

Downflows along an off-limb loop seen both in 30.4nm and Hlpha

Anik De Groof¹

in cooperation with: Daniel Müller^{2,3} and Stefaan Poedts^1 $% \label{eq:def-def-def-field}$

Centrum voor Plasma Astrofysica¹ Celestijnenlaan 2008 B-3001 Leuven Belgium

anik.degroof@wis.kuleuven.be

Institute of Theoretical Astrophysics² Center of Mathematics for Applications³ University of Oslo Norway

Outline

- 1 EIT shutterless sequence of 11 July 2001 (30.4nm)
- 2 Co-registration of EIT 30.4nm and BBSO H α images
- 3 Detailed comparison of both data sets
- 4 Conclusions and interpretation

Outline

EIT shutterless sequence of 11 July '01 Co-registration of 30.4nm and $H\alpha$ Detailed comparison of both data sets Conclusions and interpretation

Propagating disturbances Multiwavelength study of downward motion

1 EIT shutterless sequence of 11 July 2001 (30.4nm)

- Propagating disturbances
- Multiwavelength study of downward motion

2 Co-registration of EIT 30.4nm and BBSO Hlpha images

- 3 Detailed comparison of both data sets
- 4 Conclusions and interpretation

Propagating disturbances Multiwavelength study of downward motion

EIT shutterless sequence of 11 July 2001 (30.4nm)

11 July '01 16:01-18:28 UT

Interesting features:

intensity variations along off-limb half loop:

Propagating disturbances Multiwavelength study of downward motion

EIT shutterless sequence of 11 July 2001 (30.4nm)

11 July '01 16:01-18:28 UT

Interesting features:

intensity variations along off-limb half loop: waves? OR falling plasma? related to flare south of it?

Propagating disturbances Multiwavelength study of downward motion

Multiwavelength study of downward motion (De Groof et al.'04)

Bandpass	Time	Cadence	# Images
30 4nm	16.00-18.28	~68 s	120
17.1nm	16:00-18:20	30 s	227
Soft X-ray	15:10-16:12	irregular	33
Soft X-ray	16:46-17:50	irregular	33
Soft X-ray	18:25-19:20	irregular	14
Hlpha	15:43-00:33	30 s	1060 (56)
17.1nm	01:00-19:16	\sim 6 h	4
19.5nm	00:00-23:48	12 min	111
28.4nm	01:06-19:22	\sim 6 h	4
	Bandpass 30.4nm 17.1nm Soft X-ray Soft X-ray Soft X-ray H α 17.1nm 19.5nm 28.4nm	BandpassTime $30.4nm$ $16:00-18:28$ $17.1nm$ $16:00-18:20$ Soft X-ray $15:10-16:12$ Soft X-ray $16:46-17:50$ Soft X-ray $18:25-19:20$ $H\alpha$ $15:43-00:33$ $17.1nm$ $01:00-19:16$ $19.5nm$ $00:00-23:48$ $28.4nm$ $01:06-19:22$	BandpassTimeCadence30.4nm16:00-18:28 \sim 68 s17.1nm16:00-18:2030 sSoft X-ray15:10-16:12irregularSoft X-ray16:46-17:50irregularSoft X-ray18:25-19:20irregularH α 15:43-00:3330 s17.1nm01:00-19:16 \sim 6 h19.5nm00:00-23:4812 min28.4nm01:06-19:22 \sim 6 h

Propagating disturbances Multiwavelength study of downward motion

Multiwavelength study of downward motion (De Groof et al.'04)

Instrument	Bandpass	Time	Cadence	# Images	
EIT	30.4nm	16:00-18:28	${\sim}68~{ m s}$	120	
TRACE SXT	Higher Temperatures (EIT, TRACE, SXT):				
	no intensity variations!				
Big Bear	Ηα	15:43-00:33	30 s	1060 (56)	
EIT	17.1nm	01:00-19:16	${\sim}6~{\rm h}$	4	
EIT	19.5nm	00:00-23:48	12 min	111	
EIT	28.4nm	01:06-19:22	\sim 6 h	4	

Propagating disturbances Multiwavelength study of downward motion

Multiwavelength study of downward motion (De Groof et al.'04)

Instrument	Bandpass	Time	Cadence	# Images	
EIT	30.4nm	16:00-18:28	~68 s	120	
TRACE	Higher Temperatures (EIT, TRACE, SXT):				
SXT	no intensity variations!				
Big Bear	Ηα	15:43-00:33	30 s	1060 (56)	
EIT	Lower Temperatures (H $lpha$):				
EIT EIT	bright signature of loop's footpoint + bright dots, exactly at place of bright EIT 'blobs'				

Outline

EIT shutterless sequence of 11 July '01 Co-registration of 30.4nm and $H\alpha$ Detailed comparison of both data sets Conclusions and interpretation

Aims and problems Camera model for perspective images

EIT shutterless sequence of 11 July 2001 (30.4nm)

