[1]
N. Carrasco and P. Pernot. Modeling of branching ratio uncertainty in chemical networks by dirichlet distributions. J. Phys. Chem. A, 2007.

[2]
R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampton, Jr, R.G. Hynes, M.E. Jenkin, J.A. Kerr, M.J. Rossi, and J. Troe. Evaluated kinetic and photochemical data for atmospheric chemistry. IUPAC, http://www.iupac-kinetic.ch.cam.ac.uk, 2006.

[3]
N. Carrasco, O. Dutuit, R. Thissen, M. Banaszkiewicz, and P. Pernot. Uncertainty analysis of bimolecular reactions in Titan ionosphere chemistry model. Planetary and Space Science, 2007.

[4]
T.E. Cravens, I.P. Robertson, J.H. Waite Jr, W.T. Kasprzak, C.N. Keller, S.A. Ledvina, H.B. Niemann, J.G. Luhmann, R.L. McNutt, W.H. Ip, V. De La Haye, I. Mueller-Wodarg, J.E. Wahlung, V.A. Anicich, and V. Vuitton. The composition of Titan's ionosphere. Geophys. Res. Lett., 33:L07312, 2006.

[5]
H. Palm, Ch. Alcaraz, Ph. Millié, and O. Dutuit. State-selected C2H2+ + C2H4 reaction: Controlled by dynamics or statistics? Int. J. Mass Spectrom., 249-250:31-44, 2006.

[6]
V. Wakelam, E. Herbst, and F. Selsis. The effect of uncertainties on chemical models of dark clouds. A. & A., 451:551-562, 2006.

[7]
E. Hebrard, Y. Bénilan, and F. Raulin. Sensitivity effects of photochemical parameters uncertainties on hydrocarbon production in the atmosphere of Titan. Adv. Space Res., 36:268-273, 2005.

[8]
J. Lilensten, O. Witasse, C. Simon, H. Solidi-Lose, O. Dutuit, R. Thissen, and C. Alcaraz. Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Letters, 32(3), 2005.

[9]
R. Minard. A survey of data and publications relating to Titan atmospheric chemistry studies, 09 2005. http://psarc.geosc.psu.edu/TITAN/TitanChemBiblio.pdf.

[10]
J.H. Waite, H. Niemann, R.V. Yelle, W.T. Kasprzak, T.E. Cravens, J.G. Luhmann., R.L. McNutt, W.-H. Ip, D. Gell, V. De La Haye, I. Muller-Wordag, B. Magee, N. Borggren, S. Ledvina, G. Fletcher, E. Walter, R. Miller, S. Scherer, R. Thorpe, J. Xu, B. Block, and K. Arnett. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308(5724):982-986, 2005.
[ http ]

The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

[11]
V. Wakelam, F. Selsis, E. Herbst, and P. Caselli. Estimation and reduction of the uncertainties in chemical models: application to hot core chemistry. A. & A., 444:883-891, 2005.

[12]
C. Alcaraz, C. Nicolas, R. Thissen, J. Zabka, and O. Dutuit. 15N+ + CD4 and O+ + 13CO2 state-selected ion-molecule reactions relevant to the chemistry of planetary ionospheres. J. Phys. Chem. A, 108(45):9998-10009, 2004.

[13]
V.G. Anicich, P. Wilson, and M.J. McEwan. A SIFT ion-molecule study of some reactions in Titan's atmosphere. Reactions of N+, N2+ and HCN+ with CH4, C2H2 and C2H4. J. Am. Soc. Mass Spectrom., 15:1148-1155, 2004.

[14]
R. Atkinson, D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, and J. Troe. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume i - gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys., 4:1461-1738, 2004.

[15]
D. Bose, M. Wright, and T. Göçen. Uncertainty and sensitivity analysis of thermochemical modeling for Titan atmospheric entry. In 37th AIAA Thermophysics Conference, pages 1-17, Portland, Oregon, 2004. American Institute of Aeronautics and Astronautics.

[16]
T.E. Cravens, J. Vann, J. Clark, J. Yu, C.N. Keller, and C. Brull. The ionosphere of Titan: an updated theoretical model. Advances in Space Research, (33):212-215, 2004.

[17]
P. Rannou, F. Hourdin, C.P. McKay, and D. Luz. A coupled dynamics-microphysics model of Titan's atmosphere. Icarus, 170:443-462, 2004.

