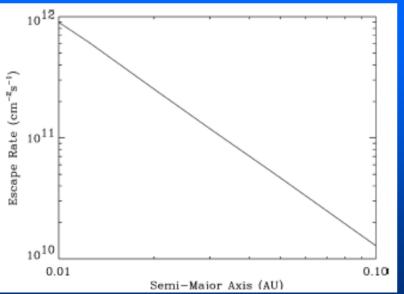

EUR Planet Radiation and plasma/particles

EURIE Planet X-ray/EUV activity and stellar type and age



Modelling of thermospheric energy budgets

Hot Jupiter's

				—		
Reaction					Rate ^a	
Rla	H_2	+ hv	$\rightarrow H_2^+$	+ e	2.68 × 10 ⁻⁵	
Rlb			\rightarrow H ⁺	+H +e	8.93×10^{-7}	
R2	н	$+ h\nu$	\rightarrow H ⁺	+ e	4.76×10^{-5}	
R3	He	$+ h\nu$	\rightarrow He ⁺	+ e	2.58×10^{-5}	
R4	H_2	+ M	\rightarrow H	+ H + M	$1.5 \times 10^{-9} e^{-4.8E4/T}$	
R5	H	+H+M	$\rightarrow H_2$	+ M	$8.0 \times 10^{-33} (300/T)^{0.6}$	
R6	H_2^+	+ H ₂	$\rightarrow H_3^+$	+ H	2.0×10^{-9}	
R7	H ₃ +	+ H	$\rightarrow H_2^+$	+ H ₂	2.0×10^{-9}	
RS	H_2^+	+ H	\rightarrow H ⁺	+ H ₂	6.4×10^{-10}	\sim
R9	H+	$+ H_2(v \ge 4)$	$\rightarrow H_2^+$	+ H	$1.0 \times 10^{-9} e^{-2.19E4/T}$	
R10a	He ⁺	+ H ₂	$\rightarrow HeH^{+}$	+ + H	4.2×10^{-13}	
R10b			\rightarrow H ⁺	+ H + He	8.8×10^{-14}	
R11	HeH ⁺	+ H ₂	$\rightarrow H_3^+$	+ He	1.5×10^{-9}	
R12	HeH ⁺	+ H	$\rightarrow H_2^+$	+ He	9.1×10^{-10}	
R13	H+	+ e	$\rightarrow H^{}$	+ hv	$4.0 \times 10^{-12} (300/T_e)^{0.64}$	
R14	He ⁺	+ e	\rightarrow H	+ hv	$4.6 \times 10^{-12} (300/T_e)^{0.64}$	
R15	H_2^+	+ e	\rightarrow H	+ H	$2.3 \times 10^{-8} (300/T_e)^{0.4}$	
R16a	H_3^+	+ e	\rightarrow H ₂	+ H	$2.9 \times 10^{-8} (300/T_e)^{0.65}$	
R16b	5		$\rightarrow H$	+ H + H	$8.6 \times 10^{-8} (300/T_e)^{0.65}$	
R17	HeH+	. + e	\rightarrow He	+ H	$1.0 \times 10^{-8} (300/T_e)^{0.6}$	

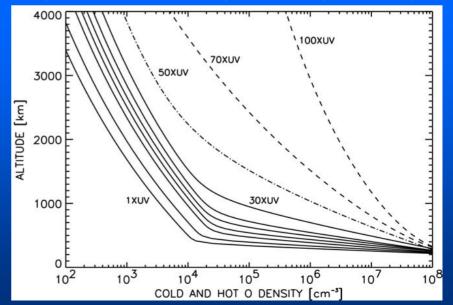
[Yelle, Icarus, 170, 167-179, 2004]

Terrestrial planets

- (i) heating due to the CO₂, N₂, O₂, CO and O photoionization by XUV-radiation (λ≤ 102.7 nm);
- (ii) heating due to O₂ and O₃ photodissociation by solar UV-radiation;
- (iii) chemical heating in exothermic three-body reactions

