Planets under Extreme Stellar/Solar Conditions SC 3.4

H. Lammer

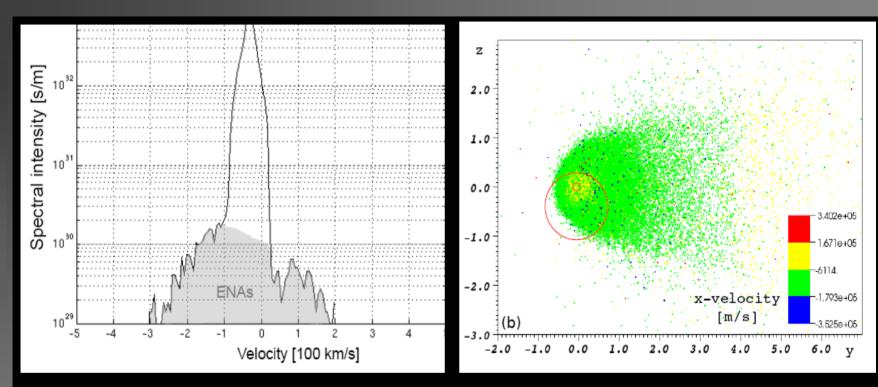
Space Research Institute, Austrian Academy of Sciences, Graz, Austria [helmut.lammer@oeaw.ac.at]

Science Case SC 3.4

WF Evaporation of close & H-rich gas giants

Observation

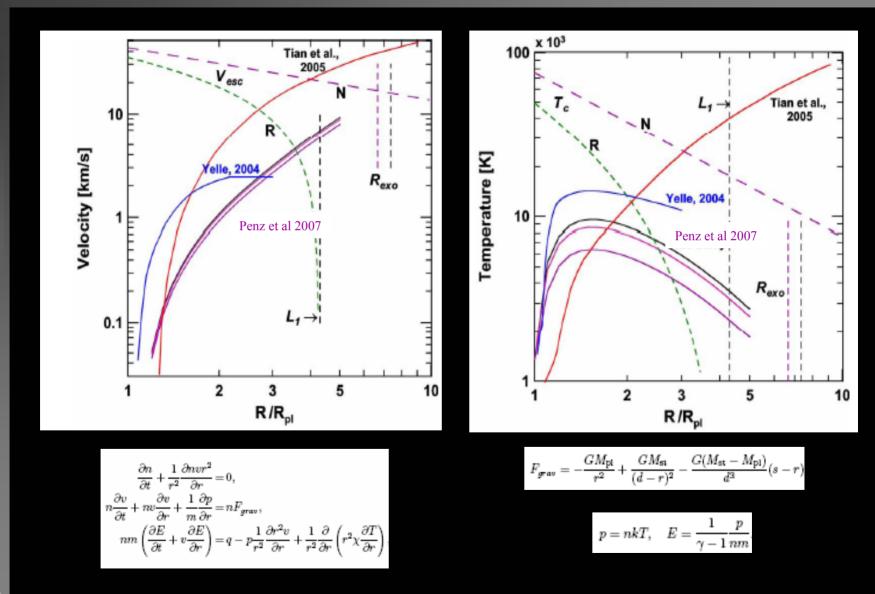
- Hydrogen-cloud observed around HD209458 b with HST
- Expanded atmosphere
- Estimated lower mass loss rate ≥ 10¹⁰ g s⁻¹
 [Vidal-Madjar *et al.*, Nature, 2003]


Full hydrodynamic blow-off model results for HD209458 b

- Atmosphere expansion ≈ 3 planetary radii
- Estimated maximal mass loss rate $\approx 7 \times 10^{10}$ g s⁻¹ [e.g., Lammer *et al.*, 2003; Yelle 2004; Tian *et al.* 2005; Munoz 2007; Penz *et al.* 2007]

