Detection of waves in the equatorial coronal holes

D. Banerjee

Indian Institute of Astrophysics

E.O'Shea & J.G. Doyle (Armagh Observatory)

Motivation

Coronal Holes (CH) ⇒ Source region of the Fast Solar Wind

Solar wind originates in coronal funnels

Observational log:

- Coronal Diagnostic spectrometer (CDS/SoHO)
- Long temporal series sequence for 11 TR and coronal lines formed between 2.5 x 10⁵ to 2.5 x 10⁶ K.
- We will present only results from
 - O v 629Å (2.5 x 10^5), coronal line Mg x 624 Å
- Slit width 4 x 240 arc sec
- Exposure time 60 sec

Dataset	Location	Start time
s26412r00	Eq. CH	07-12-02 12:22
s26412r01	Eq. CH	07-12-02 15:13
s26431r00	Eq. CH	10-12-02 16:26
s26431r00	Eq. CH	10-12-02 19:17
s26435r00	NP CH	11-12-02 06:33
s26502r00	SP CH	20-12-02 18:00
s26502r01	SP CH	20-12-02 20:50

Wavelet results for px 26 (the bright one) in South polar CH

X-F slices For a portion of the Slit in the South polar CH

Let us turn our attention to the Equatorial coronal hole Now....

A statistical approach to measure time-delay

We follow the treatment of Athay & White (1979) Phase delay are plotted over the full -180° to $+180^{\circ}$ Range and as a function of frequency f. The Phase difference is given by,

 $\Delta \phi = 2 \ \Pi \ f \ T$

Where T is the time-dealy, $\Delta \varphi$ will vary linearly with f and will change by 360° over freq interval $\Delta f = 1/T$ Parrellel lines in $\Delta \varphi$ vs. F plots corresponding to fixed time-delay

Simulated data

For a fixed time-delay of 250 s the calculated phase delays At frequencies squared symbols align themselves in Parrellel rows at 4 mHz intervals, as expected

Dataset 26431-2 Equatorial CH

Time –delay 167 s Height difference = 8937 Km

Phase speed = 54 km/s

Dataset 26502-3 Polar CH

Time –delay 100 s

Height difference = 8937 Km

Phase speed = 89 km/s

Polar CH with speeds 89 km/s

Equatorial CH 54 km/s

Conclusions:

- Detected presence of oscillations in CH with indications of prefered locations near bright points, presumably the base of the coronal funnels, network boundaries
- We find presence of upward propagating magnetoacoustic type waves, which has already been reported earlier
- Time-delay estimates gives phase speeds in the polar regions of the order of 90 km/s and in the equatorial regions abot 55 km/s (much slower!!)

