A Multi-Wavelength View on Coronal Rain

Daniel Müller^{1,2} A. De Groof³, B. De Pontieu⁴, V.H. Hansteen^{1,2}

¹Institute of Theoretical Astrophysics, University of Oslo
²Center of Mathematics for Applications, University of Oslo
³Centrum voor Plasma-Astrofysica, K.U. Leuven
⁴Lockheed Martin Solar & Astrophysics Lab

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Outline

Contents

- The evaporation-condensation cycle: A model for coronal rain
- Intermal instability: Variations on a theme
- Inking models and observations

(日) (日) (日) (日) (日) (日) (日)

Early Observations of Dynamic Coronal Loops

Coronal loops drawn by A. Secchi from $H\alpha$ observations on Oct. 5, 1871

Temperature Structure

Energy Contributions

conductive flux: $F_c = -\kappa_0 T^{5/2} dT/dz$ radiative losses: $L_r = n_e n_{ion} \Phi(T)$ mech. energy flux (prescribed): $F_m = F_{m0} \cdot e^{-(z-z_0)/H_m}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Temperature Structure

Energy Contributions

conductive flux: $F_c = -\kappa_0 T^{5/2} dT/dz$ radiative losses: $L_r = n_e n_{ion} \Phi(T)$ mech. energy flux (prescribed): $F_m = F_{m0} \cdot e^{-(z-z_0)/H_m}$

イロン 不得と 不良と 不良と 一座

TTRANZ Code (Hansteen 1993)

- 1-D radiative HD code with adaptive grid
- non-equilibrium rate equations / self-consistent radiative losses

Temperature Structure

Energy Contributions

conductive flux: $F_c = -\kappa_0 T^{5/2} dT/dz$ radiative losses: $L_r = n_e n_{ion} \Phi(T)$ mech. energy flux (prescribed): $F_m = F_{m0} \cdot e^{-(z-z_0)/H_m}$

Important

- $\langle \Phi(T) \rangle$ peaks at $T^* = 2 3 \cdot 10^5 \text{ K} \Rightarrow$ local minimum in T will radiatively cool more strongly than surroundings!
- radiative losses $L_r \propto n_e^2$

Temperature Structure

Energy Contributions

conductive flux: $F_c = -\kappa_0 T^{5/2} dT/dz$ radiative losses: $L_r = n_e n_{ion} \Phi(T)$ mech. energy flux (prescribed): $F_m = F_{m0} \cdot e^{-(z-z_0)/H_m}$

height z

The Evaporation-Condensation Cycle

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

• energy budget in the upper part of the loop becomes negative

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

END DO

• energy budget in the upper part of the loop becomes negative

イロト イポト イヨト イヨト

• temperature drops

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

• energy budget in the upper part of the loop becomes negative

イロト イポト イヨト イヨト

3

- temperature drops
- pressure drops as well

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

- energy budget in the upper part of the loop becomes negative
- temperature drops
- pressure drops as well
- mass flow towards pressure minimum

イロト イポト イヨト イヨト

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

- energy budget in the upper part of the loop becomes negative
- temperature drops
- pressure drops as well
- mass flow towards pressure minimum
- ρ increases \rightarrow higher radiative losses $(L_r \propto n_e^2)$

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

- energy budget in the upper part of the loop becomes negative
- temperature drops
- pressure drops as well
- mass flow towards pressure minimum
- ρ increases \rightarrow higher radiative losses $(L_r \propto n_e^2)$
- runaway cooling process leads to plasma condensation and the formation of a "micro-prominence"

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

- energy budget in the upper part of the loop becomes negative
- temperature drops
- pressure drops as well
- mass flow towards pressure minimum
- ρ increases \rightarrow higher radiative losses $(L_r \propto n_e^2)$
- runaway cooling process leads to plasma condensation and the formation of a "micro-prominence"
- condensation region is gravitationally unstable

Parker (ApJ 1953), Field (ApJ 1965) Antiochos & Klimchuk (ApJ 1991) Karpen et al. (ApJL 2001) Müller et al. (A&A 2003, 2004, 2005)

Heat Loops in the Lower Corona

DO LOOP

- energy budget in the upper part of the loop becomes negative
- temperature drops
- pressure drops as well
- mass flow towards pressure minimum
- ρ increases \rightarrow higher radiative losses $(L_r \propto n_e^2)$
- runaway cooling process leads to plasma condensation and the formation of a "micro-prominence"
- condensation region is gravitationally unstable
- depleted loop reheats

Model Predictions

Observational Consequences

• strong intensity variations in transition region lines

(Müller et al. 2003)