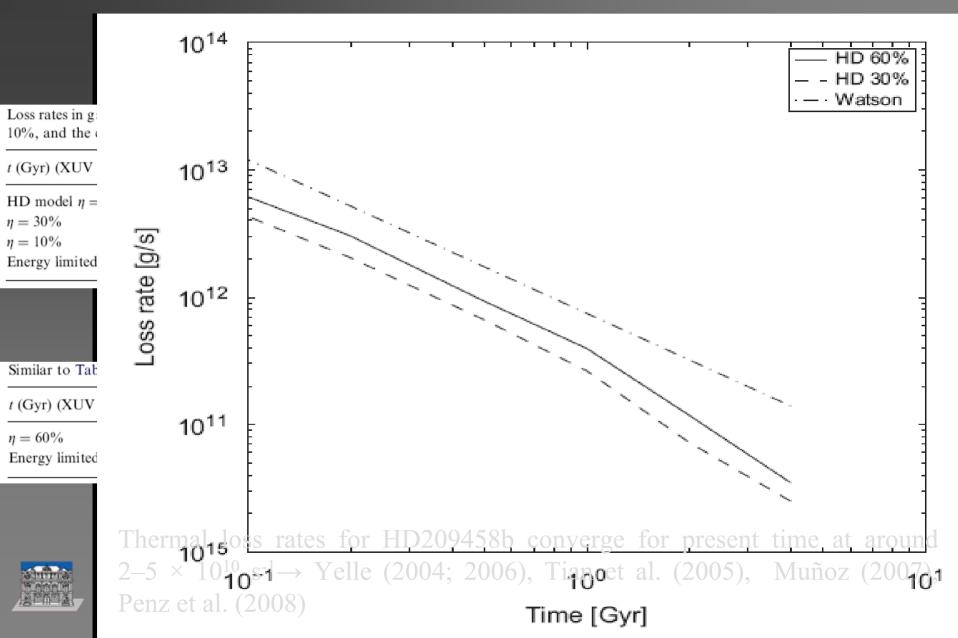
BUT ! Did they really observe the atmospheric hydrogen?

WF Hydrogen ENAs \rightarrow form the observed cloud


[Holmstroem et al., Nature, 2008]

Stellar wind plasma interaction with an extended hydrogen atmosphere can explain the observations \rightarrow information of the stellar wind around an other star at 0.045 AU!

A parameter study can give information about the magnetosphere and planetary exosphere


WF Evaporation of close-in H-rich gas giants

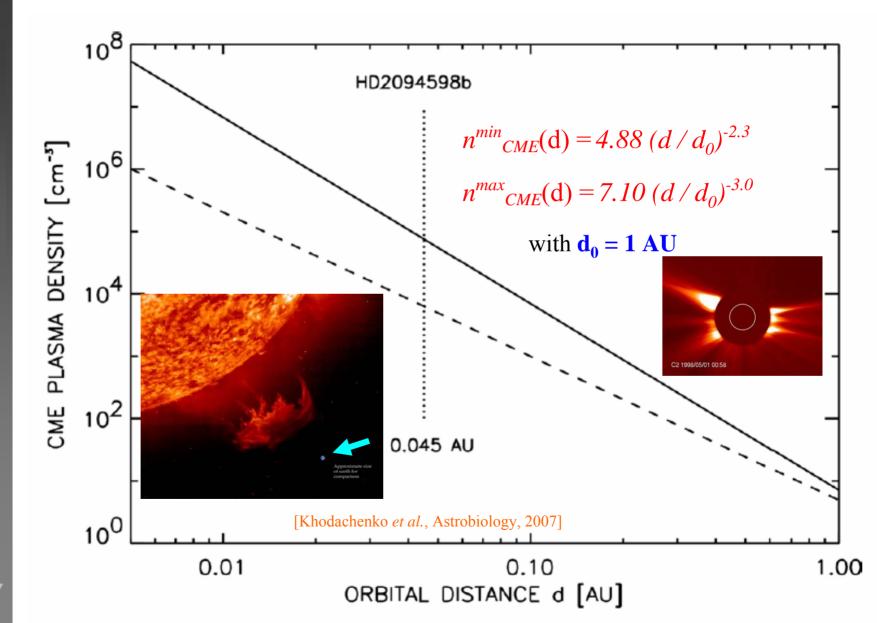
[Penz et al., PSS, in press 2008]

WF Mass-loss due to thermal loss of HD209458b

Evaporation of close-in H-rich gas giants in orbits around solar-like stars

t _{exo-form} [Myr]	d [AU]	<i>P</i> [d]	EGP I: <i>L</i> _{th} [%]	EGP II: <i>L</i> th [%]
50	0.02	1	100 %	~19 %
50	0.05	4	~19 %	~2 %
50	0.13	16	~3 %	<1 %
100	0.02	1	100 %	~13 %
100	0.05	4	~13 %	~1 %
100	0.13	16	~2 %	<1 %
200	0.02	1	~89 %	~9 %
200	0.05	4	~9 %	~1 %
200	0.13	16	~1 %	< 1 %
300	0.02	1	~73 %	~7 %
300	0.05	4	~7 %	< 1 %
300	0.13	16	< 1 %	< 1 %

