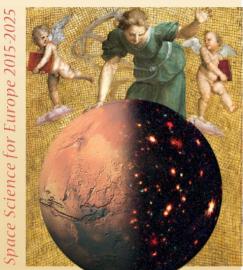

ESA's exoplanetary program The Darwin Mission Status & recent progress

M. Fridlund

1. ESA Cosmic vision program

- 2. Scientific rationale
- 3. Status of the Darwin study
- 4. Current stepwise approach
- 5. Possible role for small missions
- 6. Where do we go from here?


Cosmic Vision 2015-2025 Current status

- Implementation of current H2000+ program in preparation:
 - GAIA: 2011/12
 - Bepi-Colombo: 2014
 - LISA/Pathfinder ?
 - Solar orbiter under review
- CV1525 addresses four grand themes
- Call for proposals 2006
- Call for one mission within small financial constraint for 2015-16
- + one larger mission without formal constraint flight in ~2020 (Darwin?)
- 3 candidates for either will be selected for (further) study and will receive funding for technology development

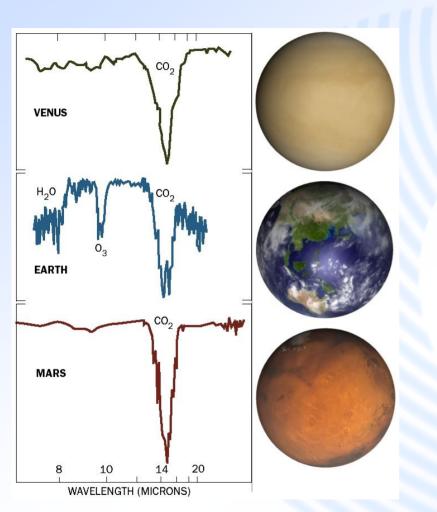
Cosmic Vision

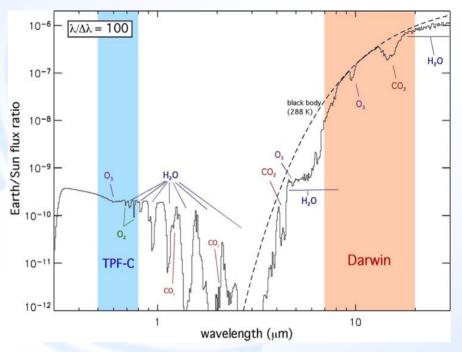
Respons Speen Agoney Agones specifiche ouropéennes

Cosmic Vision is centered around four Grand Themes:

- 1. What are the conditions for planet formation and the emergence of life?
 - From gas and dust to stars and planets
 - From exo-planets to biomarkers
 - Life and habitability in the Solar System
- 2. How does the Solar system work?
- 3. What are the Fundamental Physical Laws of the Universe?
- 4. How did the Universe originate and what is it made of?

Proposed strategy:


- First: In-depth analysis of terrestrial planets (Darwin / NIRI)
- Next: Understand the conditions for star, planet and life formation (Far IR observatory / Solar Polar Orbiter)
- Later: Census of Earth-sized planets & explore Europa (Terrestrial Planet Astrometric Surveyor / Europa orbiter / lander)
- Finally: Image terrestrial exo-planet (beyond 2025) (Large Optical Interferometer)



- 1. ESA Cosmic vision program
- 2. Scientific rationale
- 3. Status of the Darwin study
- 4. Current stepwise approach
- 5. Possible role for small missions
- 6. Where do we go from here?

Bio markers

The goal is to find rocky planets with an atmosphere out of photo-chemical balance.

(cf. Lederberg, 1965 and Lovelock, 1965)

Working definition:

 $Life \equiv O_3 + H_2O + CO_2$

Ideally, detect reduced molecules (CH_4 , N_2O) as well

The quest for Terrestrial exoplanets

Significantly smaller than currently detected planets but we are getting there

- No doubt that microlensing will start to pick up them

- RV requires 0.1 m/s (possible) over 3 years (1AU/G2V) with large telescope and no disturbing P-modes (6 month time scale 0.5-1 m/s) This is for the Habitable Zone. Real problem is stellar activity

Direct observation with next generation ELT's require:

- 100m class telescopes! Can only work on G-stars to 18pc! (35 targets)

If telescope surface Perfect!!

