Numerical Simulations of 3D Reconnection: rotating footpoints

I. De Moortel¹, K. Galsgaard²

¹ University of St Andrews, UK ² Niels Bohr Institute, Denmark

Contents: - numerical setup

- description of results
- reconnection rates
- energetics
- conclusions

3D Reconnection

- > 2D magnetic skeleton:
 - X-point (B=0)
 - Separatrix curves
- > 3D magnetic skeleton:
 - Null points (B=0)
 - Separatrix surfaces:
 - » Outline connectivity domains
 - Separator:
 - » Intersection of 2 separatrix surfaces

Tectonics

- Flux comes through surface in concentrated sources
 - » Magnetic carpet
- Photospheric flux reprocessed in 8 19 hours (Hagenaar et al 2003)
 - » Effect on coronal heating?
- Start with array of intense flux tubes (B~10³ G, <100km)
- » Simple motions
- » Very rapid build up of current (Priest et al 2002)
- Coronal field recycled much faster in 1.4 hours (Close et al 2004)
- Investigate elementary heating event, driven by simple photospheric motion

Basic Model

- Model reconnection driven by rotating photospheric footpoints
- 3D numerical box:
 - » z=0: 2 +ve sources
 - » z=L: 2 -ve sources
 - » counter-rotate
- Consider 2 variations of setup:
- Without background field
 - » flux tubes fan out quickly
 - » separtrix surfaces
- With (vertical) background field
 - » flux tubes confined
 - » "fluxtube-separatrix" surfaces

Dynamical Evolution (1)

- Flux 'domains' are forced to interact
- Twisted current sheets form along separatrix surfaces
- Field lines reconnect to other sources + (periodic) domain outside box

current

field lines

current

Dynamical Evolution (2)

- Component of electric field along field lines (E_{par}) is a good indicator of reconnection
- » Build up of E_{par} along field lines close to current sheets
- » Field lines with high E_{par} reconnect in subsequent snapshot

no background field

Dynamical Evolution (3)

with background field

Current at z=0.5

- No background field:
 - » current sheet along coinciding separatrix surfaces
 - » as sources rotate, develops into x-type configuration

- With background field:
 - » ring of current at edge of domain due to velocity shear
 - » "fluxtube-separatrix" surfaces initially apart
 - » development of x-type configuration
 - » strong outflow velocities cause 'bowshock' currents

Current + Velocity at z=0.5

- No background field:
 - » stagnation point flow
 - » outflow velocities comparable to inflow
 - » (slow) shock along separatrices

- With background field:
 - » velocity shear at edge of domain
 - » stagnation point flow
 - » fast outflow velocities
 - » fast (bow)shock

Connectivity Structure

- Dynamical evolution of connectivity is complex!
- No background field (confining): substantial number of field lines reconnect to neighbouring domain
- With background field: most field lines connect to neighbouring domain when 'bowshock' currents collide with edge current

no background field

Original connection

reconnected to other source reconnected to neighbouring domain

Reconnection rate

- Fixed amount of flux associated with each field line
- Work out amount of reconnected flux as field lines change connectivity
- » Reconnection starts later (at larger angle) with background field
- » Amount of reconnected flux increases faster with background field

no background field

Poynting flux

» Poynting flux describes flow of energy through the boundaries:

$$-\int \left(\mathbf{E} \times \mathbf{B}\right) / \mu_0 . dS = \int \frac{\partial}{\partial t} \left(\frac{B^2}{2\mu_0}\right) dV + \int j^2 / \sigma dV + \int v . (\mathbf{j} \times \mathbf{B}) dV$$

Inflow of electromagnetic = rise in magnetic + Ohmic + work done by
energywork done by
Lorentz force

Energetics

- Start of driving:
 - » magnetic energy increases
- Onset of reconnection:
 - » tension in magn field is reduced:
 - build up magn energy slows down
 - » strong currents + outflow:
 - Ohmic dissipation increases
 - Work done by Lorentz force increases (+ kin energy & visc diss)
- Later stages:
 - » No background field: reconnection slows down
 - » Background field: reconnection of fieldlines to neighbouring domain

Conclusions

- Numerical simulation of 3D reconnection driven by rotation of flux sources
 - » Very efficient build up of current sheets ~ tectonics model
 - » No background field: separatrix surfaces present
 - » With background field: quasi-separatrix surfaces created by driving
- Comparison of setup with and without background field:
 - » reconnection along twisted current sheet
 - » complex evolution of connectivity structure
 - » different reconnection rates
 - » large differences in final stages of experiments
- Further comparisons with:
 - » potential evolution free magnetic energy?
 - » reconnection rate of standard reconnection models
 - » different types of photospheric motions (e.g. twisting, shearing)

Numerical Code

3D MHD Code:

- » finite difference method.
- » third order predictor-corrector method.
- » sixth order spacial partial derivatives.
- » fifth order spacial interpolation.
- » fourth order viscosity and resistivity
- Numerical box (1,1,1) with grid resolution (129,128,128)

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \rho \underline{v}$$

$$\frac{\partial \rho \underline{v}}{\partial t} = -\nabla \cdot (\rho \underline{v} \underline{v} + \underline{\tau}) - \nabla P + \underline{j} \times \underline{B}$$

$$\frac{\partial e}{\partial t} = -\nabla \cdot (e \underline{v}) - P \nabla \cdot \underline{v} + Q_{joule} + Q_{visc}$$

$$\frac{\partial \underline{B}}{\partial t} = -\nabla \times \underline{E}$$

$$\underline{E} = -(\underline{v} \times \underline{B}) + \eta \underline{j}$$

$$\underline{j} = \nabla \times \underline{B}$$

$$P = e(\gamma - 1)$$

$$T = P / \rho$$

Dynamical Evolution (1a)

no background field

Dynamical Evolution (1b)

with background field

