge et al, NCAR Tech Note 446, 2001.

Judge et al., ApJ, 576, L157, 2002.


Early Measurements

Linear Polarization Measurements of coronal Green line (530.3 nm) and FeXIII 1074.7 nm lines:

1960s: Charvin, Eddy, Hyder, Perche and others1970s: Querfeld, Arnaud and othersOther scattered eclipse measurements

Circular Polarization Measurements: Green Line, Harvey (1969)

KELP - 1074.7 nm 14 Oct 1977

1 arcmin sampling 4 hours vector lengths ~ pI

Arnaud, private communication.

Table 5-13

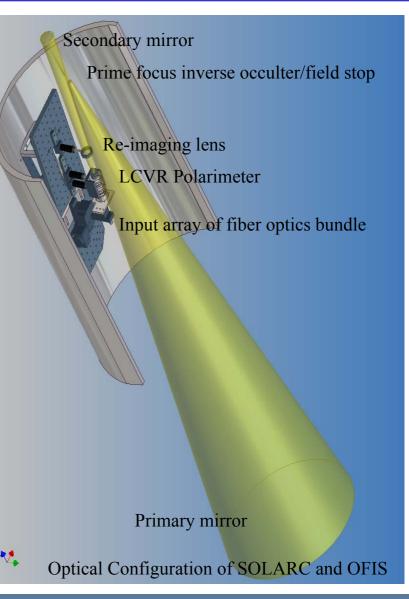
Measurements of coronal magnetic fields

Date Time (1967) (UT)		(^{PA})	Aperture (arc-sec)	B _{II} (gauss)	Nearby B _N (gauss)	
VII-3	1646-1716	73	30 x 60	13 <u>+</u> 20	+	
VII-19	1539-1644	119	30 x 60	- 6 <u>+</u> 4	-	
VIII-11	1527-1607	58	30 x 60	- 2 <u>+</u> 8	-	
VIII-12	1543-1603	113	30 × 60	- 1 <u>+</u> 5	-	
IX-2	1551-1618	294	30 × 60	0+ 7	-3.6+.3	
X-12	1605-1633	304	14 x 356	-1.5+.5	-4.0+.7	
(1968)				_	_	
I-21	1713-1815	110	15 x 330	-2.0 <u>+</u> .7	-	

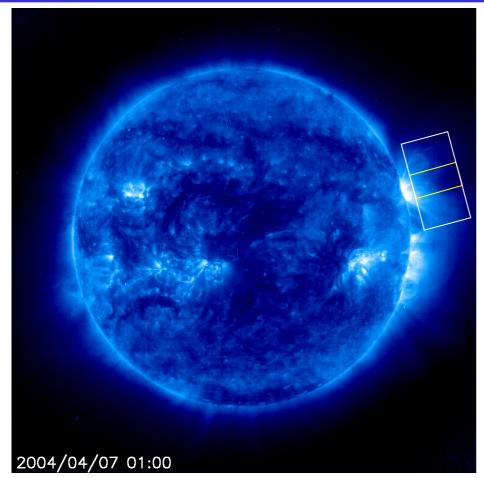
Harvey, PhD thesis, 1969.

Steven Tomczyk

SOLARC: Off-Axis Mirror Coronagraph


- PI—Jeff Kuhn (IfA)
- 50 cm aperture off-axis gregorian telescope
- No secondary mirror and spider structure in the optical path for coronagraphic performance

SOLARC and its dome on the summit of Haleakala, Maui.



University of Hawaii

Institute for Astronomy

2004/04/06 Observation

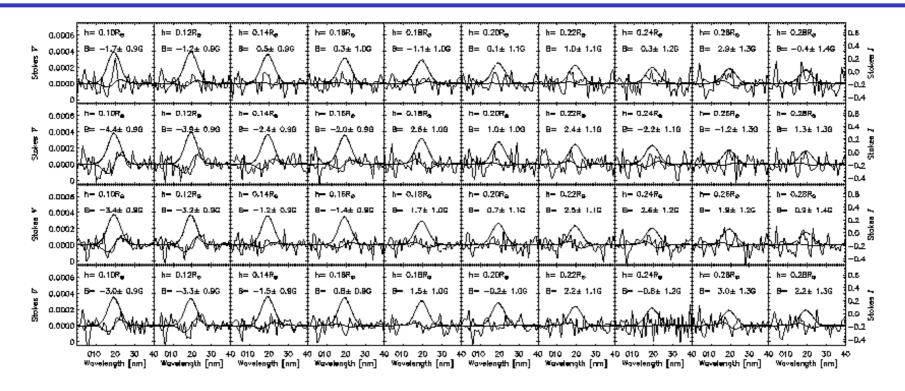
Fe X 171Å image of the solar corona at approximately the time of SOLARC/OFIS observation from EIT 195 A.