[18]
A.I. Vasyunin, A.M. Sobolev, D.S. Wiebe, and D.A. Semenov. Influence of uncertainties in the rate constants of chemical reactions on astrochemical modeling results. Astronomy Letters, 30(8):566-576, 2004.

[19]
J.H. Waite, W.S. Lewis, W.T. Kasprzak, V.G. Anicich, B.P. Block, T.E. Cravens, G.G. Fletcher, W.-H. Ip, J.G. Luhmann, R.L. Mcnutt, H.B. Niemann, J.K. Parejko, J.E. Richards, R.L. Thorpe, E.M. Walter, and R.V. Yelle. The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation. Space Science Reviews, 114(1):113-231, 2004.

[20]
E.H. Wilson and S.K. Atreya. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. Journal of Geophysical Research, 109:E06002, 2004.

[21]
V.G. Anicich. An index of the literature for bimolecular gas phase cation-molecule reaction kinetics. JPL Publication, 03-19:1-1194, 2003.

[22]
P.B. Armentrout. The Encyclopedia of Mass Spectrometry, volume 1 - Theory and Ion Chemistry. Elsevier, 2003.

[23]
R. Atkinson and J. Arey. Gas-tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ., 37(suppl 2):S197-S219, 2003.

[24]
M. Dobrijevic, J.L. Ollivier, F. Billebaud, J. Brillet, and J.P. Parisot. Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn's atmosphere. A & A, 398:335-344, 2003.

[25]
C. Nicolas, R. Torrents, and D. Gerlich. Integral and differential cross section measurements at low collision energies for the N2 ^+ + CH_4/CD_4 reactions. J. Chem. Phys., 118(6):2723-2730, 2003.

[26]
S. Balakrishnan, P. Georgopoulos, I. Banerjee, and M. Ierapetritou. Uncertainty considerations for describing complex reaction systems. AIChE J., 48:2875-2889, 2002.

[27]
G.J. Molina-Cuberos, H. Lichtenegger, K. Schwingenschuh, J.J. Lopez-Moreno, and R. Rodrigo. Ion-neutral chemistry model of the lower ionosphere of Mars. Journal of Geophysical Research (Planets), 107(E5):5027, 2002.

[28]
O. Mousis, D. Gautier, and A Cousténis. The D/H ratio in methane in Titan: origin and history. Icarus, 159:156-165, 2002.

[29]
C. Nicolas, C. Alcaraz, R. Thissen, J. Zabka, and O. Dutuit. Effects of ion excitation on charge transfer reactions of the Mars, Venus and Earth ionospheres. Planetary and Space Science, 50:877-887, 2002.

[30]
O. Witasse, O. Dutuit, J. Lilensten, R. Thissen, J. Zabka, C. Alcaraz, P.-L. Blelly, S.W. Bougher, S. Engel, L.H. Andersen, and K. Seiersen. Prediction of a CO22+ layer in the atmosphere of Mars. Geophys. Res. Letters, 29(8):104,1-104,4, 2002.

[31]
M. Banaszkiewicz, L.M. Lara, R. Rodrigo, J.J. Lopez-Moreno, and G.J. Molina-Cuberos. A coupled model of Titan's atmosphere and ionosphere. Icarus, 147:386-404, 2000.

[32]
D.B. Milligan, D.A. Fairley, C.G. Freeman, and M.J McEwan. A flowing after glow selected ion flow tube (FA/SIFT). comparison of SIFT injector flanges and H3+ + N revisited. International Journal of Mass Spectrometry, 202:351-361, 2000.

[33]
R. W. Schunk and A. F. Nagy. Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge University Press, 2000.

[34]
M. Dobrijevic and J.P. Parisot. Effect of chemical kinetic uncertainties on hydrocarbon production in the stratosphere of Neptune. Planetary and Space Science, 46:491-505, 1998.

[35]
N.G. Keller, V.G. Anicich, and T.E. Cravens. Model of Titan's ionosphere with detailed hydrocarbon ion chemistry. Planetary and Space Science, 46:1157, 1998.

[36]
M.J. McEwan, G.B.I. Scott, and V.G. Anicich. Ion-molecule reactions relevant to Titan's ionosphere. Int. J. Mass Spectrom. Ion Proc., 172:209-219, 1998.

