CCMag, Lindau, Germany, August 30 - September 2, 2005

Simulations of magnetoacoustic waves in sunspots

Elena Khomenko(1,2), Manuel Collados(1) Instituto de Astrofisica de Canarias, La Laguna, Spain; Main Astronomical Observatory, Kiev Ukraine.

Motivation: photospheric oscillations

Bellot Rubio et al, 2000

•5-min velocity oscillations increase amplitude toward the umbra boundary.

Magnetic field oscillations of ≈8 G

Motivation: photospheric oscillations

magnetic field variations

Oscillations in sunspot's photosphere and chromosphere

TIP/VTT infrared observations at 10830 A

Motivation

wavelength

Centeno et al. (2005, in preparation) Collados et al. (2001) **Periods: 5 min (phot)** 3 min (chrom) Shock wave in the chromosphere **Propagation along the** Si field lines Delay of 6-7 min or V_{phas} of 4-5 km/s Photospheric pulse!

MHD equations

See eg., Lifschitz (1988)

MHD equations: linearization

$$\vec{B} = \vec{B}_0 + \vec{B}_1$$

$$P = P_0 + P_1$$

$$\rho = \rho_0 + \rho_1$$

$$\vec{V} = \vec{V}_1$$
Need for MHS equilibrium!

$$-\vec{\nabla}P_0 + \rho_0 \vec{g} + \frac{1}{4\pi} (\vec{\nabla} \times \vec{B}_0) \times \vec{B}_0 = 0$$
$$\vec{\nabla}\vec{B}_0 = 0$$

MHS field configuration

Pizzo (1986)

azimuthally symmetric sunspot, no twist

Radius, Mm

MHS field configuration

Semi-empirical model atmosphere on the axis

(VALC, Spruit (1977) - QS, Avrett (1981) - spot axis.

Equation of state

$$P = \frac{\rho kT}{\mu m_{H}}$$

Perfect gas

Energy losses

For the moment, no energy losses are taken into account: adiabatic waves

Numerical diffusivity

To reduce the high-frequency numerical noise

See Vogler et al (2005)

 $\left(\frac{\partial \rho}{\partial t}\right)_{i=1} = \sum_{l=1}^{n} \frac{\partial}{\partial x_{l}} \left(v_{l}(\rho) \frac{\partial \rho}{\partial x_{l}} \right) \quad \text{etc..}$

Boundary conditions

Top and side boundaries have an absorbing layer

Initial conditions

A pulse located at the lower boundary.

Specify horizonal $V_{1x} = V_0 \exp(i\omega t)$ OR vertical $V_{1z} = V_0 \exp(i\omega t)$ velocity

Pulse has a Gaussian shape.

Radial driving in $\beta > 1$, T=10 sec, duration=100sec

Transverse driving in $\beta > 1$, T=10 sec, duration=100sec

Radial driving in $\beta > 1$, T=50 sec, duration=100sec

Transverse driving in $\beta > 1$, T=50 sec, duration=100sec

Conclusions

Fast mode refracts back to the photosphere.

Slow (acoustic) mode continues up to the chromosphere.

Larger period pulse produces more acoustic power.