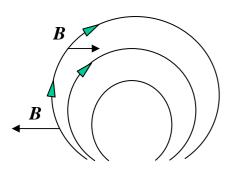
Full Stokes vector observations were obtained on April 6, 2004 on active region NOAA 0581 during its west limb transit.

Corona activity is low compared with the 1999 observations!

Stokes I, Q, U, & V Observation:

- 20arcsec/pixel resolution
- Telescope pointing @ Radius Vector $0.25 R_{\odot}$ Position Angle (Geocentric): 260°.
- 70 minutes integration on V
- 15 minutes integration on Q & U


Stokes *I*, *Q* & *U* Scan:

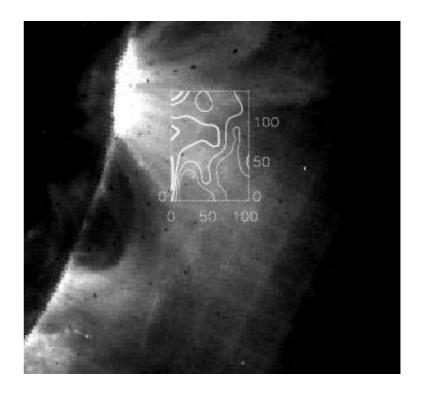

- RV = $0.25 R_{\odot}$
- From PAG 250° to 270°
- Five 5° steps

University of Hawaii Institute for Astronomy

Line-of-Sight Magnetic Fields

Samples of measured and fitted Stokes *I* and *V* spectra of the 10×4 (200" \times 80") pixel region closest to the solar limb. The errors of the magnetic fields are 1 sigma error. Geocentric north is up, and east is left.

The longitudinal field reverses sign around $h=0.17 R_{\odot}!$



'Vector' Coronal Magnetogram

Transverse field orientation

	200		THE DESIGNATION OF THE PARTY OF T			ЧЧ				
		Linear	Polaríza	itíon w.i	r.t. Li	ne In	tensi	ťy		
			10%							
					; ; ;					
	0									
									532	111
					553			333	233	
			100	1000						
ů.			100	1000						
arcsec			68E)							11
Þ,	-200		188 C							
			and the state	13 2						
					223	22	22	200		11
							11			11
			1.1							
							~~	1 1		-
							~~	11	11	
							1 4	111		
	-400	- 112								
		100						11.		
		1.55								
		1000								
		ALC: NO								
		immel		ului		du	H.H.	u lu		
		90	0	1000	1	1100		1200		1300
			_		[агс	sec]				
-		-	Universi	ity of Hav	vaii				_	
-	University of Hawaii Institute for Astronomy									

Longitudinal Field Strength

Contour plot of the line-of-sight magnetogram over-plotted on the EIT FeXVI 284 A image. The contours are 5G, 3G, and 1G.