[37]
A.F. Nagy and T.E. Cravens. Titan's ionosphere: a review. Planet. Space Sci., 46(9/10):1149-1155, 1998.

[38]
V.G. Anicich and M.J. McEwan. Ion-molecule chemistry in Titan's ionosphere. Planetary and Space Science, 45(8):897-921, 1997.

[39]
R. Atkinson. Gas-phase tropospheric chemistry of volatile organic compounds: 1.Alkanes and alkenes. J. Phys. Chem. Ref. Data, 26(2):215-290, 1997.

[40]
M.K. Bird, R. Dutta-Roy, S.W. Asmar, and T.A. Rebold. Detection of Titan's ionosphere from Voyager 1 radio occultation observations. Icarus, 130:426-436, 1997.

[41]
R. C. Dunbar. Modeling radiative association kinetics. Int. J. Mass Spectrom Ion Processes, 160:1-16, 1997.

[42]
J.L. Fox and R.V. Yelle. Hydrocarbon ions in the ionosphere of Titan. Geophysical Research Letters, 24:2179, 1997.

[43]
R.E. Samuelson, N.R. Nath, and A. Borysow. Gaseous abundances and methane supersaturation in titan's troposphere. Planetary and Space Science, 45:959-980, 1997.

[44]
P.B. Armentrout and T. Baer. Gas-phase ion dynamics and chemistry. J. Phys. Chem., 100:12866-12877, 1996.

[45]
O. Dutuit, C. Alcaraz, D. Gerlich, P.M. Guyon, J.W. Hepburn, C. MĂ©tayer-Zeitoun, J.B. Ozenne, M. Schweizer, and T. Weng. A state-selected study of Ar+(2P3/2, 1/2)+O2 charge transfer at collision energies below 4ev using synchrotron radiation and guided ion beam techniques. Chemical Physics, 209:177-194, 1996.

[46]
R.W. Stewart and A.M. Thompson. Kinetic data imprecisions in photochemical rate calculations: means, medians and temperature dependance. J. Geophys. Res., 101:20935-20964, 1996.

[47]
B.R. Rowe and D.C. Parent. Techniques for the study of reaction kinetics at low temperatures : application to the atmospheric chemistry of Titan. Planetary and Space Science, 43(1):105-114, 1995.

[48]
D. Toublanc, J.P. Parisot, J. Brillet, D. Gautier, F. Raulin, and C.P. McKay. Photochemical modeling of Titan's atmosphere. Icarus, 113:2-26, 1995.

[49]
Y.H. Kim and J.L. Fox. The chemistry of hydrocarbon ions in the Jovian ionosphere. Icarus, 112(2):310-325, 1994.

[50]
A. Roboz and A.F. Nagy. The energetics of Titan's ionosphere. Journal of Geophysical Research, 99:2087-2093, 1994.

[51]
V.G. Anicich. Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modelling planetary atmospheres, cometary comae and interstellar clouds. J. Phys. Chem. Ref. Data, 22(6):1469-1569, 1993.

[52]
D. Gerlich. Experimental investigations of ion-molecule reactions relevant to interstellar chemistry. Journal of the Chemical Society Faraday Transactions, 89(13):2199-2208, 1993.

[53]
D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, Th. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker, and J. Warnatz. Evaluated kinetic data for combustion modelling. J. Phys. Chem. Ref. Data, 21(3), 1992.

[54]
T.E. Cravens. Ionospheric models for Venus and Mars, volume 66. 1992.

[55]
D. Gerlich. Inhomogeneous RF Fields: A Versatile Tool for the Study of Processes with Slow Ions, volume LXXXII of Adv. in Chem. Phys. 1992.

[56]
C.N. Keller, T.E. Cravens, and L. Gan. A model of the ionosphere of Titan. Journal of Geophysical Research, 97:12117, 1992.

[57]
M. J. McEwan. Advances in gas phase ion chemistry, volume 1. J.A.I. Press, Greenwich, 1992.

[58]
M.A. Smith. Ion-molecule reaction dynamics at very low temperatures, volume 82, chapter State-selected and state-to-state ion-molecule reaction dynamics. Part 1- Experiment, pages 183-251. John Wiley, 1992.

[59]
A.E. Smith, P.B. Ryan, and J.S. Evans. The effect of neglecting correlations when propagating uncertainty and estimating the population-distribution of risk. Risk Analysis, 12:467-474, 1992.