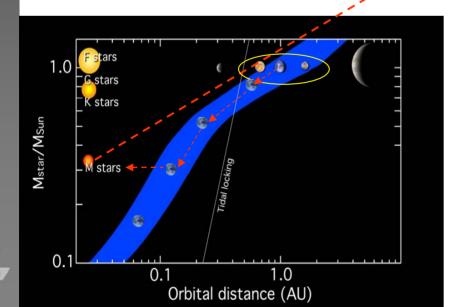
Includes the X-ray/EUV evolution history EGP I: $\rightarrow 10^{26}$ kg; EGP II: $\rightarrow 10^{27}$ kg


Transformation of hydrogen-rich Neptunetype planets to a kind of "Super Earth"

CH₄, NH₃, H₂O, etc.

IWF

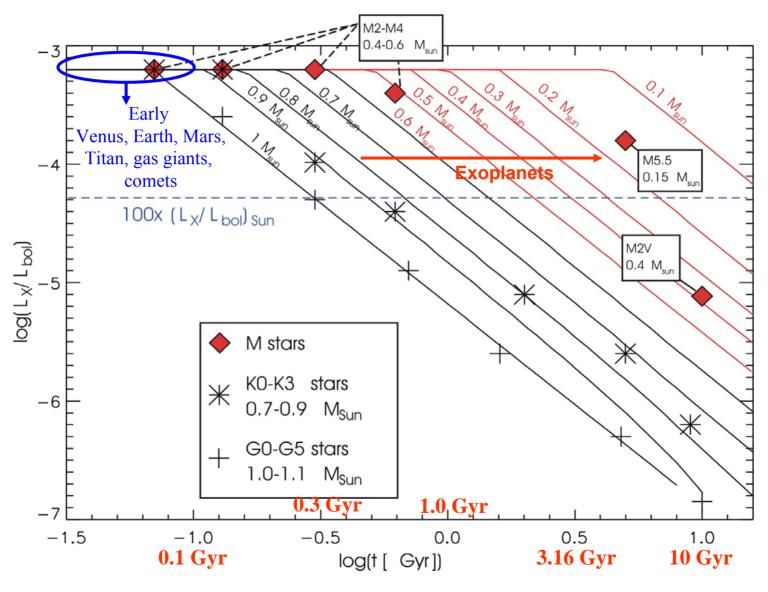
IVF Solar-Stellar analogy \rightarrow CME activity



No solar analogy for habitable zones of lower mass stars (K and M-types)

Atmospheric effects and habitability of Earth-like exoplanets within close-in habitable zones

- Enhanced EUV and X-rays
- Neutron fluxes
- Coronal mass ejections (CMEs)
- Intense solar proton/electron fluxes (e.g., SPEs)

