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Radiation magnetohydrodynamics code
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Chemistry

= detailed time-dependent chemistry as part of
2D/3D radiation hydrodynamic simulations
using CO°BOLD (Freytag et al. 2002)

= changes due to advection with
flow field and chemical reactions

= chemical reaction network:
= 7 chemical species
H,H,, C, O, CO, CH, OH
plus representative
metal M (=He)
= 27 chemical reactions
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2D model for carbon monoxide

vertical extent: upper convection zone to middle chromosphere

(-1360 to 1140 km, z=0 km 2

horizontal extent: 4800 km
duration: ~ 1 day

CO found above low
photosphere
large fraction of C atoms
is bound in CO
exception:
hot chromospheric shock
waves:
gradual dissociation of
CO at the fronts (dueto =
finite dissoc. time-scales)
no CO in shocks
gradual formation in post-
shock regions
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CO distribution in 2D model

vertical cross-section: absolute CO number N6
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(mapping reversed granulation)! 8000 K (dashed),

= peak at z=150 km 10 000 K (dot-dashed)

= qualitatively similar to former works
(Uitenbroek 2000, Asensio Ramos et al. 2003)
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3D CO model

CO “clouds” above granule interiors

> ROTATING

red: iso-surface optical depth T = 1
blue: iso-surface CO number density n_, =4 10" cm™
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Radiative cooling via CO lines

= two opacity bands: (adapted routines by Steffen & Muchmore (1988))

1) continuum band with Rosseland mean opacity k. (IR excluded)

2) infrared (IR) band at 4.7 um with Rosseland mean opacity and
additional CO line opacity K + K.,

= solution of radiative transfer eq.
> net radiative heating rate Q

> enters the energy equation

rad

= Q_, > 0:absorption

> radiative heating (black)
=  Q_ < 0:emission

rad

> radiative cooling (white)

= Additional cooling at shock
fronts but continuum band
contributes much more than
CO band!
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CO Conclusions

= CO cooling time-scales longer than hydrodynamical time-scales
(similar to the results by Steffen & Muchmore (1988))

> atmosphere cannot relax to cool state

> average temperature reduced by ~100 K only

> No thermal bifurcation of the solar atmosphere_due to CO!

= BUT: CO mostly located in cool
regions of reversed granulation in the
middle photosphere

> exists as part of an inhomogeneous
dynamic atmosphere with co-existing hot
and cool regions

=  Thermal “bifurcation” is due to -
interaction of propagating shock 1000 2000 3000 4000 5000

waves! xthmd
gas temperature at

> see 3D chromosphere model by z = 1000 km
Wedemeyer et al. (2004, A&A 414, 1121) (horizontal cross-section)
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Molecules and magnetic fields

magneticfield ~~ COmolecules ~~ CH molecules
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2D simulation with chemistry and magnetic fields (B,=10 G)

Example 1: weak flux tube

= no “Wilson depression” & no “hot walls”

> no radiative heating of flux tube atmosphere

> CH and CO enhanced even direcily in flux tube
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Molecules and magnetic fields

magnetic field | CO molecules CH molecules

4001

2007

z [km]
o

2001

0 200 400 600 800 200 400 600 800 200 400 600 800

x [km] X [km] X [km]
O I R |
05 10 15 20 2 4 6 8 10 12 05 1.0 1.5 20 25
Bl [kG] N, [10™cm?] n., [10"° cm?]

2D simulation with chemistry and magnetic fields (B,=100 G)

Example 2: strong flux tubes

= “Wilson depression” & “hot walls”

> radiative heating of flux tube atmosphere
> CH and CO depleted in flux tubes
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3D MHD model

= extent: vertical: -1400 km to +1400 km, horizontal: 4800 km
= initial magnetic field: vertical, B, = 10 G (=internetwork region)

= chromosphere is highly dynamic

= propagating shock waves compress magnetic field
> fast moving filaments of enhanced field
= surface of plasma =1 on average at z=1000 km but varies strongly

vertical cross-section: absolute field strength log |B|
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“Small-scale canopy”

= |ateral flows above granule interiors
> advection of magnetic field towards intergranular lanes
> granule interiors very weak field only, virtually void

= above: flux tube funnels spread out, form a horizontally aligned field
> dynamic “small-scale canopy” (in internetwork regions)
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Horizontal field distribution
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= horizontal cross-section at three heights:

= chromospheric field much weaker (|B|< 50 G) than photospheric
= BUT:

= more homogeneous
= evolves much faster
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Horizontal field distribution
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= horizontal cross-section at three heights:

chromosphere
z=+1200 km

4800 km N

3

N |

0 |1.5

log |B

= chromospheric field much weaker (|B|< 50 G) than photospheric

= BUT:

= more homogeneous
= evolves much faster
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MHD Conclusions

= Magnetic field in the chromosphere is very dynamic!
= time-scales much shorter than in the layers below
= rapidly moving filaments of enhanced field strength

= surface of plasma =1
= separates the highly dynamic middle chromosphere from the
slower evolving lower layers
= height on average at z=1000 km

= “small-scale canopy’:
= photospheric flows expel magnetic field from granule interiors
> granule centres virtually void of magnetic field
> ‘“canopy” field above voids
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Additional material
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Molecules and magnetic fields

magnetic field ~ temperature ~gasdensity
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Example 1: weak flux tube (B,=10 G)

= no Wilson depression = no “hot walls”

> no radiative heating of flux tube atmosphere

> CH and CO enhanced even directly in flux tube
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Molecules and magnetic fields

magnetic field | temperature | gas density
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Example 2: strong flux tubes (B,=100 G)

= Wilson depression =& “hot walls”
> radiative heating of flux tube atmosphere
> CH and CO depleted in flux tubes