- 2 Co-registration of EIT 30.4nm and BBSO Hα images
 Aims and problems
 Camera model for perspective images
 - Camera model for perspective images
 - 3 Detailed comparison of both data sets
 - 4 Conclusions and interpretation

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and H α images

Aim: Overlay EIT and BBSO ${\rm H}\alpha$ images and compare on a pixel-to-pixel basis

Anik De Groof, Daniel Müller and Stefaan Poedts Downflows seen both in 30.4nm and H α

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and $H\alpha$ images

Aim: Overlay EIT and BBSO $H\alpha$ images and compare on a pixel-to-pixel basis

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and $H\alpha$ images

Aim: Overlay EIT and BBSO $H\alpha$ images and compare on a pixel-to-pixel basis

Problems:

- different FOV
- diff. spatial resolution
- diff. time resolution
- image deformations
- calibration of figures

・ 同・ ・ ヨ・

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and H α images

Aim: Overlay EIT and BBSO $H\alpha$ images and compare on a pixel-to-pixel basis

Problems:

- different FOV
- diff. spatial resolution
- diff. time resolution
- image deformations
- calibration of figures

EIT BBSO

18.2'×18.2' 2.6"/pixel 35.7'x35.7' 1.05"/pixel 30s

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and $H\alpha$ images

Aim: Overlay EIT and BBSO $H\alpha$ images and compare on a pixel-to-pixel basis

Problems:

- different FOV
- diff. spatial resolution
- diff. time resolution
- image deformations
- calibration of figures

18.2'x18.2' 2.6"/pixel 68s

35.7'x35.7' 1.05" / pixel 30s

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and $H\alpha$ images

Aim: Overlay EIT and BBSO ${\rm H}\alpha$ images and compare on a pixel-to-pixel basis

Problems:

- different FOV
- diff. spatial resolution
- diff. time resolution
- image deformations
- calibration of figures

18.2'×18.2' 2.6" /pixel 68s

35.7'x35.7' 1.05" / pixel 30s

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and H α images

Aim: Overlay EIT and BBSO ${\rm H}\alpha$ images and compare on a pixel-to-pixel basis

Problems:

- different FOV
- diff. spatial resolution
- diff. time resolution
- image deformations
- calibration of figures

18.2'x18.2' 2.6" / pixel 68s

EIT

35.7'x35.7' 1.05" / pixel 30s

Aims and problems Camera model for perspective images

Co-registration of 30.4nm and $H\alpha$ images

Aim: Overlay EIT and BBSO $H\alpha$ images and compare on a pixel-to-pixel basis

Method: Camera model for perspective images

Aims and problems Camera model for perspective images

Camera model for perspective images

 Select 1 BBSO image of region of interest & 1 co-temporal EIT 30.4nm image

Aims and problems Camera model for perspective images

Camera model for perspective images

Select 1 BBSO image of region of interest & 1 co-temporal EIT 30.4nm image

- Take the EIT-cut slightly larger than the BBSO selection
- Transform both to 400×600 pixels
- Enhance & calibrate to show maximal contrast

Aims and problems Camera model for perspective images

Camera model for perspective images

Ochoose 5 locations which can be recognized in both images

Anik De Groof, Daniel Müller and Stefaan Poedts Downflows seen both in 30.4nm and H α

Aims and problems Camera model for perspective images

Camera model for perspective images

Sonstruct a transformation matrix by using these 5 point pairs

Anik De Groof, Daniel Müller and Stefaan Poedts Downflows seen both in 30.4nm and Ha

Aims and problems Camera model for perspective images

Camera model for perspective images

Transform the 5 EIT points to the Big Bear image to evaluate the transformation method

(Mathematical details: see paper)

Aims and problems Camera model for perspective images

Camera model for perspective images

Transform the whole EIT image to the coordinate system of the Big Bear image

Aims and problems Camera model for perspective images

Camera model for perspective images

Transform the whole EIT image to the coordinate system of the Big Bear image

Aims and problems Camera model for perspective images

Camera model for perspective images

Transform the whole EIT image to the coordinate system of the Big Bear image

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Outline

- EIT shutterless sequence of 11 July 2001 (30.4nm)
- ${f 2}$ Co-registration of EIT 30.4nm and BBSO Hlpha images
- 3 Detailed comparison of both data sets
 - Visualization of co-registered images
 - Comparison of downflows: blobs and speeds
 - Comparison of downflows: blob appearance

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Visualization of co-registered images

Aim: Overlay EIT and Big Bear images in such a manner that:

- bandpass in which each feature was seen is still visible
- overlapping features are clearly recognized
- series of images (movies) can be overlayed

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Visualization of co-registered images

Aim: Overlay EIT and Big Bear images in such a manner that:

- bandpass in which each feature was seen is still visible
- overlapping features are clearly recognized
- series of images (movies) can be overlayed

