Quantitative link between solar ejecta and interplanetary magnetic clouds: magnetic helicity

C.H. Mandrini ${ }^{1}$, S. Dasso ${ }^{1}$, M.L. Luoni ${ }^{1}$, P. Démoulin ${ }^{2}$,S. Pohjolainen ${ }^{3}$,

L. van Driel-Gesztelyi2,4,5
1 Instituto de Astronomía y Física del Espacio, Argentina
2 Observatoire de Paris - Meudon, France
3 Tuorla Observatory/VISPA, Finland
4 Mullard Space Science Laboratory, UCL, U.K.
5 Konkoly Observatory, Hungary

Summary

14 October, 1995
Analyze two ejective solar events:
11 May, 1998

Compute global quantities in the Sun: flux and magnetic helicity.

Identify and model in situ data of the associated interplanetary Magnetic Clouds.

Compute global quantities in the interplanetary medium: flux and magnetic helicity. Show the quantitative link between the eruptions and the MCs.

The coronal event on 14 October, 1995

C1.6 LDE starting on 14 October, 1995 at 5:00 UT and lasting 15 hours. non-Hale AR7912

SXT - full disk images
van Driel-Gesztelyi et al. 2000
Kitt Peak magnetogram

The small eruptive events on 11 May 1998

EIT 195 images in reversed contrast, events at 00:50 UT and 08:45 UT.
1° event \rightarrow elongated loops \rightarrow burst \rightarrow compact core \rightarrow NE dimming
3° event \rightarrow elongated loops \rightarrow burst \rightarrow compact core \rightarrow NE + SW dimmings and cusp

Dimmings -- loss or depletion of mass or cooling \rightarrow signatures Cusp-shaped loops -- reclosing of loops after opening of eruption

EIT 284, 10 - 12 May 1998
Mandrini et al. 2005
"Shortening" of coronal loops \rightarrow relaxation (lower energy state).

AR7912 - Coronal magnetic helicity

SXT full disk at 07:30 UT and 11:58 UT
Magnetic maps - thick (thin) lines higher (lower) α. Isocont. $= \pm$ 70., 140. G.

We compute the (linearized) relative coronal magnetic helicity using a lfff model $-\nabla_{x B}=\alpha B$ - and an FFT method.

Time UT	α $\left(10^{-2} \mathrm{Mm}^{-1}\right)$	$\mathrm{H}_{\mathrm{cor}}$ $\left(10^{22} \mathrm{Mx}^{2}\right)$	F_{AR} $\left(10^{21} \mathrm{Mx}\right)$
$07: 30$	$0.94-2.07$	$7 .-15$.	8.0
$11: 58$	$0.12-1.50$	$1 .-12$.	8.4

Small AR - Coronal magnetic helicity

red, $\alpha=-0.11 \mathrm{Mm}^{-1}$
green+blue, $\alpha=\mathbf{- 0 . 0 8} \mathrm{Mm}^{-1}$

Isocont. $= \pm 25 ., 50 ., 75 ., 100$. 150., 200. G.

α Mm^{-1}	$\mathrm{H}_{\mathrm{cor}}\left(10^{39} \mathrm{Mx}^{2}\right)$ $00: 03 \mathrm{UT}$	$\mathrm{H}_{\text {cor }}\left(10^{39} \mathrm{Mx}^{2}\right)$ $11: 11 \mathrm{UT}$	$\Delta \mathrm{H}_{\mathrm{cor}}$ $\left(10^{39} \mathrm{Mx}^{2}\right)$
-0.08	-5.2	-2.9	-2.3
-0.11	-7.3	-4.2	-3.1

TRACE 195, 00:38 UT on May 11 - MDI isocontours, 00:03 UT

Magnetic flux in an ejection -- important global quantity to link coronal to interplanetary observations.
Upper limit \rightarrow magnetic flux contained in the dimmings

Interplanetary event on 18-19 October, 1995

Observed (red-blue) and fitted (black) components of the magnetic field (nT) in the cloud frame