- Bright star ==> contrast ratios of 10¹⁰-10¹¹ at subarcsec separation!

 Diffraction control, wavefront quality (Strehl ratio), wavefront stability → 2-3 orders of magnitude above today

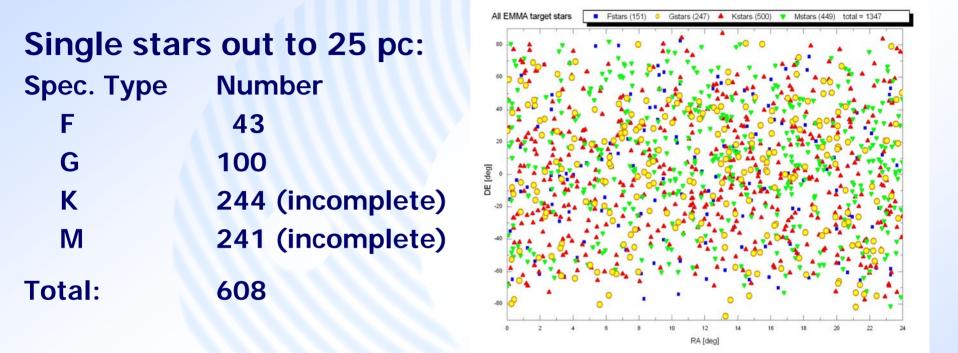
If we need to observe directly: Go To Space!!

Two extreme cases are possible and need to be considered:

- Earth-like planets are common
- Earth-like planets are extremely scarce

This means any search need to be designed such that a negative result is also meaningful

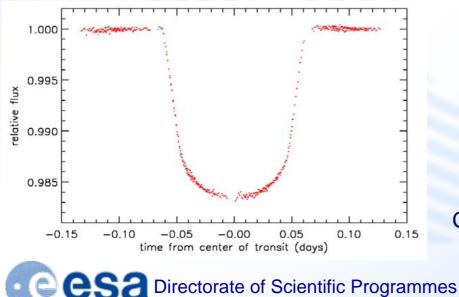
Therefore, the DARWIN mission is designed to search and characterize Earth-like planets around at least 300 – 500 stars

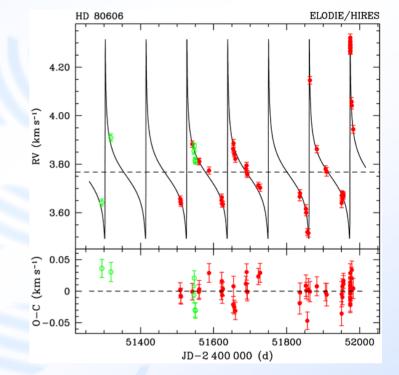


In-depth analysis of Earth-like planets What strategy?

- Search for rocky planets and determine if they are common or rare
- Determine the physical conditions of and on these planets
- Determine whether these planets are in principle habitable
- Find out if these planets have life on them
- To place ourselves in context we need the science of Comparative Planetology

