Transverse waves in a post-flare supra-arcade

Erwin Verwichte

THE UNIVERSITY OF WARWICK

Chromospheric and Coronal Magnetic Fields Katlenburg-Lindau, September 1st 2005

Thanks to: V.M. Nakariakov, F.C. Cooper, C. Foullon

- Svestka et al. (1998): Fan-like structure above post-flare loops
 - Fans of rays are temporary multiple ministreamers or plume-like structures
 - Mass flow into interplanetary space

Transverse waves in a post-flare supra-arcade

- Svestka et al. (1998): Fan-like structure above post-flare loops
 McKenzie & Hudson (1999): See downflows in supra-arcade
 - Coherent blob-shaped X-ray depressions (tadpole) moving downwards in lanes between supra-arcade rays (100-200 km/s)
 - Slow down and narrow
 - Rays pushed sideways

	Т (МК)	ne (10 ⁹ cm ⁻³)
ray	7.9	2.3
Iane	8.6	1.4
void	9.1	1.3

Transverse waves in a post-flare supra-arcade

- Svestka et al. (1998): Fan-like structure above post-flare loops
 McKenzie & Hudson (1999): See downflows in supra-arcade
 What are tadpoles?
 - Fieldline shrinkage (Forbes & Acton, 1996; McKenzie & Hudson, 1999)
 - Sinking columns (Wang et al., 1999; Sheeley & Wang, 2002)
 - Reconnection downflows (Asai et al, 2004)
 - Plasma acceleration past infalling dense clouds (Innes et al., 2003)
 - Sinking reconnection point?

movie

Svestka et al. (1998): Fan-like structure above post-flare loops
 McKenzie & Hudson (1999): See downflows in supra-arcade
 What are tadpoles?

Joint TRACE, RHESSI, SUMER and radio observations

- Fe XXIV line in TRACE 195Å
- Bright front (V > 120 km/s), later CME
- Dark sinuous lanes in the supra-arcade head and transversely swaying tail (*tadpole*)
- Cospatial TRACE and RHESSI emission
- SUMER Doppler shifts of 800-1000 km/s

- Svestka et al. (1998): Fan-like structure above post-flare loops
 McKenzie & Hudson (1999): See downflows in supra-arcade
 What are tadpoles?
- ► Joint TRACE, RHESSI, SUMER and radio observations
- Investigate tadpole-tail transverse oscillations with TRACE Verwichte, Nakariakov & Cooper (2005)

Working data cube

- x: longitudinal, y: transverse
- Select 4 tadpole-ray edges
- Multiple tadpoles per edge

01:45 01:50 01:55 02:00 02:05 02:10 Time (UT)

Transverse waves in a post-flare supra-arcade

Tadpole-ray edge displacement

- Extract edge displacement ξ_v at each fixed height x
- Fit locally Gaussian to dl/dy to find ξ_v and error σ
- $\xi_y(x,t)$ for four edges A,B,C & D

Transverse waves in a post-flare supra-arcade

Measuring wave packets

► Select wave packet and subtract smooth background: $\xi_y \Rightarrow \delta \xi_y$

- Phase speed is measured using correlation
- Amplitude and period is measured using curve fitting
 - Fit for each height x: $\delta \xi_y = A \cos\left(\frac{2\pi}{P}t \phi\right)$

► Have $V_{ph}(x)$, A(x), P(x) for six wave packets

Transverse waves in a post-flare supra-arcade

Characterising wave packets

Fit functions to $V_{ph}(x)$, A(x) and P=constant

• Phase speed
$$V_{ph}(x)$$
: $\frac{V_{ph}}{V_{ph0}} = \left[1 - \frac{(x - 45.6)}{L_v}\right]^{-1}$
• Amplitude $A(x)$: $\frac{A}{A_0} = e^{\frac{(x - 45.6)}{L_A}}$

• Wavelength $\lambda(x)$ and deceleration a(x) follow from

$$\lambda(x) = V_{\text{ph}}(x) P$$
 and $a(x) = V_{\text{ph}}(x) \frac{dV_{\text{ph}}(x)}{dx}$

Characterising wave packets

Fit functions to $V_{ph}(x)$, A(x) and P=constant

Phase speeds and periods decrease as wave packets propagate sunwards!

Characterising wave packets

Fit functions to $V_{ph}(x)$, A(x) and P=constant

Nr	Edge	P(s)	λ ₀ (Mm)	V _{ph,0} (km/s)	L _v (Mm)	a0 (km/s²)	A0 (km)	L _A (Mm)
1	А	91±24	20.1±5.5	220±16	24.6±1.9	1.97±0.32	328±18	20.0±1.9
2	С	134±17	27.1±4.4	202±20	40.6±4.6	1.01±0.23	906±32	34.0±7.2
3	В	182±9	31.1±2.1	171±8	30.5±1.5	0.96±0.10	811±81	9.8±0.2
4	А	182±21	39.7±5.4	218±17	54.2±5.3	0.88±0.16	594±18	11.7±0.4
5	D	175±10	30.8±14.3	176±81	14.3±6.8	2.17±2.24	246±20	11.5±0.8
6	С	217±18	23.9±2.9	110±10	62.0±7.6	0.20±0.04	375±19	19.4±2.5
7	D	260±30	< 17	< 65	-		-	

Transverse waves in a post-flare supra-arcade

Evolving medium

Take measurements of each wave packet and study temporal behaviour

Transverse waves in a post-flare supra-arcade

Evolving medium

Take measurements of each wave packet and study temporal behaviour
 A simple calculation

- Assume that ray intensity $I-I_0 \sim n_e^2 \& V_{ph} \sim V_A$
- with $B_0 \& T_e$ constant
- with I₀ and arbitrarily chosen constant background

• then:
$$I-I_0 \sim V_{ph}^{-4}$$
 & $I-I_0 \sim P^4$

Transverse waves in a post-flare supra-arcade

Conclusions

Transverse nature of wave packets Fast magnetoacoustic kink wave trains

- Modelling in slab geometry
- Surface or body modes?
- Phase speed < Alfvén speed angles of propagation, upflows
- Decrease of phase speed and amplitude dissipation, vertical structuring
- Evolving rays medium changes wave signatures

Transverse waves in a post-flare supra-arcade

Doppler shifts

SUMER slit measured periodic Doppler shifts (Innes & Wang, 2003)

Doppler speeds of 10 km/s, same order of magnitude.

Plane of wave polarisation lies between line-of-sight and plane-of-sky!

