Theory of Large Scale Magnetic Activity

Spiro K. Antiochos Naval Research Laboratory

- Large-scale solar activity main driver of major space weather
 - Focus of all upcoming SH space missions
- Substantial theory/modeling progress recently

 Many interesting/controversial issues remain
- Provides strong justification and opportunities for observing coronal/chromo B
 - Must be coupled to theory/modeling

2001/04/10 Event: Photosphere

(MDI, and EIT/MDI)

- Photospheric B-field does not evolve need coronal B obs.!!
- Activity always associated with sheared PIL, often complex polarity

Filament Ejection & Flare

- Magnetic connection of filament to overlying corona unclear
- Flare heating follows filament activation

Coronal Mass Ejection

- "Standard" event consists of fast CME, filament eruption, and flare
- Relative timing of CME and filament ejection unclear

Generic Picture of Large-Scale Activity

- Strongly non-potential field forms in narrow filament channel
 - Formation process TBD
 - Topology TBD: sheared arcade or twisted flux rope or ??
 - Filament field held down by ~ potential overlying coronal field
- Force balance breaks down: where and why? TBD
- Field reconnects below eruption to a more potential state
- All need explosive removal of overlying field

Theories for CME Initiation

- Twisted flux rope models: (e.g., <u>Forbes</u> et al, Low, van Ballegooijen et al, Sturrock, Mikic &Linker, Roussev et al, Fan et al, ...)
 - Twist is necessary element of pre-eruption state
 - Generally discontinuous coronal topology
 - Generally bipolar polarity region
 - Ideal instability/loss-of-equilibrium

Role of reconnection not clear

• (e.g., Fan 2005)

(Sturrock, 2002)

Issues for Twisted Flux Rope Model

- Twisted field lines not observed in XUV before eruption
 - Do see lots of sheared lines
 - No evidence for tangled pre-eruption fields
 - Need definitive coronal B topology obs.!!
- Rarely erupt whole filament channel
 - Sometimes see CME/flare over undisturbed cool filament
 - Post-eruption field can show substantial shear
 - Again need definitive coronal B obs!
- Will require close coupling between models and observations

Models for CME Initiation

- Reconnection models (Resistive): (e.g., Sturrock, Moore et al, Antiochos et al, Aulanier, MacNeice et al, ...)
 - Generally sheared arcade topology
 - Use reconnection to change topology, removing overlying field
 - Tether-cutting: reconnection in filament channel
 - Breakout: reconnection outside filament channel
 - Needs multi-polarity system, but generally present in corona

<u>Tether Cutting</u> <u>Model</u>

- Reconnection within sheared field presumed to destabilize system
- Does not actually remove overlying flux
- Eruption not observed in our simulations

Filament Formation / Tether Cutting Test

(from, DeVore et al, 2005; Aulanier et al, 2005)

- Bipolar (one polarity inversion line) initial magnetic field
- Impose footpoint motion to generate modest magnetic shear
- Filament-field formation by shear flow and reconnection
- See pronounced expansion & bulging but stable

2.5D Breakout Model

- Add 2D (axisymmetric) "active region" dipole to global dipole
- Field has four-flux topology with coronal null line
- Outward expansion drives breakout reconnection in corona
- Global evolution controlled by small-scale diffusion region

2.5D Breakout Model

(From Gao et al, 2005)

- Breakout reconnection results in fast plasmoid ejection
- Flare reconnection produces rising arcade of loops
- Fast upward/downward flows shocks energetic particles?

3D Breakout Model

(from Lynch et al 2005)

- Add 3D "active region" dipole to global dipole
- Stretch spot to allow for large shear & "overlying flux"
- Two flux system with null point generic coronal topology

3D Breakout Model

(from Lynch et al 2005)

- Eruption similar to axisymmetric case, except that all field lines remain connected
- Velocities > 1,000 km/s \bullet
- ONLY form of B-stress that will yield eruption! 0

3D Reconnection in Breakout Model

- Breakout reconnection occurs over large area
 - Requires strong deformation of null
- Flare reconnection appears very efficient

Issues for Resistive Models

- Tether-cutting: Filament generally appears to erupt before onset of flare reconnection
 – SDO may add more definitive constraints
- Breakout: No general evidence of preeruption reconnection / coronal dynamics
 - Probably best observed in radio
 - Perhaps observable in L-S coronal B
 - Again need close coupling theory/obs.