Lepping et al. 1997, Larson et al. 1997, Janoo et al. 1998, Collier et al. 2001,

Hidalgo et al. 2002

An interplanetary flux tube can be modelled locally as a straight cylindrical structure.
Using the lfff model $\mathbf{B}=B_{0} J_{0}(o r) \mathbf{z}+B_{0} J_{1}(o r) \varphi$ (Lundquist's model).
Taking an appropriate reference field:

$$
\begin{gathered}
\tau(r)=\frac{J_{1}(\alpha r)}{r J_{0}(\alpha r)}, \tau_{0}=\alpha / 2 \\
\left.F_{z}=\frac{2 \pi B_{0}}{4 \pi L} \int_{0}^{2 \tau_{0} R} d x \quad \int_{0}^{2} \quad \frac{B_{0}^{2}}{2 \tau_{0}} \int_{0}^{R} d r J_{1}(x) \quad \frac{F_{\varphi}}{L}=\frac{B_{0}^{2}}{2} \int_{0}^{2 \tau_{0} R} d X \tau_{0}^{2} r\right) \\
\end{gathered}
$$

Model	\mathbf{R} AU	$\tau_{\mathbf{0}}$ AU^{-1}	$\mathbf{B}_{\mathbf{0}}$ nT	$\mathbf{F}_{\mathbf{z}}$ Mx	$\mathbf{H}_{\mathbf{r}} / \mathbf{L}$ $\mathrm{Mx}^{2} / \mathrm{AU}$
Lund.	0.12	10	24.3	1.1×10^{21}	$3.0 \mathrm{x} 10^{42}$

Luoni et al. 2005
$\theta=-5^{\circ} \varphi=203^{\circ}$
from a MV method

Small MC on 15-16 May, 1998

Linking coronal eruptions to interplanetary MCs

Quantitative link:

October event

$<\mathrm{F}_{\mathrm{AR}^{\prime}}>\sim 8.2 \times 10^{21} \mathrm{Mx} \quad \mathrm{F}_{\text {cloud }}=1.1 \times 10^{21} \mathrm{Mx}$
$\mathrm{F}_{\text {cloud }} \sim 10 \% \mathrm{~F}_{\mathrm{AR}}$ (as in statistical studies by Lepping et al. (1991), Zhao et al. (2001), Watari et (2001))

$$
\begin{aligned}
& 3 \times 10^{42} \mathrm{Mx}^{2} \leq \Delta \mathrm{H}_{\text {cor }} \leq 6 \times 10^{42} \mathrm{Mx}^{2} \\
& \mathrm{H}_{\text {cloud }}=7 \times 10^{42} \mathrm{Mx}^{2} \quad \text { (maximum) }
\end{aligned}
$$

$\mathrm{L} \sim 2.4 \mathrm{AU} \rightarrow$ estimated from in situ observations of impulsive electrons, flux tube connected to the Sun (Larson et al. 1997).

May event

$\mathrm{F}_{\text {dimmings }} \sim 13 \pm 2 \times 10^{19} \mathrm{Mx} \quad \mathrm{F}_{\text {cloud }}=10-20 \times 10^{19} \mathrm{Mx}$

$$
\begin{aligned}
& 2.3 \times 10^{39} \mathrm{Mx}^{2} \leq\left|\Delta \mathbf{H}_{\text {cor }}\right| \leq 3.1 \times 10^{39} \mathrm{Mx}^{2} \\
& 1.5 \times 10^{39} \mathrm{Mx}^{2} \leq\left|\mathrm{H}_{\text {cloud }}\right| \leq 3.0 \times 10^{39} \mathrm{Mx}^{2}
\end{aligned}
$$

$\mathrm{L} \sim 0.5-1 \mathrm{AU} \rightarrow$ estimated considering that the small MC was detached from the Sun ~ 1 day after ejection + distance travelled by Alfvèn waves ($\sim 100 \mathrm{~km} / \mathrm{s}$) in 3.5 days ($\sim 0.2 \mathrm{AU}$).

Conclusions

We have shown, based on the computation of global MHD quantities, the link between solar ejections and magnetic clouds.

