Simulations of magnetohydrodynamics and CO formation from the convection zone to the chromosphere

Sven Wedemeyer-Böhm Kiepenheuer-Institut für Sonnenphysik, Freiburg

Werner Schaffenberger (KIS, Freiburg) Oskar Steiner (KIS, Freiburg) Matthias Steffen (AIP, Potsdam) Bernd Freytag (LANL, Los Alamos) Inga Kamp (STScI/ESA, Baltimore)

Radiation magnetohydrodynamics code

Sun

MHD

CHEM

HION

supergiant whole star in a box

DUST

- detailed time-dependent chemistry as part of 2D/3D radiation hydrodynamic simulations using CO⁵BOLD (Freytag et al. 2002)
- changes due to advection with flow field and chemical reactions
- chemical reaction network:
 - 7 chemical species H, H₂, C, O, CO, CH, OH plus representative metal M (\geq He)
 - 27 chemical reactions

2D model for carbon monoxide

- vertical extent: upper convection zone to middle chromosphere (-1360 to 1140 km, z=0 km $\triangleq \tau = 1$)
- horizontal extent: 4800 km
- duration: ~ 1 day
- CO found above low photosphere
 - large fraction of C atoms is bound in CO
- exception: hot chromospheric shock waves:
 - gradual dissociation of CO at the fronts (due to finite dissoc. time-scales)
 - no CO in shocks
 - gradual formation in postshock regions

CO distribution in 2D model

 qualitatively similar to former works (Uitenbroek 2000, Asensio Ramos et al. 2003) Simulations of magnetohydrodynamics and CO formation from the convection zone to the chromosphere

3D CO model

CO "clouds" above granule interiors

red: iso-surface optical depth $\tau = 1$ blue: iso-surface CO number density $n_{co} = 4 \ 10^{12} \text{ cm}^{-3}$

Radiative cooling via CO lines

- two opacity bands: (adapted routines by Steffen & Muchmore (1988))
 1) continuum band with Rosseland mean opacity κ_R (IR excluded)
 2) infrared (IR) band at 4.7 μm with Rosseland mean opacity and additional CO line opacity κ_R + κ_{CO}
- solution of radiative transfer eq.
- → net radiative heating rate Q_{rad}
- enters the energy equation
 - Q_{rad} > 0: absorption
 - radiative heating (black)
 - Q_{rad} < 0: emission
 - radiative cooling (white)
- Additional cooling at shock fronts but continuum band contributes much more than CO band!

CO Conclusions

- CO cooling time-scales longer than hydrodynamical time-scales (similar to the results by Steffen & Muchmore (1988))
- atmosphere cannot relax to cool state
- average temperature reduced by ~100 K only
- → No thermal bifurcation of the solar atmosphere due to CO!
- BUT: CO mostly located in cool regions of reversed granulation in the middle photosphere
- exists as part of an inhomogeneous dynamic atmosphere with co-existing hot and cool regions
- Thermal "bifurcation" is due to interaction of propagating shock waves!
- see 3D chromosphere model by
 Wedemeyer et al. (2004, A&A 414, 1121)

2D simulation with chemistry and magnetic fields ($B_0=10 \text{ G}$)

Example 1: weak flux tube

- no "Wilson depression" → no "hot walls"
- no radiative heating of flux tube atmosphere
- CH and CO enhanced even directly in flux tube

2D simulation with chemistry and magnetic fields ($B_0=100 \text{ G}$)

Example 2: strong flux tubes

- "Wilson depression" → "hot walls"
- radiative heating of flux tube atmosphere
- CH and CO depleted in flux tubes

3D MHD model

- extent: vertical: -1400 km to +1400 km, horizontal: 4800 km
- initial magnetic field: vertical, $B_0 = 10 \text{ G}$ (\triangleq internetwork region)
- chromosphere is highly dynamic
- propagating shock waves compress magnetic field
- fast moving filaments of enhanced field
- surface of plasma $\beta = 1$ on average at z=1000 km but varies strongly

vertical cross-section: absolute field strength log |B|

"Small-scale canopy"

- lateral flows above granule interiors
- advection of magnetic field towards intergranular lanes
- granule interiors very weak field only, virtually void
- above: flux tube funnels spread out, form a horizontally aligned field
- <u>dynamic</u> "small-scale canopy" (in internetwork regions)

I. Simulations of magnetohydrodynamics and CO formation from the convection zone to the chromosphere

Horizontal field distribution

- horizontal cross-section at three heights:
- chromospheric field much weaker (|B|< 50 G) than photospheric
- BUT:
 - more homogeneous
 - evolves much faster

Horizontal field distribution

- horizontal cross-section at three heights:
- chromospheric field much weaker (|B|< 50 G) than photospheric
- BUT:
 - more homogeneous
 - evolves much faster

MHD Conclusions

Magnetic field in the chromosphere is very dynamic!

- time-scales much shorter than in the layers below
- rapidly moving filaments of enhanced field strength

• surface of plasma $\beta = 1$

- separates the highly dynamic middle chromosphere from the slower evolving lower layers
- height on average at z=1000 km

• "small-scale canopy":

- photospheric flows expel magnetic field from granule interiors
- granule centres virtually void of magnetic field
- → "canopy" field above voids

Additional material

Molecules and magnetic fields

Example 1: weak flux tube $(B_0=10 \text{ G})$

- no radiative heating of flux tube atmosphere
- CH and CO enhanced even directly in flux tube

Molecules and magnetic fields

Example 2: **strong** flux tubes (B₀=100 G)

- Wilson depression → "hot walls"
- radiative heating of flux tube atmosphere
- CH and CO depleted in flux tubes