 $O + O + M \rightarrow O_2 + M$,

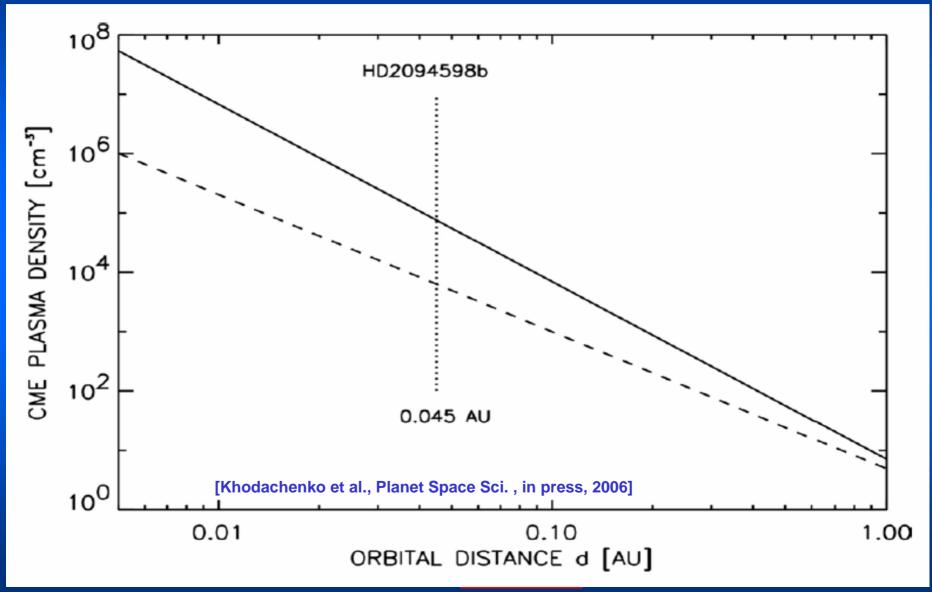
 $O + CO + M \rightarrow CO_2 + M$,


 $O + O_2 + M \rightarrow O_3 + M$,

where M are CO_2 , N_2 and CO molecules and O and He atoms. Further, the model includes:

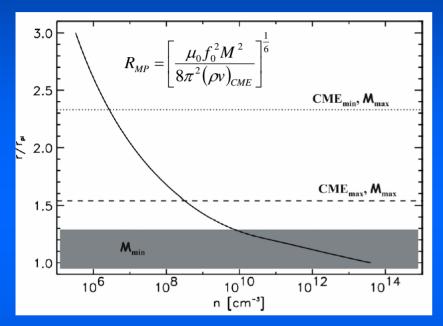
(iv) neutral gas molecular heat conduction;

- (v) IR-cooling in the vibrational-rotational bands of CO2
- (15 µm), CO, O₃ and in the 63 µm O line; (vi) turbulent energy dissipation and heat conduction.

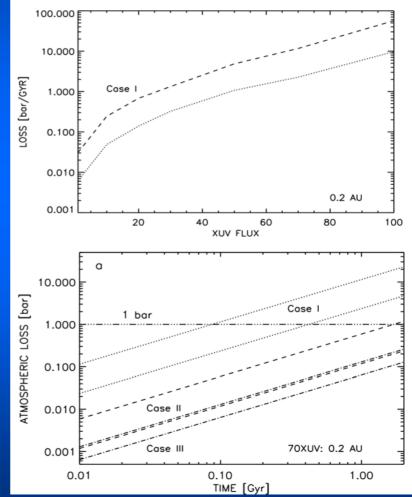

[Kulikov et al., Planet. Space Sci., in press, 2006]

Expected consequences

- large thermal escape rates
- effect on planetary H₂O inventory
- fractionation of atmospheric species
- effect on bio-markers
- expanded atmospheres resulting in large interaction areas for solar/stellar plasma and non-thermal loss



Exomagnetospheres and non-thermal loss processes


Hot Jupiter's [0.045 AU]

[Khodachenko et al., Planet Space Sci., in press, 2006]

Conditions	${\rm S}~[{\rm s}^{-1}]$	L [g s ⁻¹]	$\mathcal{M}\left[\mathcal{M}_{\mathrm{Jup}} ight]$	$n_{\rm CME} \ [{\rm cm}^{-3}]$	$r_{\rm s}~[r_{\rm pl}]$	$\Gamma \ [M_{ m pl}]$
$CME_{min}, \mathcal{M}_{max}$	9×10^{34}	1.5×10^{11}	0.1	6300.0	2.33	1.56×10^{-2}
$\mathrm{CME}_{\mathrm{max}},\mathcal{M}_{\mathrm{max}}$	7×10^{37}	2×10^{13}	0.1	$7.5 imes 10^4$	1.54	0.2
CME_{\min}	7.2×10^{36}	1.2×10^{13}	0.017	6300.0	1.3	0.12
$\mathrm{CME}_{\mathrm{max}}$	8.2×10^{37}	$1.37{ imes}10^{14}$	0.059	7.5×10^4	1.3	1.43
CME_{\min}	8.4×10^{37}	1.4×10^{14}	0.012	6300.0	1.15	1.46

