

Photospheric Magnetic Fields

Hector Socas-Navarro Juan Manuel Borrero

High Altitude Observatory

National Center for Atmospheric Research

High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR)

NCAR The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. An Equal Opportunity/Affirmative Action Employer.

Lindau, Aug 2005

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

- Easier than chromospheric/coronal magnetometry
 - LTE polarized radiative transfer
 - Well-behaved lines -> Polarimeters (Magnetograms) are relatively meaningful

- Degrees of sophistication (Instrumentation+Inversion)
 - Magnetograms
 - Milne-Eddington inversions ("flat" photosphere)
 - Full-LTE, gradients ("3D" photosphere)

Degrees of sophistication (Instrumentation+Inversion)

- Magnetograms
- Milne-Eddington inversions ("flat" photosphere)

Eull-LTE gradionts ("3D" photosphere)

- Degrees of sophistication (Instrumentation+Inversion)
 - Magnetograms
 - Milne-Eddington inversions ("flat" photosphere)

- Degrees of sophistication (Instrumentation+Inversion)
 - Magnetograms
 - Milne-Eddington inversions ("flat" photosphere)

- Degrees of sophistication (Instrumentation+Inversion)
 - Magnetograms
 - PCA & Artificial Neural Networks
 - Milne-Eddington inversions ("flat" photosphere)
 - Full-LTE, gradi

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

- Some problems:
 - Sensitivity
 - Spatial resolution
 - Signal cancelation (Zeeman only)
 - Vis/IR discrepancy: Sub-pixel PDF

Some problems:

Socas–Navarro & Sanchez Almeida (2002)

- Some problems:
 - Sensitivity
 - Spatial resolution
 - Signal cancelation (Zeeman only)
 - Vis/IR discrepancy: Sub-pixel PDF

Lites (2002)

Some problems:

Socas–Navarro & Sanchez Almeida (2003)

Some problems:

- Open questions:
 - How magnetic is it?
 - Does the flux increase with better resolution/sensitivity?
 - What is the intrinsic field strength?
 - What is the origin of these fields?
 - Systematic exploration still needed

- Open questions:
 - How magnetic is it?
 - \star Sánchez Almeida &
 - 🖈 Socas–Navarro & S
 - \star Sánchez Almeida (
 - \star Domínguez Cerdei
 - ★ Khomenko et al (2 🖉
 - \star Lites & Socas-Nav 🛔
 - 🖈 Trujillo Bueno et a
 - Does the flux incr
 - What is the intrins

- Open questions:
 - How magnetic is it?
 - Does the flux increase with better resolution/sensitivity?

Domínguez Cerdeña et al (2003) -> Factor 2 increase when going from 1" to 0.5" (Speckle polarimetry)

•Lites & Socas-Navarro (2004) -> No increase when going from 1" to 0.6" (DLSP + AO)

- What is the intrinsic field strength?
- What is the origin of these fields?
- Systematic exploration still needed

- Open questions:
 - How magnetic is it?
 - Does the flux increase with better resolution/sensitivity?
 - What is the intrinsic field strength?
 - What is the PDF?
 - Khomenko et al (2003); Trujillo Bueno et al (2004); Domínguez Cerdeña et al (2005)
 - What is the origin of these fields?
 - Systematic exploration still needed

- Open questions:
 - How magnetic is it?
 - Does the flux increase with better resolution/sensitivity?
 - What is the intrinsic field strength?
 - What is the origin of these fields?
 - Local dynamo vs Active region dissipation (e.g., Durney et al 1993)
 - Convective collapse (???)
 - Aborted events: Bellot Rubio et al (2001); Socas-Navarro & Manso Sainz (2005)
 - Systematic exploration still needed

- Open questions:
 - How magnetic is it?
 - Does the flux increase with better resolution/sensitivity?
 - What is the intrinsic field strength?
 - What is the origin of these fields?
 - Systematic exploration still needed
 - Better coverage; multiple latitudes; coronal holes vs normal corona; etc

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

Sunspot umbrae: umbral dots

UMBRAL DOT

HOT

GAS

Socas-Navarro et al. (2004) AR 8990; Full Stokes; 0.7 arc sec; LPSP

Stokes inversion with LILIA on 8 umbral dots; dark umbral background consistently

modelled.

REGION

Hamedivafa & Sobotka (2004)

Joule heating in 12% of UDs

Sunspot penumbra: small scale magnetic field and Evershed flow

Penumbral strucutre at 0.1 arc sec resolution; Scharmer et al. 2002

Sunspot moat: MMF's and Chromospheric emission

Sainz Dalda & Martínez Pillet (2005) MMFs originate well inside the penumbra

Bellot Rubio & Beck (2005)

Cancellation+strong upflows+Chromospheric emission: magnetic reconnection between opposite polarities? <u>At=-14 min -7 min 0 min 7 min 14 min 21 min 28 min</u>

Sunspots

- Recent work points towards a connected view:
 - Umbral dots <--> penumbral grains (Sobotka et al; Rouppe van der Voort et al)
 - Grains are tails of penumbral filaments (Swedish tower movies)
 - Observations (Sainz Dalda & Martínez Pillet) and simulations (Weiss et al; Schlichenmaier et al): Filaments sink below photosphere in outer penumbra and reappear in the moat as MMFs

- Challenging because:
 - There are few suitable lines
 - Interpretation/inversion complicated by NLTE effects

Challenging because:

- Challenging because:
 - There are few suitable lines
 - Interpretation/inversion complicated by NLTE effects

- Two viable approaches:
 - Observations of He I 10830: Milne-Eddington inversion (e.g., Solanki et al 2003)

- Challenging because:
 - There are few suitable lines
 - Interpretation/inversion complicated by NLTE effects

- Two viable approaches:
 - Observations of He I 10830: Milne-Eddington inversion (e.g., Solanki et al 2003)
 - Observations of Ca II infrared triplet: Full NLTE inversions

Spectro-Polarimeter for INfrared and Optical Regions

- Versatile achromatic spectro-polarimeter at the DST (Sac Peak)
- Simultaneous visible and near-infrared operation
- 2 vis+1 ir camera

- 3D tomography of a sunspot (phot+chrom) using 2 Fel and
 - 2 Call lines

yellow: 0 – 800 km red: 800 – 1600 km

Empirical determination of vector current densities. $\vec{j} = \nabla \times \vec{B}$

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

- Introduction: Photospheric magnetometry
- The not-so-quiet Sun
 - How magnetic is it?
 - Problems and open questions
- Magnetic fields in active regions
 - Sunspot umbrae
 - Sunspot penumbrae
 - The moat
 - The magnetic chromosphere

Conclusions

- The quiet Sun
 - Importance?
 - Amount of flux not yet clear but ...
 - ...there's more in the quiet Sun than in all active regions during solar maximum!!
 - The search for the PDF continues
- Active regions
 - Understanding the fine structure -> Spatial resolution
 - Active region evolution
 - Solar-B will provide both in Aug '06