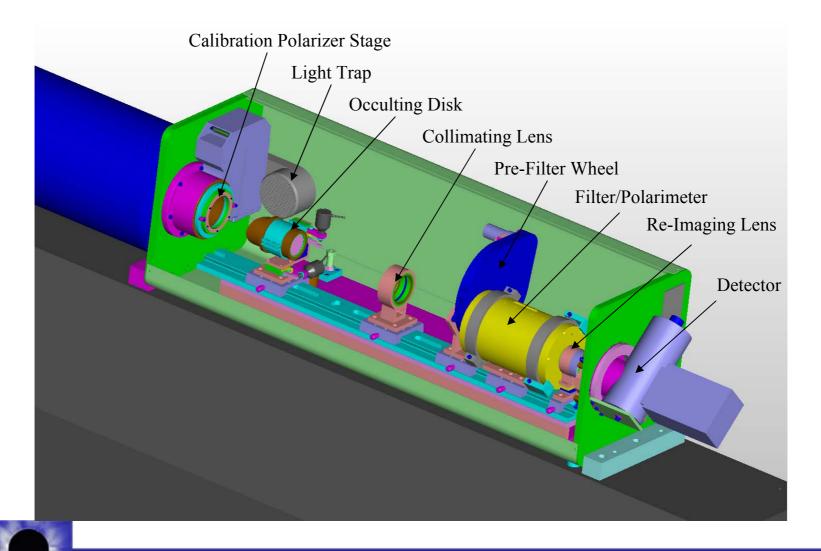
Our Approach

Based on: "*Coronal Magnetometry: A Feasibility Study*", Judge, Casini, Tomczyk, Edwards, Francis, NCAR/TN 2001, we decided to:

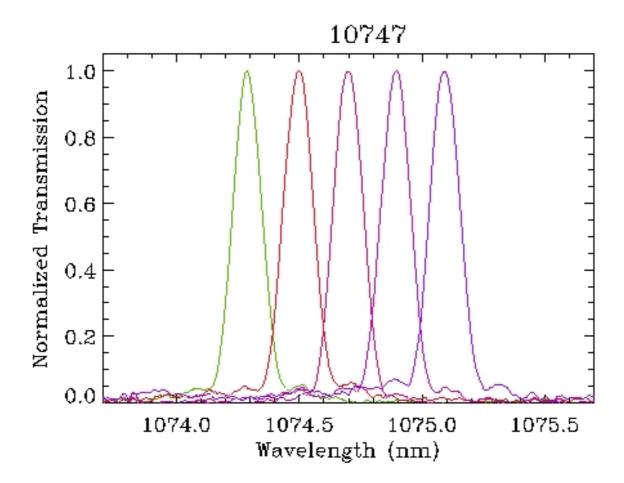
Design and Construct a Filter-Based Magnetograph

Observe the Corona in the Fe XIII forbidden emission lines at 1074.7 and 1079.8 nm (1.6×10^6 K plasma)

Observe Prominences in He I 1083 nm


Coronal Magnetograph Design

- Filter Bandpass 0.14 nm FWHM for Optimal Magnetograph Based on Width of 1074.7 line
- Four Stage Calcite Wide-Field Lyot Filter with Liquid Crystal Tuning, Operating at 1074.7, 1079.8 and 1083.0 nm
- LC Polarization Analysis for Complete *I*,*Q*,*U*,*V*
- Polarizing Beamsplitter for Simultaneous Measurement of Image at 2 Wavelengths on Single Detector


Coronal Multi-channel Polarimeter (CoMP)

Coronal Multi-channel Polarimeter (CoMP)

Measured Transmission Profiles

Filter has 30% maximum transmission to unpolarized light

Instrument Expected Performance

Assuming 20 millionths integrated emission in line (10 millionths through filter in line wing), 20 cm aperture, 4 arcsec pixels, and 7% system efficiency (atmosphere, telescope, filter, detector) gives $\sim 1 \times 10^5$ photons/pixel/s

Assuming photon noise and ideal sky conditions gives:

$$\sigma(v) = 148 \text{ m/s/pixel/sec}$$

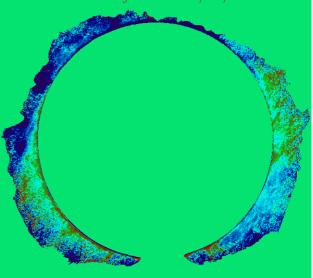
 $\sigma(B_L) = 65 \text{ G/pixel/sec}$
 $\sigma(\phi) = 0.94^{\circ}/\text{pixel/sec}$

Instrument Implementation

- Corona Fe XIII 1074.4, 1079.8, Prominence - He I 1083.0
- Measure 2 Wavelengths Simultaneously
- 1024 x 1024 HgCdTe Detector, \pm 1.4 R_{sun} Field-of-View, 4.5 arcsec/pixel