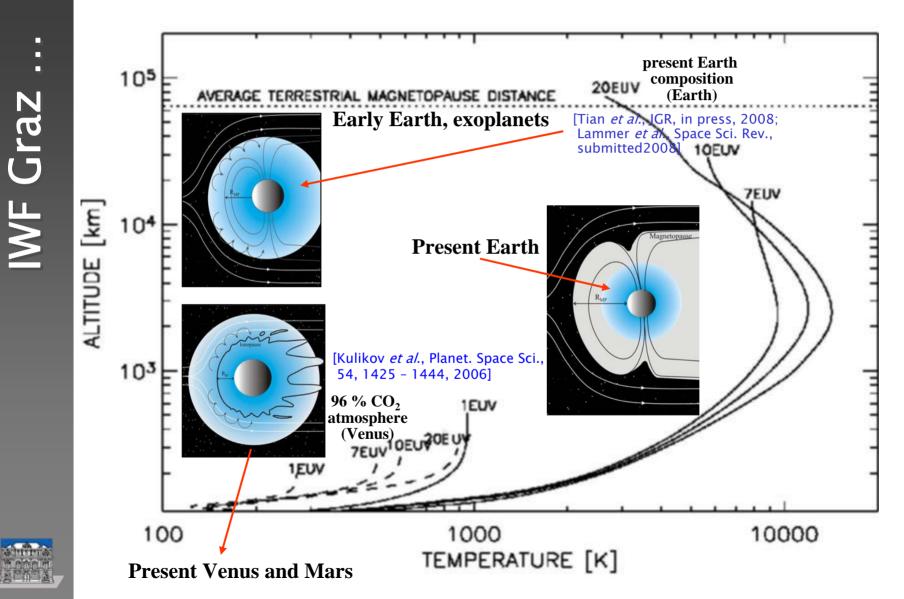

Solar – stellar analogy

- Data from Sun + Stars

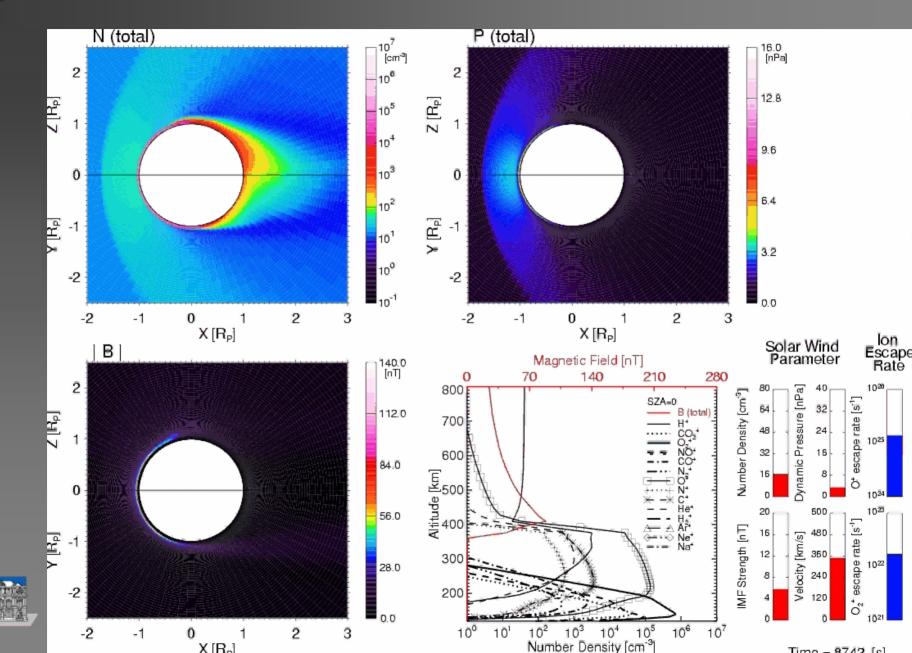
Space and ground-based data

- Correlated analysis of events
- Establishing an extreme event data-base (Venus, Earth, Mars, exoplanets)
- Input for models

WF X-ray/EUV activity of low mass stars



[Scalo et al 2007]



Expected scenarios of atmosphere responses during the young Sun active star epochs

11

IWF O⁺ pick up loss rates of present Venus at 0.7 AU

Exo-Venus (M-star habitable zone) studies: parameter study for early Venus modelling

Vol 000 00 Month 2007 doi:10.1038/nature06434

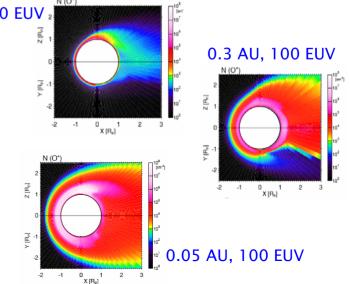
nature

$$\int \Phi dt = \pi \left[\left(r_{pl} + \delta_{i} \right)^{2} - r_{pl}^{2} \right] n_{o+} v_{o+} \Delta t, \quad \Box \Box \Box \Box \Box \Box \Box \Box \Box$$