This happens for events with a very different range of sizes, fluxes and helicities:
-a factor 6 in size
-a factor 20 in flux
-a factor 10^{3} in magnetic helicity

More examples are needed to confirm this link. Then, the different nature of coronal (remote sensing) and interplanetary (in situ) data could be combined to constrain models in both domains.

The small active region on the disk

The small AR was observed from May 10 to $12,1998$.

Its full evolution occurred close to disk center far from any other AR... and it was eruptive.

Evolution of the magnetic and soft X-ray flux

Outside flaring times (i.e. X-ray peaks) the X-ray flux (SXT) evolution agrees globally with the magnetic flux (MDI) evolution.
$<\mathrm{F}_{\mathrm{AR}}>\sim 32 \mathrm{x} 10^{19} \mathrm{Mx}$ at maximum

Most intense X-ray events on May 11: 1°) Max. ~ 00:50 UT, duration 26 min. 2°) Max. ~ 06:45 UT, duration 50 min . 3°) Max. ~ 08:45 UT, duration 3 hours \downarrow
The largest in time integrated X-ray flux

Photospheric and coronal evolution

MDI from 9 May, 00:36 UT, to 12 May, 08:03 UT (AR decay).

Rotation of polarities \rightarrow evidence of the emergence of a highly twisted flux tube (López Fuentes et al. 2000, Mandrini et al. 2004).

EIT 284 from 10 May, 01:16 UT, to 12 May, 07:05 UT.
Bright point followed by elongated sigmoidal appearance \rightarrow evidence of high coronal twist \rightarrow bright point again (AR decay).

The flux in the dimmings

Difference images, EIT 195, showing the dimmings after 3° event MDI high resolution magnetogram with contour of the dimmings.

Magnetic flux in an ejection -- important global quantity to link coronal to interplanetary observations.
Upper limit \rightarrow magnetic flux contained in the dimmings

The coronal magnetic helicity

TRACE TRACE 195 11-May-1998 00:38:48.000 UT

Using a lfff model $-\nabla x B=\alpha B$ - of the coronal field and a FFT method, helicity is: Berger (1985)

$$
H_{\text {cor }}=2 \alpha \sum_{n_{x}=1 n_{y}=1}^{N_{x}} \sum_{1}^{N_{y}} \frac{\left|B_{n_{x}, n_{y} \mid}^{l}\right|\left(k_{x}^{2}+k_{y}^{2}\right)}{}
$$

where $B_{n x, n y}$ are the Fourier amplitudes of the harmonics ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}$), $\mathrm{N}_{\mathrm{x}}=\mathrm{N}_{\mathrm{y}}$ the Fourier modes, $l=\sqrt{k^{2}+k_{y}^{2}-\alpha^{2}}, \mathrm{k}_{\mathrm{x}}=2 \pi \mathrm{n}_{\mathrm{x}} / \mathrm{L}, \mathrm{k}_{\mathrm{y}}=2 \pi \mathrm{n}_{\mathrm{y}} / \mathrm{L}$, and L is the size of the computational box.

TRACE 195 (pixel size 1 arcsec) at 00:38 UT on May 11 with MDI isocontours of the field at 00:03 UT (positive: white, negative: black.

α Mm^{-1}	$\mathrm{H}_{\text {cor }}\left(10^{39} \mathrm{Mx}^{2}\right)$ $00: 03 \mathrm{UT}$	$\mathrm{H}_{\text {cor }}\left(10^{39} \mathrm{Mx}^{2}\right)$ $11: 11 \mathrm{UT}$	$\Delta \mathrm{H}_{\text {cor }}\left(10^{39} \mathrm{Mx}^{2}\right)$
-0.08	-5.2	-2.9	-2.3
-0.11	-7.3	-4.2	-3.1

The associated interplanetary event - a small MC

Large coherent rotation of $\mathrm{B}_{\mathrm{yGSE}}(\sim 4$ hours) \rightarrow consistent with a cylindrical flux rope crossing the spacecraft; also high magnetic intensity and low proton $T \rightarrow$ MC.