Model Predictions

Observational Consequences

 strong intensity variations in transition region lines

(Müller et al. 2003)

 fast downflows and strong Doppler shifts

(Müller et al. 2004, De Groof et al. 2005)

◆□ → ◆□ → ◆□ → ◆□ → □ ● のへ⊙

Model Predictions

Observational Consequences

 strong intensity variations in transition region lines

(Müller et al. 2003)

 fast downflows and strong Doppler shifts

(Müller et al. 2004, De Groof et al. 2005)

• shocks can trigger further cooling events

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

(Müller et al. 2005)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Evaporation & Condensation: Variations on a Theme

Paths to Instability

There are different ways to trigger a thermal instability in a loop :

- heating concentrated in the lower corona (continuous or episodic)
- sudden decrease of heating scale height
- overheating (note: similarity to overheated open coronae!)

Evaporation & Condensation: Variations on a Theme

Paths to Instability

There are different ways to trigger a thermal instability in a loop :

- heating concentrated in the lower corona (continuous or episodic)
- sudden decrease of heating scale height
- overheating (note: similarity to overheated open coronae!)

What all mechanisms have in common:

- heating imbalance between lower and upper loop
- chromospheric evaporation increases density in upper part
- evolution can be cyclic

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Reality Check

Multi-Wavelength Data of Cooling Loops

Off-limb time series from different instruments:

- EIT shutterless campaign + Big Bear Hα (previous talk by A. De Groof)
- Swedish Vacuum Solar Telescope (SVST) +TRACE
 - SVST: blue/red wing of H α , Ca K
 - TRACE: 160 nm, 17.1 nm, and 19.5 nm data

SVST H α data

Feature Tracking

- outline loop structures
- extract data along loops
- generate space-time diagrams
- deduce projected velocities

movie

space-time diagrams

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

SVST H α data

Feature Tracking

- outline loop structures
- extract data along loops
- generate space-time diagrams
- deduce projected velocities

movie)

space-time diagrams

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Extracting Velocities: Slow and Fast Blobs

deduced projected velocities (example):

Extracting Velocities: Slow and Fast Blobs

qualitative comparison with model results:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Summary

Conclusions

- Coronal rain can be naturally explained by thermal instability in loops which are heated in the low corona
- Many predicted phenomena in good agreement with observations, e.g.
 - Strong brightening seen in "cool" spectral lines
 - Both slow and transonic downflows

Work in progress: use Ca K data to study cooling process down to chromospheric temperatures

Summary

Conclusions

- Coronal rain can be naturally explained by thermal instability in loops which are heated in the low corona
- Many predicted phenomena in good agreement with observations, e.g.
 - Strong brightening seen in "cool" spectral lines
 - Both slow and transonic downflows

Work in progress: use Ca K data to study cooling process down to chromospheric temperatures

Further Reading

Müller et al., A&A 436, 1064 – 1074 (2005) De Groof et al., A&A, *in press* (2005) [preprint on A&A web page]

Basic Equations

mass conservation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial z}(\rho u) = 0$$

momentum equation

$$\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial z} = -\frac{\partial}{\partial z} (p + \Lambda) - \rho g_{\parallel}$$

$$\frac{\partial}{\partial t}(\rho e) + \frac{\partial}{\partial z}(\rho u e) + (\rho + \Lambda)\frac{\partial u}{\partial z} = -\frac{\partial F_c}{\partial z} + Q - L$$

• ionization rate equations

$$\frac{\partial n_{ij}}{\partial t} + \frac{\partial}{\partial z}(n_{ij}u) = n_e \left[n_{ij-1}C_{ij-1} - n_{ij}(C_{ij} + \alpha_{ij}) + n_{ij+1}\alpha_{ij+1} \right]$$

▸ Go back

Conclusions

SVST H α data - Space-Time Diagrams

blue wing: $\lambda_0 - 350 \,\mathrm{m}\mathrm{\AA}$

▲口▶ ▲圖▶ ▲国▶ ▲国▶ 三臣 - のへで

Conclusions

SVST H α data - Space-Time Diagrams

red wing: $\lambda_0 + 350 \text{ mÅ}$

・ロン・日本・日本・ 小田・ 小田・ うんの

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Extracting Velocities: Slow and Fast Blobs

cutout from $\lambda_0 - 350$ mÅ: slope of tracks = projected velocity, v = ds/dt

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Extracting Velocities: Slow and Fast Blobs

cutout from $\lambda_0 - 350$ mÅ: slope of tracks = projected velocity, v = ds/dt

