FROM THE HELIOSPHERE INTO THE SUN

- SAILING AGAINST THE WIND -

Collection of presentations EDITED BY HARDI PETER (peter@mps.mpg.de)

Physikzentrum Bad Honnef, Germany January 31 – February 3, 2012 http://www.mps.mpg.de/meetings/heliocorona/

MAX-PLANCK-GESELLSCHAFT

CORONAL RADIO SOUNDING EXPERIMENTS WITH THE ESA SPACECRAFT MEX, VEX, AND ROSETTA

M.K. Bird^{1,2}, M. Pätzold², B. Häusler³, S.W. Asmar⁴, S. Tellmann², M. Hahn², A.I. Efimov⁵, I.V. Chashei⁶

¹Argelander-Institut für Astronomie, Univ. Bonn, 53121 Bonn, Germany
²Rheinisches Institut für Umweltforschung, Univ. Köln, 50931 Köln, Germany
³Inst. Für Raumfahrtforschung, Univ. der Bundeswehr, München, 85577 Neubiberg, Germany
⁴Jet Propulsion Laboratory, Cal ifornia Inst. Tech, Pasadena, CA 91109, USA
⁵Kotel'nikov Inst. Radio Engg. & Electron., Russian Acad. Science, 125009 Moscow, Russia
⁶Lebedev Phys. Inst., Russian Acad. Science, 117924 Moscow, Russia

From the Heliosphere into the Sun Bad Honnef, 31 Jan - 3 Feb 2012

Solar Conjunction Measurements

MEX 2004 Conjunction Geometry

View from Earth: Solar Ecliptic Coordinates

Solar Conjunction Geometries: ESA Spacecraft 2004-2008

Electron Column Density (Electron Content)

Ranging measurements:

$$\tau = \frac{s}{c} + \frac{40.31}{c} \cdot \frac{1}{f^2} \int_{s/c}^{Earth} N_e ds$$

 τ = range delay (round-trip light time)

 $\int_{S/C}^{Earth} N_e ds = I = \text{electron content (up + down-link)}$

Differential ranging (uplink contribution drops out):

$$\Delta \tau = \tau_{s} - \tau_{x} = \frac{40.31}{c} \left\{ \frac{1}{f_{s}^{2}} - \frac{1}{f_{x}^{2}} \right\} \cdot I_{down}$$

Observable

Temporal Change in Electron Content

$$\Delta f_{\text{Plasma}} = \frac{40.31}{c} \cdot \frac{1}{f} \cdot \frac{dI}{dt}$$

 $\frac{dI}{dt}$ = Change in electron content along uplink or downlink

Differential Doppler (uplink contribution drops out):

$$\Delta f = f_{rec} s - \frac{3}{11} f_{rec} x = -\frac{40.31}{c} \left\{ \frac{1}{f_s^2} - \frac{1}{f_x^2} \right\} f_s \left(\frac{dI}{dt} \right)$$

Observable

Data Processing: Typical Example MEX 2004 Aug 25 (DOY 238); R = 26.5 Rs

DOY 238, 2004, 14:15 UT

-7-

Comparison: Ranging vs Doppler Example: ROS, 22 Mar 2006 (R = 28 R_s)

Dual-Frequency Doppler Noise vs Solar Offset Mean values <∆f> over each tracking pass

Dual-Frequency Ranging: Electron Density in the Corona (R < 40 Rs)

Example: Tracking Data for Rosetta 2006

Dual-Frequency Ranging: Rosetta 2006

Electron Column Density [m⁻²]

Coronal Electron Density [m⁻³]

Coronal Electron Density: All Radio-sounding Data

Data set	Mission	year	points	α	N_B (10 ¹² m ⁻ 3)	N(10 Rs) (10 ¹⁰ m ⁻ 3)	R_min (Rs)	R_max (Rs)
1	MAN 6/7	1970	n.a.	2.06	0.60	0.52	6.0	100.0
2	VIK 1/2	1976	n.a.	2.32	0.99	0.46	3.0	214
3	VOY 2	1985	14	2.36	1.92	0.84	6.2	38.4
4	VOY 2	1988	23	2.25	6.04	3.42	5.1	87.6
5	ULS	1991	56	2.47	2.85	0.96	5.1	41.7
6	MEX	2004	9	2.46	1.68	0.59	3.9	22.4
7	ROS	2006	18	2.14	0.84	0.61	8.1	31.1
8	MEX	2008	7	2.07	0.49	0.42	9.4	19.1

Summary (1)

Dual-Frequency Ranging Experiments:

- Radial Profiles of the coronal large-scale structure in the acceleration region of the solar wind out to 40 R_s
- Radial density falloff exponent α > 2.0 for all data sets
- α tends to be proportional to solar activity
 - Minimum in 2008 with MEX (α = 2.07)
 - Maximum in 1991 with Ulysses ($\alpha = 2.47$)
- Anomalously high electron density N(R) in 1988 (VOY 2)

Summary (2)

Coronal Radio-Sounding Experiments With MEX, VEX and ROS Provide:

- Radial profiles of radio frequency fluctuations and their spectra in the solar wind acceleration region (R < 40 Rs)
- A diagnostic tool for investigation of CMEs
- Proof of evolution of solar wind spatial turbulence regime with solar distance
- Consistency with previous Ulysses and Galileo results

References:

- 1. Pätzold et al., Solar Phys., in press, 2012.
- 2. Efimov et al., in *Solar Wind 12*, AIP-CP1216, 94, 2010.
- 3. Hahn et al., paper presented at this meeting, 2012.