[60]
L.K. Randeniya and M.A. Smith. Gas phase reaction rates of N2+ with CH4, O2, and n-H2 at very low temperatures. Journal of Chemical Physics, 94(1):351-356, 1991.

[61]
A.M. Thompson and R.W. Stewart. Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model. J. Geophys. Res., 96:13089-13108, 1991.

[62]
M. Hawley, T.L. Mazely, L.K. Randeniya, R.S. Smith, X.K. Zeng, and M.A. Smith. A free jet flow reactor for ion/molecule reaction studies at very low energies. International Journal of Mass Spectrometry and Ion Processes, 97:55-86, 1990.

[63]
W.H. Ip. Titan's upper ionosphere. Astrophysical Journal, 362:354-363, 1990.

[64]
B.R. Rowe, J.B. Marquette, and C. Rebrion. Mass-selected ion-molecule reactions at very low temperatures. the CRESUS apparatus. Journal of the Chemical Society, Faraday Transactions 2, 85(10):1631-1641, 1989.

[65]
N.G. Adams and D. Smith. Techniques for the study of ion-molecule reactions, volume XX. Wiley Interscience, 1988.

[66]
P.R. Kemper, M.T. Bowers, B.S. Freiser, T.H. Morton, N.G. Adams, D. Smith, P. Kebarle, F. Cacace, M. Speranza, J. M. Farrar, C.-Y. Ng, M. Tsuji, C. E. Johnson, J. I. Brauman, M. A. Johnson, and W. C. Lineberger. Techniques for the study of ion-molecule reactions, volume XX. Wiley Interscience, 1988.

[67]
P.R. Kemper and M.T. Bowers. Techniques for the study of ion-molecule reactions, volume XX. Wiley Interscience, 1988.

[68]
D. Gerlich. Electronic and atomic collisions, chapter Low energy ion reactions measured with guided beams, page 541. North Holland, 1986.

[69]
K.M. Ervin and P.B. Armentrout. Translational energy dependence of Ar^++XY -> ArX^++Y (XY=H_2,D_2,HD) from thermal to 30 eV c.m. Journal of Chemical Physics, 83:166-189, 1985.

[70]
B.R. Rowe, J.B. Marquette, and G. Dupeyrat. Reactions of He^+ and N^+ ions with several molecules at 8K. Chemical Physics Letters, 113(4):403-406, 1985.

[71]
S. Dheandhanoo, R. Johnsen, and M.A. Biondi. Measured ion-molecule reaction rates for modelling Titan's atmosphere. Planetary and Space Science, 32(10):1301-1305, 1984.

[72]
B.R. Rowe, G. Dupeyrat, J.B. Marquette, and P. Gaucherel. Study of the reactions N2++2N2= N4 ++N2 and O2++2O2=O4 ++O2 from 20K to 160K by the CRESU technique. Journal of Chemical Physics, 80:4915-4921, 1984.

[73]
Y.L. Yung, M. Allen, and J.P. Pinto. Photochemistry of the atmosphere of Titan - comparison between model and observations. Astrophysical Journal Supplement Series, 55:465-506, 1984.

[74]
P.R. Kemper and M.T. Bowers. An improved tandem mass spectrometer ion cyclotron resonance spectrometer. International Journal of Mass Spectrometry and Ion Physics, 52(1):1-24, 1983.

[75]
T. Su and W.J. Chesnavich. Parametrization of ion-polar molecule collision rate constant by trajectory calculations. J. Chem. Phys., 76:5183, 1982.

[76]
L. M. Bass, P. R. Kemper, V. G. Anicich, and M. T. Bowers. Ion-molecule radiative association reactions. a statistical phase space theory model. J. Am. Chem. Soc., 103:5283-5292, 1981.

[77]
R. Hanel, B. Conrath, F.M. Flasar, V. Kunde, W. Maguire, J.C. Pearl, J. Pirraglia, R. Samuelson, L. Herath, M. Allison, D.P. Cruikshank, D. Gautier, P.J. Gierasch, L. Horn, R. Koppany, and C. Ponnamperuma. Infrared observations of the Saturnian system from Voyager 1. Science, 212:192-200, 1981.