The loss of ions from Venus through the plasma wake

S. Barabash¹, A. Fedorov², J. J. Sauvaud², R. Lundin¹, C. T. Russell³, Y. Futaana¹, T. L. Zhang⁴, H. Andersson¹,
K. Brinkfeldt¹, A. Grigoriev¹, M. Holmström¹, M. Yamauchi¹, K. Asamura⁵, W. Baumjohann⁴, H. Lammer⁴,
A. J. Coates⁶, D. O. Kataria⁶, D. R. Linder⁶, C. C. Curtis⁷, K. C. Hsieh⁷, B. R. Sandel⁷, M. Grande⁸, H. Gunell⁹,
H. E. J. Koskinen^{10,11}, E. Kallio¹¹, P. Riihelä¹¹, T. Säles¹¹, W. Schmidt¹¹, J. Kozyra¹², N. Krupp¹³, M. Fränz¹³, J. Woch¹³,
J. Luhmann¹⁴, S. McKenna-Lawlor¹⁵, C. Mazelle², J.-J. Thocaven², S. Orsini¹⁶, R. Cerulli-Irelli³⁶, M. Mura¹⁶,
M. Milillo¹⁶, M. Maggi³⁶, E. Roelof¹⁷, P. Brandt¹⁷, K. Szego¹⁸, J. D. Winningham¹⁹, R. A. Frahm¹⁹, J. Scherrer¹⁹,
J. R. Sharber¹⁹, P. Wurz²⁰ & P. Bochsler²⁰

By using modelled O^+ ion densities corresponding to Venus-type CO_2 atmospheres and planets over the terminator and by assuming that only about 20 % of the circular area over the polar terminator areas one can estimate the ion loss into the tail which is a factor of 10


higher compared to ion pick up loss:

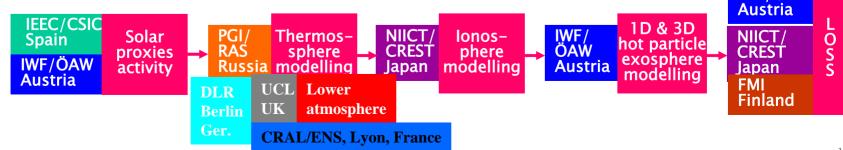
0.3 AU, 30 EUV 2

[Terada et al., in preparation for Astron. & Astrophys., 2008]

Exo-Venus (30 EUV): at HZ 0.3 AU \rightarrow 5 × 10²⁸ s⁻¹; < 2 bar during 150 Myr

Exo-Venus (100 EUV): at HZ 0.3 AU \rightarrow 8 × 10²⁹ s⁻¹; ~ 20 bar during 150 Myr

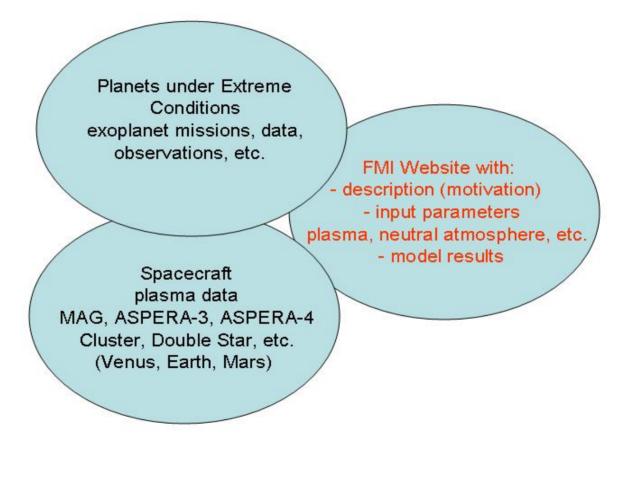
Exo-Venus (100 EUV): at HZ 0.05 AU \rightarrow 10³¹ s⁻¹; ~ 500 bar during 150 Myr



Water inventories and atmospheres are strongly effected due to non-thermal loss processes

WF Ongoing activities and future outlook

- Solar/stellar drivers for thermal and non-thermal escape processes
- Thermosphere ionosphere exosphere \rightarrow escape
- Recent and preliminary modelling efforts for extreme solar/stellar conditions
 - ID diffusive-gravitational equilibrium and thermal balance modelling of Venus and Martian-type CO₂ atmospheres under extreme XUV conditions → early Venus, early Mars & CO₂-rich terrestrial exoplanets
 - ionosphere and 1D and 3D hot particle and exosphere modelling
 - application of test particle and 3D MHD and 3D hybrid models
 - for upper atmosphere solar wind interaction under extreme
 - radiation/plasma conditions → early Venus, Mars, etc.



IWF/ÖAW

SC 3.4 Implementation in the Plasma node (atmosphere node)

Planets under Extreme conditions