The global characteristics of the small MC

Time after:15-May-1998 22:00:00 (Hours in UT)

$$
\theta=59^{\circ} \varphi=172^{\circ}
$$

from a MV method

Model	\mathbf{R} AU	$\tau_{\mathbf{0}}$ AU^{-1}	$\mathbf{B}_{\mathbf{0}}$ nT	$\mathbf{F}_{\boldsymbol{\varphi}} / \mathbf{L}$ $\mathrm{Mx} / \mathrm{AU}$	$\mathbf{F}_{\mathbf{z}}$ Mx	$\mathbf{H}_{\mathbf{r}} / \mathbf{L}$ $\mathrm{Mx}^{2} / \mathrm{AU}$
Lund.	1.6×10^{-2}	-66	13.8	20×10^{19}	1.3×10^{19}	-3.0×10^{39}

An interplanetary flux tube can be modelled locally as a straight cylindrical structure.
Using the lfff model $\mathbf{B}=B_{0} J_{0}(\alpha r) \mathbf{z}+B_{0} J_{1}(\alpha r) \boldsymbol{\varphi}$
(Lundquist, 1950).
Taking an appropriate reference field:

$$
\begin{aligned}
& \tau(r)=\frac{J_{1}(a r)}{r J_{0}(a r)}, \tau_{0}=\alpha / 2 \\
& F_{z}=\frac{2 \pi B_{0}}{4 \tau_{0}^{2}} \int_{0}^{2 \tau_{0} R} d x x J_{1}(x) \quad \frac{F_{\varphi}}{L}=\frac{B_{0}}{2 \tau_{0}} \int_{0}^{2 \tau_{0} R} d x J_{0}^{R} d x J_{1}^{2}\left(2 \tau_{0} r\right)
\end{aligned}
$$

Linking the coronal eruption to the interplanetary MC

We propose that the 3° ejection, the one having the largest integrated X-ray flux, dimming extension and EIT core brightening shortening, is the source of the small MC.

Clues:

- location in the corona: disk center \rightarrow travelling in the radial direction can be detected by WIND. - timing: 4.5 days delay, expected for a slow CME at the slow solar wind speed.
- orientation of the MC axis the same as the direction of the coronal sigmoid.
- same sign of both magnetic fields and helicities.

More clues:
$\mathrm{F}_{\text {dimmings }} \sim 13 \pm 2 \times 10^{19} \mathrm{Mx} \quad \mathrm{F}_{\text {cloud }}=10-20 \times 10^{19} \mathrm{Mx}$

$$
\begin{aligned}
& 2.3 \times 10^{39} \mathrm{Mx}^{2} \leq\left|\Delta \mathrm{H}_{\text {cor }}\right| \leq 3.1 \times 1 \mathbf{1 0}^{39} \mathrm{Mx}^{2} \\
& 1.5 \times 10^{39} \mathrm{Mx}^{2} \leq\left|\mathrm{H}_{\text {cloud }}\right| \leq 3.0 \times 10^{39} \mathrm{Mx}^{2}
\end{aligned}
$$

$\mathrm{L} \sim 0.5-1 \mathrm{AU} \rightarrow$ estimated considering that the small MC was detached from the Sun ~ 1 day after ejection + distance travelled by Alfvèn waves ($\sim 100 \mathrm{~km} / \mathrm{s}$) in 3.5 days ($\sim 0.2 \mathrm{AU}$).

Conclusion and remarks

We have shown, based on several pieces of evidence, the link between a very small solar ejection and a very small magnetic cloud.

The relevance:

- This example broadens our knowledge of solar eruptions: they can also be of small scale.
- These small events are a challenge for theoretical models which are presently developed for large scale magnetic configurations. How can such a small amount of flux lead to an eruption and send a magnetic flux rope into the interplanetary space?

Next missions (Solar B and Stereo) may help us understand these small events \rightarrow their relative importance in terms of magnetic flux, energy and helicity both in the corona and solar wind.

Photospheric and coronal evolution

The previous evolution image by image
May 10, 19:10 UT \rightarrow elongated sigmoidal brightening.

May 11, 01:10 UT \rightarrow "shortening" of the EUV core emission + elongated large scale loops (1° event).

May 11, 07:10 UT \rightarrow again, elongated sigmoidal brightening (previous to 3° event).

The EUV emission extends and rotates in parallel to the photospheric changes

