Magnetic elements as bright points in the Hα wings

Jorrit Leenaarts - Utrecht University

in collaboration with P. Sütterlin, M. Carlsson, H. Uitenbroek and R. Rutten.

DOT Ha channel

Observations

- Magnetic elements show up as bright points in the G band, CN band, the wings of Ca II H&K, and the wings of Hα.
- Hα wing: BPs are very bright, thanks to low granulation contrast, though less sharp than in G band.

Questions:

- Are the bright points in the Hα wings formed in LTE?
- Why does one not observe reversed granulation as in the wings of Ca II H&K?
- Why is the granulation contrast so low in the Hα wings?

Simulations: LTE suffices

No reversed granulation: not enough opacity in lower chromosphere

Low granulation contrast

 Source function and the opacity of Hα sensitive to temperature variations.

 Emergent intensity insensitive to temperature variations

Comparison of observations and simulations

- Simulation (bottom panels): similar appearance.
- Simulated bright points track magnetic field.
- Bright point contrast is bigger in observations

Summary & conclusions

- I compared observations and simulations of bright points in the blue wing of the Hα line.
- The line wing forms in LTE in the photosphere.
- Bright points coincide with intergranular magnetic fields.
- The Hα line wing is a suitable proxy magnetometer thanks to low granulation contrast

Havs 'fake' Ha

- Compare Hα (lower level at 10.2 eV) with fake Hα (lower level at 1 eV).
- Hα: RMS=0.0116
- fake Hα: RMS=0.0307

Scatterplots