DARWIN Target catalogue

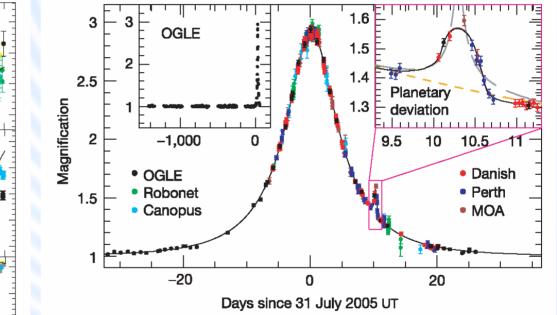


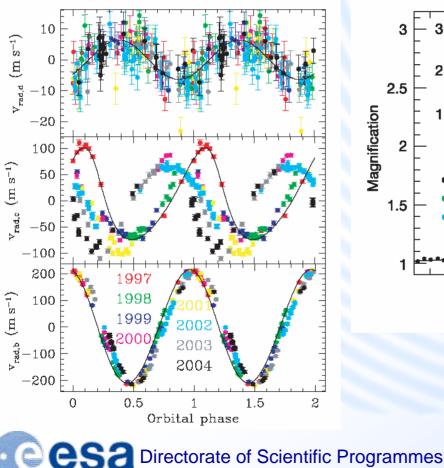

All missing late K and M stars within 25 pc will be found by GAIA in ~ 1.5 year of mission time because of large parallax and sensitivity (GAIA can observe down to R = 25 magnitude)

Exo-planets do exist in abundance...

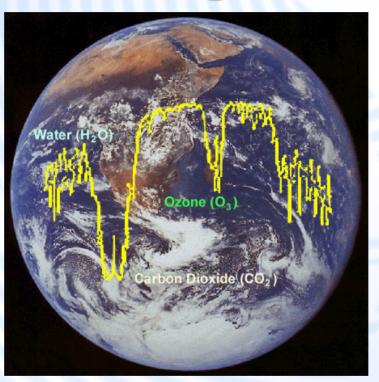
- >200 planets in > 140 systems since 1995
- But most detected so far are Jupiter-size planets in tight, eccentric orbits
- Some detected with 6 < M < 10 M_⊕ but either in short period orbits or around M-stars!

Naef, Latham et al., 2001 e = 0.927

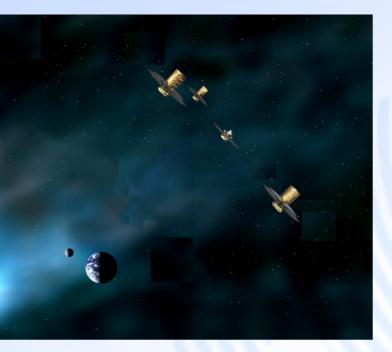

Charbonneau et al., 2000


probably down to Earth-like masses... 7.5 M_⊕.... 5.5 M_⊕....

at 0.021 AU around an dM4 GJ 876 Rivera et al., ApJ 634, Nov. 2005


at 2.6 AU around an 0.22 M_{sun} M-dwarf

Beaulieu et al., Nature, Jan. 2006


... but the 'Holy Grail' is still eluding us

- 1. ESA Cosmic vision program
- 2. Scientific rationale
- 3. Status of the Darwin study
- 4. Current stepwise approach
- 5. Possible role for small missions
- 6. Where do we go from here?

Darwin is a nulling interferometer connecting 3 - 4 telescopes, each on its own s/c with phase delays extinguishing the light on the optical axis, while enhancing the light a small distance (in the Habitable Zone for the star in question) away. Interferometry takes place in the beam combiner s/c for a total of 4-5 s/c. Mirrors in 4m class are required to reach all stars out to 25-30pc. Modulation (to alleviate noise factors) is introduced by using sub-interferometers (and 'chop' the signal) and by rotating the array, essentially producing a transmission pattern on the sky 'searching' the HZ.

