

Magnetic Fields and Intensity Changes in Coronal Dimming Regions

<u>G. Attrill¹</u>, N. Narukage², K. Shibata², L.K. Harra¹

¹ Mullard Space Science Laboratory (MSSL), University College London, UK ² Kwasan Observatory, Kyoto University, Japan

Background to dimming

 Observed as a decrease in intensity in both EUV and X-ray images

 First observed in Skylab images & referred to as "transient coronal holes" (Rust 1983)

• Strong correlation with CMEs

• Understanding the magnetic nature of CMEs requires investigation of the magnetic nature of dimmings

Cause of dimmings

- Plasma evacuation due to eruption of the local magnetic field
- Mass outflow (Harra & Sterling, 2001)
- Density depletion (Harrison & Lyons, 2000)
- Multi-wavelength dimmings (Zarro et al, 1999)
- Mass ejected as part of CME (Sterling & Hudson, 1997)
- Temperature variation
- Differences between images observed in various emission lines (Chertok & Grechnev, 2003; Harrison & Lyons, 2000; Thompson et al 1998)

Generally accepted that coronal dimmings are primarily a result of plasma evacuation.

Defining dimming regions

<u>10th April 2001</u> Multi-wavelength analysis

- Used SOHO/EIT 195Å, 171Å, 284Å, 304Å, SOHO/MDI, Yohkoh Soft X-ray and Hida FMT H-alpha data
- Base Difference Images
- Contours used to define dimming regions

EIT 195Å 10th April 2001 06:35 UT

Rocket Science EIT 195 10-Apr-2001 06:35:24.261 UT

EIT 195Å base difference image with contour overlay at 06:35 UT, 10th April 2001

Multiwavelength analysis confirms dimming as density effect SXT AIMg EIT 171Å

EIT 195Å Dimmings

Dimmings at different wavelengths (temperature range: 50000 K to 3 MK) with EIT 195Å contours overlaid.

Measurement of magnetic flux

EIT 195 10-Apr-2001 06:35 UT

Red = Net Positive Flux Blue = Net Negative Flux

Through ALL regions

Total Positive Flux 1.83x10²¹ Mx

Total Negative Flux -1.53x10²¹ Mx

Lightcurves of EIT 195Å data

The speed of the recovery

Similar recovery gradients dl/dt

(Red indicates region of net positive flux & blue indicates negative)

Regions 1 and 14 have dI/dt = 0.0004 (counts per pixel/sec)

Regions 2, 12 and 13 have dI/dt = 0.0008, 0.0008 & 0.0010

Regions 3 and 4 have dI/dt = 0.0016 & 0.0017

Regions 6, 8 and 9 have dI/dt = 0.0025, 0.0021 & 0.0024

Similar recovery evolution may reveal post-eruption magnetic loop structure

Interconnectivities II

Overlay of regions 5 and 11 shows that the apparent ends of the SXT feature terminate at the boundaries of the two EUV dimming regions.

EIT 195 10-Apr-2001 06:35 UT

200

Yohkoh SXT AIMg at 06:32 UT

H-Alpha data - Courtesy of Hida FMT, Japan

Brightening reaches region 2 between 05:18 & 05:25 UT

Sharp peak in EIT emission observed @ 05:23 UT

Brightening in H-alpha caused by heating, which is caused by reconnection.

Signature of reconnection also observed in EIT emission.

Signatures of magnetic reconnection

Sharp brightening observed. Reconnection opens field.

Dimming in progress. Plasma evacuated along open field.

> Dimming reaches a maximum. Intensity starts to recover. Field must now be closed.

Diagnostic tool for determining the timescale over which the magnetic reconnection process takes place.

- Initial reconnection for opening takes place @ 05:23 UT
- Maximum dimming occurs @ 07:59 UT
- Maximum timescale for reconnection process = 2 hr 35 mins

Conclusions

 Evidence that the strong dimmings identified for the 10th April 2001 are indeed due to a change in density, not in temperature.

- An approximate flux balance is found between all the identified dimming regions.
- Similarities in recovery evolution of the EUV emission may reveal magnetic loop connectivities.

• Fast recovery signatures appear to be associated with the dimming regions at the termination points of the SXT feature.

• Diagnostic tool for determining the timescale over which the magnetic reconnection process takes place.

Magnetic field extrapolation

The reconstruction of 3-D magnetic field lines is made based on the method proposed by Hakamada 1995. This method uses the computation of spherical harmonic coefficients to calculate a potential model of the coronal magnetic field. We use a combination of a SoHO/MDI full disk magnetogram at the time nearest to the maximum dimming and a synoptic chart to infer the three dimensional structure of the magnetic field. The boundary condition on the solar surface is provided by the SoHO/MDI data and we assume that the magnetic scalar potential is zero on the surface so that only the radial component of the coronal magnetic field exists. A height limit of 2.5 solar radii is used for this calculation. Model courtesy of N. Narukage, Kyoto University

Calculated |<u>B</u>| at the centre of each dimming region.

