Chromospheric Waves

Mats Carlsson, University of Oslo Lindau, Friday 2.9.2005

Chromospheric waves

Energetics

Diagnostics

Observations

Simulations

Ca II H-line

Ca II H-line observations

- Emission all the time in the network, rather symmetric
- Most of the time no emission in internetwork
- Brightening from wing progressing to line center
- Brightening on the violet side of line center
- 3 min periodicity

Lites, Rutten, Kalkofen 1993

SUMER observations

Brightenings in the continuum
 Blue shifted emission

SUMER observations, upper chromosphere

- Oscillatory signal
- more in V than in I
- No strong saw-tooth form
- Extends to Transition-region

UV continua

Behaviour varies with position and time

Wave energy flux as function of height

Height=-0.05Mm

Cut-off frequency

Dynamic behaviour, Temperature

Ca II H-line intensity

Comparison, mid-high chromosphere

- Intensity variations OK, Mean level much too low.
- Agreement gets worse with height
- Where have all the shocks gone?

Model

Sun: 25 May 2003, 11:22:32 UT

Restrictions

•1D

 Iacking processes (NLTE line blanketing, Mg II, CO)

•CRD

- •no magnetic fields
- •no high frequencies in piston

Generation of acoustic waves 1D: high frequency peak (15mHz)

Musielak, Rosner, Stein, Ulmschneider 1994

Goldreich, Murray, Kumar 1994 Stein, Nordlund, 2001

Strong damping

Acoustic flux determined from observations

Fossum, Carlsson 2005, Nature 435,919

Total flux at 400km: 0.4 kW/m2

What have we learnt?

- •Ca II grains explained by acoustic waves
 - only way to get strong blue-red assymetry is through a strong velocity gradient
- •3min waves present already in photosphere
- •Non-magnetic chromosphere very dynamic.
- Acoustic waves not enough to explain midupper chromosphere in internetwork

Chromosheric seismology

McIntosh et al, 2003, AA 405, 769

Correlation with Magnetic canopy

See also poster P.12 by Fleck et al

Wave interaction with magnetic fields

Rosenthal et al 2002 ApJ 564,508 Carlsson & Stein 2002, ESA SP-505, 293 Bogdan et al 2003 ApJ 599,626

Mode conversion and reflection

Small attack angle - full mode conversion - no reflection Large attack angle - refraction - standing wave pattern

Radiation and shocks

Traveltime analysis

 $C(\Delta I/I_{1600}, \Delta I/I_{1700}) \rightarrow \text{traveltime (x,y)}$

Traveltime analysis

Active region wave propagation

1.

Active region wave propagation

Fossum, A, 2005

Higher resolution needed

02 June 2003, G-band

0

02 June 2003, Magnetogram

-10

10

02 June 2003, Ca H

Piecing it all together Hansteen 2004

- •16x8x12 Mm (2 Mm below, 10 Mm above)
- Open boundaries
- •Multi-group opacities (4 bins) with scattering
- Conduction along field-lines
- Optically thin losses in corona
- •Various initial magnetic field configurations

2D version

2D model

Waves

Height= 0.63 Mm

Conclusions

- Chromosphere pervaded by waves
 Determine the chromospheric structure
- Mode conversions where Cs=Ca
 Attack angle crucial
- Diagnostics very difficult forward modeling necessary for interpretation
 Chromospheric seismology possible but long "integration" times - is the average structure interesting?