Visualization 1: Contours

- colour = BBSO $H\alpha$
- contours = EIT 30.4nm

Visualization of co-registered images Comparison of downflows: blobs and speed Comparison of downflows: blob appearance

Visualization of co-registered images

Aim: Overlay EIT and Big Bear ima

- bandpass in which each feature
- overlapping features are clearly
- series of images (movies) can b

Visualization 1: Contours

- colour = BBSO $H\alpha$
- contours = EIT 30.4nm

・ 同・ ・ ヨ・

Visualization of co-registered images Comparison of downflows: blobs and speed Comparison of downflows: blob appearance

Visualization of co-registered images

Aim: Overlay EIT and Big Bear ima

- bandpass in which each feature
- overlapping features are clearly
- series of images (movies) can l

Downflows seen both in 30.4nm and H α

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blobs and speeds

 $\textbf{0} \quad \text{Outline loop structure} \rightarrow \text{make (location-time) plot}$

EIT 30.4nm (De Groof et al. '04)

Anik De Groof, Daniel Müller and Stefaan Poedts

Downflows seen both in 30.4nm and H α

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blobs and speeds

 $\textbf{0} \quad \text{Outline loop structure} \rightarrow \text{make (location-time) plot}$

BBSO H α —: EIT speeds

Anik De Groof, Daniel Müller and Stefaan Poedts

Downflows seen both in 30.4nm and Hlpha

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blobs and speeds

② Calculate local velocities by ridges in the plots

Anik De Groof, Daniel Müller and Stefaan Poedts Downflows seen both in 30.4nm and H α

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blob appearance

- Hα blobs smaller and more compact than EIT blobs
- Hα images only show blobs close to limb
- Only in Hα, the blob brightens up while falling down

Image: A = A

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blob appearance

- $H\alpha$ blobs smaller and more compact than EIT blobs
- Hα images only show blobs close to limb
- Only in Hα, the blob brightens up while falling down

Image: A image: A

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blob appearance

- $H\alpha$ blobs smaller and more compact than EIT blobs
- Hα images only show blobs close to limb
- Only in Hα, the blob brightens up while falling down

Image: A image: A

Visualization of co-registered images Comparison of downflows: blobs and speeds Comparison of downflows: blob appearance

Comparison of downflows: blob appearance

- $H\alpha$ blobs smaller and more compact than EIT blobs
- Hα images only show blobs close to limb
- Only in Hα, the blob brightens up while falling down

Outline

- EIT shutterless sequence of 11 July 2001 (30.4nm)
- 2 Co-registration of EIT 30.4nm and BBSO Hlpha images
- 3 Detailed comparison of both data sets
- 4 Conclusions and interpretation

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance

- smaller and more compact in ${\rm H}\alpha$
- difference in intensity high above the limb

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance

 $\bullet\,$ smaller and more compact in ${\rm H}\alpha$

• difference in intensity high above the limb

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance

- $\bullet\,$ smaller and more compact in ${\rm H}\alpha$
- difference in intensity high above the limb

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance + why?

- $\bullet\,$ smaller and more compact in ${\rm H}\alpha$
 - $\bullet~EIT$ 30.4 nm shows plasma in much wider temperature band than ${\rm H}\alpha$
- difference in intensity high above the limb

Conclusions and interpretation

Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance + why?

- $\bullet\,$ smaller and more compact in ${\rm H}\alpha$
 - $\bullet~EIT$ 30.4 nm shows plasma in much wider temperature band than ${\rm H}\alpha$
- difference in intensity high above the limb
 - instrumental effect
 - high blobs too hot for ${
 m H}lpha$
 - $\bullet\,$ bended loop causes shift of H $\!\alpha\,$ emission off-band
- variation in the blobs' intensity while falling down

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance + why?

- $\bullet\,$ smaller and more compact in ${\rm H}\alpha$
 - $\bullet~EIT$ 30.4 nm shows plasma in much wider temperature band than ${\rm H}\alpha$
- difference in intensity high above the limb
 - instrumental effect
 - high blobs too hot for ${
 m H}lpha$
 - $\bullet\,$ bended loop causes shift of H $\!\alpha\,$ emission off-band
- variation in the blobs' intensity while falling down
 - instrumental effect
 - cooling loop

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance

- ${\, \bullet \,}$ smaller and more compact in ${\rm H} \alpha$
- difference in intensity high above the limb
- variation in the blobs' intensity while falling down

Conclusion

Same cool plasma is seen by both instruments, falling down. Differences in the spectral width (\rightarrow plasma temperature) lead to different blob appearance

Conclusions and interpretation

• Important similarities

- both data sets show bright blobs moving down
- same locations and similar (increasing) blob speeds

• Differences in blob appearance

- ${\, \bullet \,}$ smaller and more compact in ${\rm H} \alpha$
- difference in intensity high above the limb
- variation in the blobs' intensity while falling down

How do the blobs form?

Why do they behave like this?

One of the most promising theories to explain this is presented in the following talk!