Status of Darwin

- Data processing study by Alcatel Alenia (F) to finish October 2005
- End-to-end simulator development by EADS Astrium (D) + 18 months
- Two parallel system studies by Alcatel Alenia (F) and EADS Astrium (D) kicked-off in October 2005, finish in April 2007
 - Study Darwin in triangular or X-array formation (i.e. 3 or 4 tel.)
 - 3 4 m class telescopes
 - Spectral range: 6 20 μm
 - Spectral resolution 20 50 (120)
 - A5 launch to L2
 - 5 years nominal mission time + 5 years extended
- To be proposed by community for the Cosmic Vision as a major mission this Fall

Status of the field

GENIE: (ESA) ground-based nulling at VLTI: on hold (polarisation, CV approval) **COROT**: (F) transition search, large rocky planets: launch 2006 **PRISMA:** (S, D, F) 2 Free Flying techno precursor s/c for 35 M€: launch 2008 **KEPLER:** (NASA) transition search, also for Earths: launch 2008 **HERSCHEL**: launch 2008 (ESA) dust levels in target systems: GAIA: (ESA) completion of star catalogue: launch 2011 / 12 SIM: (NASA) space interferometer: launch, 201? **TPF-C**: (NASA) space coronograph: on hold **TPF-I**: (NASA) nulling interferometer: on hold Darwin partner/counterpart

- 1. ESA Cosmic vision program
- 2. Scientific rationale
- 3. Status of the Darwin study
- 4. Current stepwise approach
- 5. Possible role for small missions
- 6. Where do we go from here?

Darwin preparatory work

- Technology Research Program
 - **5** Meuro in 2006, 4.5 Meuro in 2007
 - Expect similar funding during Cosmic Vision
 - Major goal: 'realistic' nulling breadboard
 - Bring enabling technology in place

HERSCHEL program

- Building on Spitzer legacy
- Unbiased search for Kuiper belts / exo-zodi in GT program of closest 80 FGK stars.
- Sensitivity is 1 Kuiper-belt around G2V at 10pc with S/N of 5 in ~ 30 min.

COROT:

- Launch in fall of 2006 (Soyuz from Bajkonur) into LEO
- Capacity to detect 2 Earth-radii planets in short period orbits
- Field of view 2 deg²; 1 field every 150 days for 2.5 years
- Two tasks: astroseismology and planet finding
- ~50 astroseismology targets and 60000 planet-finding targets

KEPLER:

- Launch 2009, results in 1-3 years, total mission time 4 years
- Scans 100,000 stars in a 150 sq. deg. field in Cygnus-Lyra
- Expected to find ~50 'real Earths' = 1 R_{\oplus} in HZ = 1 AU around G2V)

Astrometry in space & on ground

Goals:

- complete census of giant planets to 200 500 pc
- orbital characteristics of several thousand systems

Present: Using FGS on HST

Soon: VLTI-PRIMA

2011/12:GAIA

201?: SIM-PlanetQuest

M. Fridlund, August 2006

(GL876b mass determination)

- 1. ESA Cosmic vision program
- 2. Scientific rationale
- 3. Status of the Darwin study
- 4. Current stepwise approach
- 5. Possible role for small missions
- 6. Where do we go from here?

DARWIN-Lite or Super-PEGASE

- First mission in CV1525 is too small an envelope for DARWIN proper (300 Meuro)
- CV plan allows for several (sub-)missions or experiments to answer a Theme
- ➔ Investigate Darwin-lite:
 - Cheaper mission with less encompassing science case
 - Smaller DARWIN or larger PEGASE: "Where shall the twain meet?"
- → Outcome of initial study by Univ. of Liège:
 - Science case not compelling
 - Cost & complexity NOT significantly reduced!
 - TE-SAT recommends NO Darwin-lite!

- 1. ESA Cosmic vision program
- 2. Scientific rationale
- 3. Status of the Darwin study
- 4. Current stepwise approach
- 5. Possible role for small missions
- 6. Where do we go from here?

Where do we go from here?

- **O. Get DARWIN into Cosmic Vision program**
 - Role of Europlanet = ? But must be significant
- **1. Continue development of enabling technology**
- 2. Broaden interest base: Again a role for Europlanet
 - Solar system community
 - Biology
 - Paleontology
 - Geophysics
- 3. Work on preparation
 - Study of target systems: Kuiper-Edgeworth belts, exo-zodiacal dust, inclination, etc...
- Models of planetary evolution
 Content of Scientific Programmes