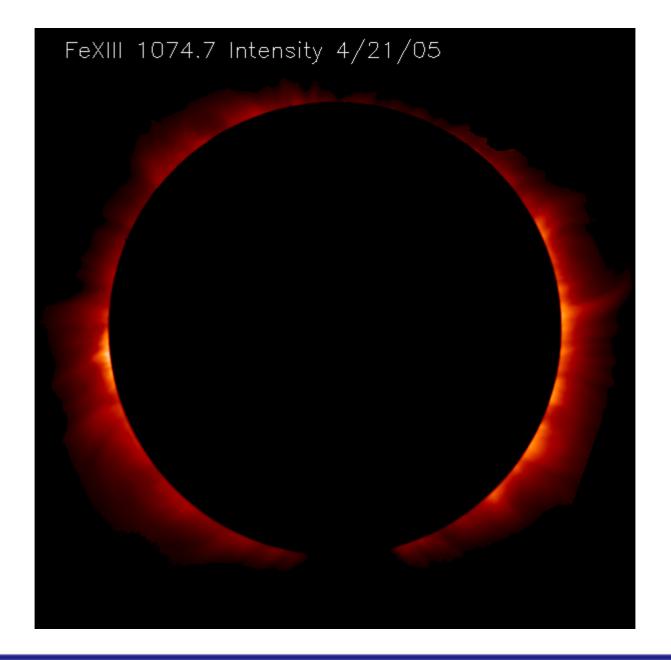
- Sac Peak 20 cm "One Shot" Coronagraph (R.N. Smartt, et al., 1981)
- Initial Deployment Jan 2004
 First 1083.0 Data, March 2004
 First 1074.7 Data, May 2004

FeXIII 1074.7 Intensity 4/21/05

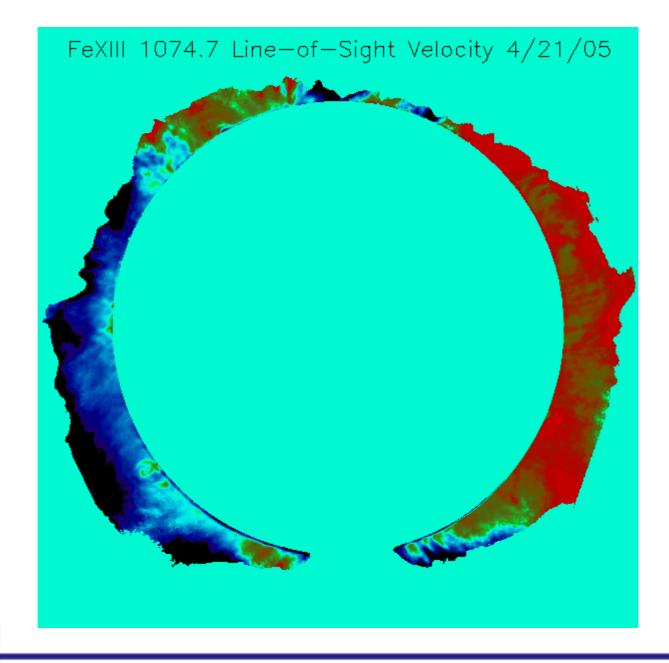

FeXIII 1074.7 Line-of-Sight Velocity 4/21/05

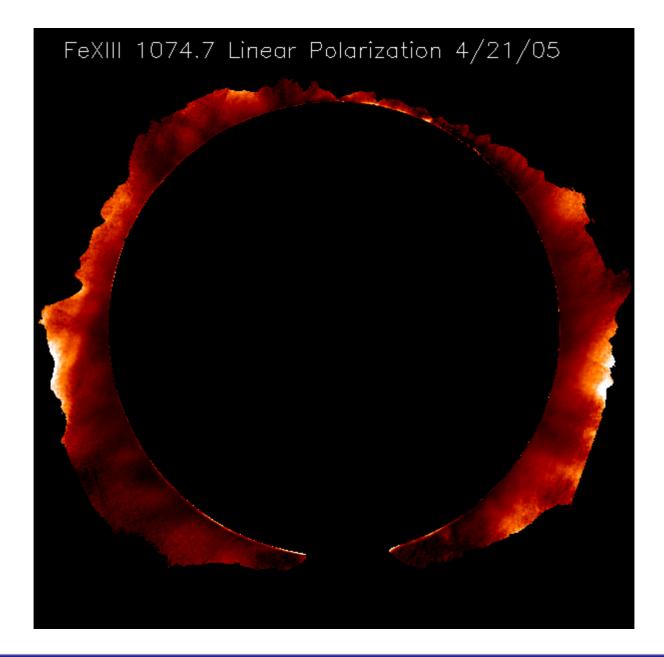
 FeXIII 1074.7 Azimuth of B 4/21/05
 FeXIII 1074.7 Azimuth of B 4/21/05