[78]
N.G. Adams, D. Smith, and J.F. Paulson. An experimental survey of the reactions of NHn+ ions (n=0 to 4) with several diatomic and polyatomic molecules at 300K. The Journal of Chemical Physics, 72(1):288-297, 1980.

[79]
M.J. McEwan, V.G. Anicich, and W.T. Huntress. An ICR study of ion-molecule reactions in the C2H2/HCN system. In IAU Symp. 87: Interstellar Molecules, pages 299-302, 1980.

[80]
A.F. Cravens, T.E. Cravens, S.G. Smith, H.A. Taylor, and H.C. Brinton. Model calculations of the dayside ionosphere of Venus - ionic composition. Journal of Geophysical Research, 85(30):7795-7801, 1980.

[81]
M. Tichy, A.B. Rakshit, D.G. Lister, N.D. Twiddy, N.G. Adams, and D. Smith. A study of the reactions of the ground and metastable states of C+, N+, S+ and N2 ^+ at 300K. Journal of Mass Spectrometry and Ion Physics, 29:231-247, 1979.

[82]
D. Smith, N.G. Adams, and T.M. Miller. A laboratory study of the reactions of N+, N2+, N3 +, O+, O2+ , and NO+ ions with several molecules at 300K. The Journal of Chemical Physics, 69(1):308-318, 1978.

[83]
V.G. Anicich, W.T. Huntress, and J.H. Futrell. Ion Cyclotron Resonance studies of some reactions of N+ ions. Chemical Physics Letters, 47:488-489, 1977.

Product distributions and rate constants for the reactions of ground-state N(+) ions with CO, NO, CO2, and CH4 were measured. Rate constants were obtained using ion-cyclotron-resonance trapped-ion methods, and product distributions were obtained using a tandem (Dempster-ICR) mass spectrometer. Rapid nitrogen isotope exchange was also observed in N(+)-N2 collisions.

[84]
W.T. Huntress Jr. Laboratory studies of bimolecular reactions ions in interstellar clouds, comets, and in planetary atmospheres of reducing composition. Astrophysical Journal Supplement Series, 33:495-514, 1977.

[85]
J.K. Kim, V.G. Anicich, and Jr W.T. Huntress. Product distributions and rate constants for the reactions of CH3+, CH4+, C2H2+, C2H3+, C2H4+, C2H5+, and C2H6+ ions with CH4, C2H2, C2H4 and C2H6. Journal of Physical Chemistry, 81(19):1798-1805, 1977.

[86]
N.G. Adams and D. Smith. The selected ion flow tube (SIFT); a technique for studying ion-neutral reactions. International Journal or Mass Spectrometry and Ion Physics, 21(3-4):349-359, 1976.

[87]
D.L. Smith and J.H. Futrell. A new tandem mass spectrometer for the study of ion-molecule reactions. International Journal or Mass Spectrometry and Ion Physics, 14(2):171-181, 1974.

[88]
E. Teloy and D. Gerlich. Integral cross sections for ion-molecule reactions. I - the guided beam technique. Chemical Physics, 4:417-427, 1974.

[89]
V.G. Anicich and M.T. Bowers. Absolute ion-molecule rate constats from DRIFT cell ion cyclotron resonance spectroscopy. International Journal of Mass Spectrometry and Ion Physics, 11:329-344, 1973.

[90]
W.T. Huntress and R.F. Pinizzoto. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane. The Journal of Chemical Physics, 59(9):4742-4756, 1973.

[91]
D.K. Bohme, D.B. Dunkin, F.C. Fehsenfeld, and E.E. Ferguson. Flowing afterglow studies of ion-molecule association reactions. The Journal of Chemical Physics, 51(3):863-872, 1969.

[92]
E.E. Fergusson, F.C. Fehsenfeld, and A.L. Schmeltekopf. Flowing after glow measurements of ion-neutral reactions. Advances in Atomic and Molecular Physics, 5(1):1-56, 1969.

[93]
D.B. Dunkin, F.C. Fehsenfeld, A.L. Schmeltekopf, and E.E. Ferguson. Ion-molecule reaction study from 300 to 600K in a temperature controlled flowing afterglow system. The Journal of Chemical Physics, 49(3):1365-1371, 1968.

[94]
NASA/JPL/University of Michigan. PIA07865: Titan's upper atmosphere: A factory of hydrocarbons. INMS spectrum at 1200 km.
[ http ]


This file has been generated by bibtex2html 1.52