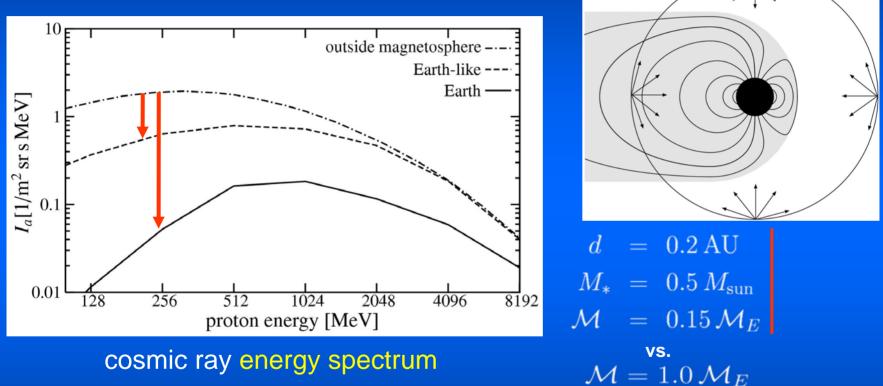
Terrestrial planets [0.2 AU]

0.140.0126300.01.151.46[Lammer et al., Astrobiology, submitted, 2006]I3/CA Europlanet - EC Contract 001637 - http://europlanet.cesr.fr/

Solar/stellar wind interaction of non-magnetized planets

Open problems

- Extended atmospheres where the exobase is above the ionopause \rightarrow it is not the case with Venus or Mars but there is a similarity with Titan


- Solar/stellar wind/plasma interacts within the collision dominated atmosphere \rightarrow at which altitude does the planetary obstacle form?
 - → how large are induced magnetic fields of dense ionospheres due to high XUV radiation and how do they contribute to atmosphere protection
 - \rightarrow essential for non-thermal loss studies
- In some cases the dense stellar wind close to its star is subsonic
 → similar with Titan's atmosphere-Saturn-magnetosphere interaction
- What is the heat input of CMEs to the atmospheres of planets at close orbital distances
- Fractionation of atmospheric species over long time periods

 → effect and change in bio-markers and atmospheric stability and water
 inventories in general

Habitability-Biomarkers

Magnetospheric shielding \rightarrow important!

→ biological effects [Grießmeier et al., Astrobiology 5, 591, 2005]
 → change in atmospheric chemistry

 bio-markers (O₃) [Grenfell et al., Astrobiology submitted, 2006]

EUR Planet Revisit the concept of the habitable zone (M,K,-G-,F stars)

Global circulation modelling

- atmospheric circulation, climate and atmospheric stability of slow rotating planets \rightarrow what can we learn from Venus and Titan ?
- how does the atmosphere of an habitable planet reacts to increasing stellar luminosity (i.e. decreasing orbital distance) ?
- how far can habitability be sustained assuming a silicate-carbonate control of the atmospheric CO₂ content ?

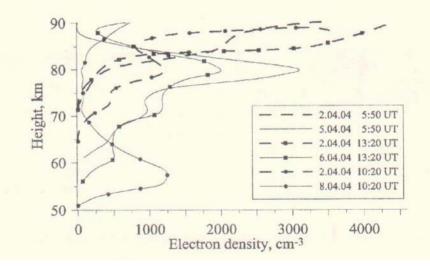
Application of sophisticated sw-plasma magnetospheric/ atmospheric/ionospheric models (hybrid, etc.) to exoplanets with X-ray and EUV heated and extended upper atmospheres

- \rightarrow Synergy with early Solar System planets
- → Experience from Titan, Mars/Venus/Mercury/Earth observations/modelling

Connecting thermal/non-thermal loss modelling to bio-marker studies \rightarrow fractionation of species \rightarrow habitability

Future outlook

"Physics of Auroral Phenomena", Proc. XXVIII Annual Seminar, Apatity, pp. 182-185 , 2005 © Kola Science Center, Russian Academy of Science, 2005


OBSERVATIONS OF THE IONOSPHERIC EFFECTS IN THE HIGH LATITUDE D-REGION DURING SOLAR FLARES IN APRIL, 2004

V.D. Tereshchenko, E.B. Vasiliev, O.F. Ogloblina, V.A. Tereshchenko, S.M. Chernyakov (Polar Geophysical Institute KSC RAS, 15, Khalturina Str., Murmansk, 183010, Russia; E-mail: vladter@pgi.ru) Observations of

Observations of the ionospheric effects in the high latitude D-region during solar flares in April, 2004

Example → X-ray effects on Earth's ionosphere during flare events

Extreme events can be used for in-situ studies which are usual conditions on exoplanets or early Earth during the active young Sun

- Collect atmospheric/ionospheric/magnetospheric/chemical data correlated to extreme solar events available from various institutes \rightarrow data base (IDIS)
- Establish a data base related to loss modelling (applied models and input data used planet, atmosphere, XUV, plasma, etc., LOSS RATES) \rightarrow (IDIS)
- Similar data bases could be established to topics related to GCMs, bio-markers