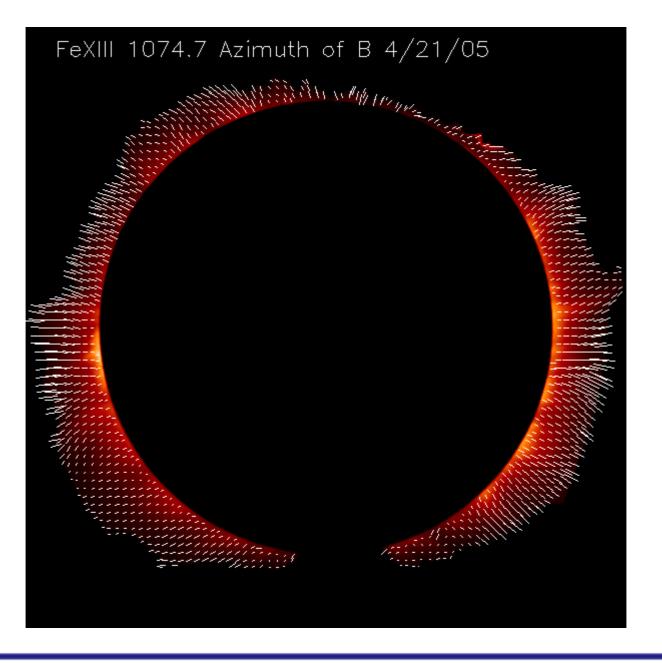
FeXIII 1074.7 Line Width 4/21/05

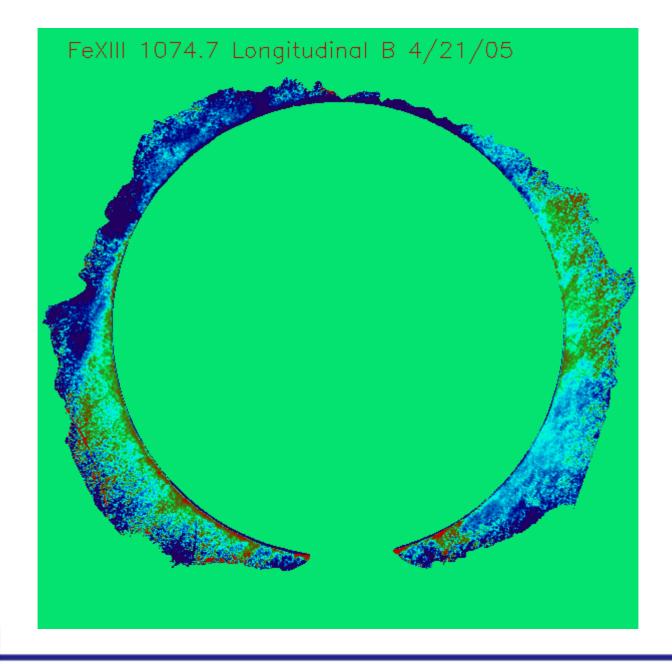


FeXIII 1074.7 Longitudinal B 4/21/05




Steven Tomczyk

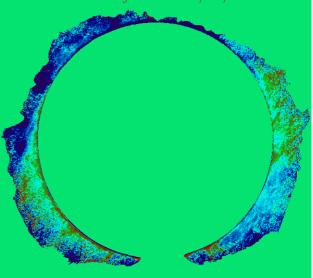




8x8 pixels

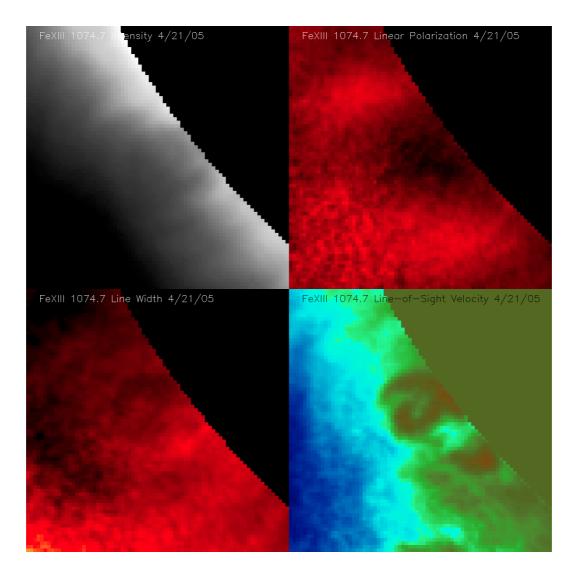
Steven Tomczyk

FeXIII 1074.7 Intensity 4/21/05

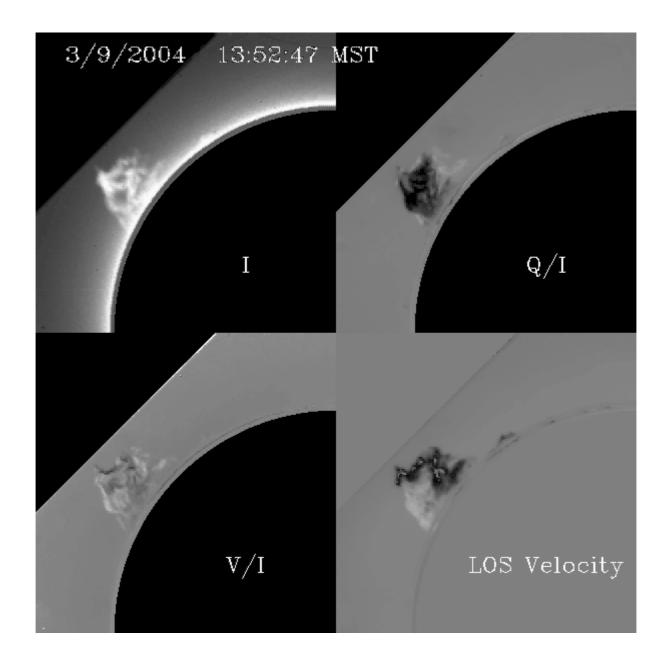

FeXIII 1074.7 Line-of-Sight Velocity 4/21/05

 FeXIII 1074.7 Azimuth of B 4/21/05
 FeXIII 1074.7 Azimuth of B 4/21/05

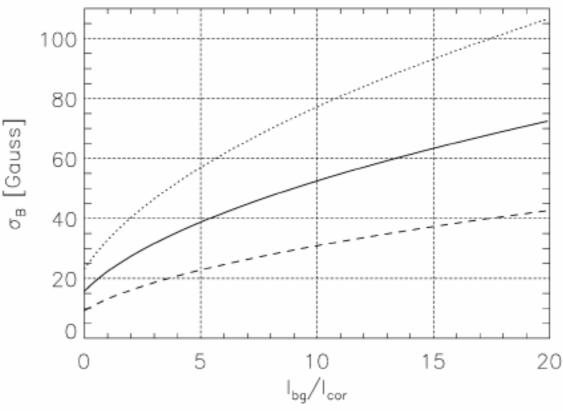
FeXIII 1074.7 Line Width 4/21/05



FeXIII 1074.7 Longitudinal B 4/21/05



Steven Tomczyk



ATST Expected Performance

4 meter aperture1 arcsec pixels1 second integration40 millionths

Penn et al., Sol Phys, 222, 61, 2004.

Large Synoptic Coronagraph

For 20 millionths 1074.7, 4 Beam system, 1 m aperture and 2 arcsec pixels

$$\sigma(\upsilon) = 47 \text{ m/s/pixel/sec}$$

 $\sigma(B_L) = 21 \text{ G/pixel/sec}$
 $\sigma(\phi) = 0.30^{\circ}/\text{pixel/sec}$

0.86 G in 10 minutes 0.35 G in 1 hour

