MHD Shock Wave Structure in Supersonic Mag. Reconnection

Tohru Shimizu, M. Ugai and K. Kondo Dept. of Computer Science, Ehime University, Japan

Contents

 Application of the "Rankine Hugoniot" relation to MHD shocks in "superfast" magnetic reconnection.

- Theoretical estimation of
 "Mach Number" of Rec. jet and
 "Plasmoid Propagation Speed".
 Then, comparison with MHD simulations.
 - Summary

MHD simulations: β value =0.15 and 0.01 (upstream)

There is no significant difference. → Why? How is the plasmoid formed ? How is the plasmoid propagation speed controlled ? etc.

<Petschek Reconnection Model>

Reconnection jet can reach the "Alfven Speed" measured in the upstream region via the "switch off shock acceleration".

Basic Concept for Rankine Hugoniot Analysis in Fast Reconnection

90deg Angle limit \rightarrow (Convergence) \rightarrow "Jet speed", Plasma Temperature and hence "Sound Mach number" can be predicted. (But, note that the β value in the downstream goes to infinity.)

- If the β value in the upstream is given, we can estimate the reconnection jet.
- 1: Sound (=~Fast wave) Mach number

$$Ms_2 = \sqrt{2/(2\beta + 1)}$$

2: Plasma Temperature (ratio)

$$Cs_1/Cs_2 = \sqrt{2\beta}/(2\beta + 1)$$

This story has been published in T.Shimizu, Phys. Plasmas 2003, including the asymmetric case study.

Plasmoid formation (and propagation) → the slow shock is divided into two regions (i.e. the rec. jet region and plasmoid region).

T.Shimizu,Phys. Plasmas,2003

- V f : fast shock propagation speed
- $\alpha_{1,2}$: separatrix (change) angle
- β_0 : beta value of upstream region

Simplification for Rankine Hugoniot Analysis

Let us introduce the plasmoid opening angle "theta3".

Three upstream conditions to be given \rightarrow " θ_3 ".

< Some Assumptions >

 γ =2 In Region1, β value and temperature is uniform and the inflow is almost vertical. In Regions 2 and 3, the magnetic field line is vertical.

< MHD Shock Connection Problem > After some manipulations with the Rankine Hugoniot relation, the next equations are derived.

Region 1→2
$$Ms_2 = \sqrt{2/(2 \beta + 1)}$$

 $Cs_1/Cs_2 = \sqrt{2 \beta /(2 \beta + 1)}$
 $Ms_{2d} = Ms_2 - Vs/Cs_2$
 $Ms_{3d} = \sqrt{(Ms_{2d}^2 + 2)/(4Ms_{2d}^2 - 1)}$
 $Cs_3 = Cs_2 \sqrt{(Ms_{2d}^2 + 2)(4Ms_{2d}^2 - 1) /3 /Ms_{2d}}$
Region 3→1 $cos(\theta_3) = Ms_{3d}Cs_3 \sqrt{\beta} / Cs_1$
 $\theta = 0$

1: As the plasmoid opening angle θ 3 is narrower, OR

- 2: As the temperature (Cs^2) in upstream is higher,
 - → the plasmoid speed "Vs" is faster.
- **3:** There is a max speed for a set of β and Cs values.

3 (Plasmoid Opening Angle) --- Vs (plasmoid speed) θ

However, $\beta = 0.1$ and 0.01 are not so different.

Conclusions

"Plasmoid propagation speed Vs" is related to "plasmoid opening angle θ 3"

through the " β value" and "temperature" in upstream region.

This result is consistent with MHD simulations, excepting around the super-subsonic transition regime.

< Future works >

How is the "supersonic adiabatic expansion accel." (T.Shimizu, Phys.Plasmas 2001) adapted in this model ?) In addition, we must consider the other theory for "subsonic" reconnection.

