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ABSTRACT

We report on an initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H2O2), and molecular oxygen (O2)
in the Martian atmosphere performed on 13 and 16 April 2010 (Ls ∼ 77◦). We derived a constant volume mixing ratio of 1400 ± 120 ppm for O2

and determined upper limits of 200 ppt for HCl and 2 ppb for H2O2. Radiative transfer model calculations indicate that the vertical profile of O2

may not be constant. Photochemical models determine the lowest values of H2O2 to be around Ls ∼ 75◦ but overestimate the volume mixing ratio
compared to our measurements.
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1. Introduction

Hydrogen chloride (HCl) is a reservoir of chlorine species and
plays an important role in the atmospheric chemistry of Venus
and Earth. Its detection by ground-based infrared spectroscopy
(Iwagami et al. 2008) and space borne UV stellar/solar occulta-
tion observations by SPICAV/SOIR on Venus Express (Bertaux
et al. 2009) provide mid atmospheric mixing ratios between 0.1
and 1 ppm in the Venusian atmosphere. Submillimetre wave ob-
servations of HCl in the Earth atmosphere have long been per-
formed from an airplane (Crewell et al. 1994; Wehr et al. 1995).
The derived relative abundances are ∼2 orders of magnitude
smaller than in Venus (∼1–3 ppb). In the Martian atmosphere
HCl has not been found yet. Its detection would be an indication
of present volcanic activity on Mars (Wong et al. 2003; Encrenaz
et al. 2004). Krasnopolsky et al. (1997) presented a stringent up-
per limit of 2 ppb from high-resolution ground-based observa-
tions of Mars.

The situation is somewhat different for hydrogen peroxide
(H2O2). It was detected for the first time in 2003 by Clancy et al.
(2004) and Encrenaz et al. (2004) in the Martian atmosphere.
The observed abundance varied between 20 and 40 ppb, consis-
tent with photochemical model calculations (e.g.; Krasnopolsky
1993; Atreya & Gu 1994; Nair et al. 1994) for the northern fall
season (Ls = 206◦). H2O2 may also be produced by electrostatic
discharge reactions during dust storms, in dust devils, or during

� Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.

normal saltation (Atreya et al. 2006). Near the surface, the con-
centration could exceed 200 times that produced by photochem-
istry alone, enough for condensation and precipitation of H2O2
to occur. In its solid phase on the surface, it may be responsible
for scavenging organic material from Mars and/or present a sink
of methane such that a larger source is required to maintain its
steady-state abundance (e.g. Mumma et al. 2009).

Oxygen was claimed to be detected for the first time in the
Martian atmosphere (in addition to water) by Very (1909). It
took almost 60 years until Belton & Hunten (1968) tentatively
confirmed the detection of O2 in the oxygen A band (around
763 nm) with a mixing ratio of 2600 ppm or less. They claimed
that the CO/O2 ratio was two, consistent with the assumption
that both gases were produced by the decomposition of CO2. By
performing observations of the same wavelength range, Barker
(1972) and Carleton & Traub (1972) found only 1300 ppm of
O2. Since Kaplan et al. (1969) had in the meanwhile reported
a reliable measurement of 800 ppm of CO, they concluded
that there was an additional source of O2 namely most likely
water. Molecular oxygen is a non-condensable species in the
Martian atmosphere. The pressure of the Martian atmosphere
oscillates annually by about a third due to the condensation
and sublimation of CO2, i.e. this variation should also appear
in the O2 volume mixing ratio. England & Hrubes (2004) rean-
alyzed the Viking lander data and found variations from 2500
to 3300 ppm. They point out that the 1300 ppm published by
Owen et al. (1977) are not based on Viking measurements, but
on the ground-based data cited above and claim that the amount
of 3000 ppm is high enough to directly extract oxygen for use as
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Table 1. HIFI observations of HCl, H2O2 and O2 in Mars.

OD Obs. ID Integration time UT start date Molecule Transition Sideband Frequency Beam size
[s] [GHz] [′′]

334 1342194690 9289 2010-04-13 06:39:28 O2 5,4→ 3,4 LSB 773.840 27.4
C17O 7→ 6 USB 786.281 27.0

334 1342194689 2297 2010-04-13 05:59:40 O2 5,4→ 3,4 USB 773.840 27.4
337 1342194756 2505 2010-04-16 14:53:08 H2O2 5→ 4 USB 1847.123 11.5

CO 16→ 15 LSB 1841.346 11.5
337 1342194755 3746 2010-04-16 13:48:47 HCl 3 4→ 2 4 USB 1876.211 11.3

3,3→ 2,4 1876.218 11.3
3,2→ 2,1 1876.223 11.3
3,3→ 2,2 1876.223 11.3
3,4→ 2,3 1876.227 11.3
3,5→ 2,4 1876.227 11.3
3,3→ 2,3 1876.235 11.3
3,2→ 2,2 1876.240 11.3
3,2→ 2,3 1876.252 11.3

a propellant for sample or crew return as well as for the breathing
of astronauts (England & Hrubes 2001).

The observations of the HCl, H2O2, and O2 in the Martian
atmosphere are part of the Herschel key programme “Water and
related chemistry in the solar system” (Hartogh et al. 2009). This
paper describes the observations and data analysis and provides
the volume mixing ratios of the gases and their upper limits.

2. Herschel/HIFI observations

The set of HIFI observations was carried out between 11 and
16 April 2010 corresponding to Ls = 75.8◦ to 78, including spec-
tral line surveys of bands 1a – band 6b (band 5b was not available
because of technical problems) and dedicated line observations
of carbon monoxide and its isotopes, and water and its isotopes.
The telescope was used in a dual-beam switch mode with the
source placed alternatively in one of the two beams and cold sky
in the other beam, a method that yields very flat baselines (de
Graauw et al. 2010; Roelfsema et al. 2010). A summary of the
observations is presented in Table 1. We note that Mars was not
resolved, since its apparent diameter changed from 8.1 to 8.3′′
during the observations. Thus, our observations provide glob-
ally averaged quantities. The HCl multiplet at 1876 GHz and the
H2O2 doublet at 1847 GHz were observed on operational day
(OD) 337 with 3746 and 2505 s integration times, respectively,
both in the upper sideband (USB) (see Table 1). The O2 rota-
tional transition at 774 GHz was observed twice on OD 334,
once in the upper sideband with 2297 s and once in the lower
sideband (LSB) with 9289 s as a side product of a dedicated line
observation in the USB. The first set of data was available about
a week after the observations and was processed with the stan-
dard HIPE v3.0.1 modules (Ott 2010) up to level 2. This data
set remained incomplete at the start of our study, for instance the
data of the high resolution spectrometer (HRS) was only partly
available and pointing products therein had no entries, thus, we
analyzed only the wide band spectrometer (WBS) data. This has
no impact on the accuracy of the results presented in this pa-
per, although HRS data will be useful for future work includ-
ing the retrieval of vertical profiles. Since the absolute flux cal-
ibration in the data set we obtained from the Herschel Science
Archive was still in progress, the line-to-continuum ratio was
analyzed rather than the absolute brightness temperatures, as
is standard for ground-based and other Herschel observations
(Lellouch et al. 2010; Swinyard et al. 2010).

3. Analysis and discussion

Compared to cometary observations of HIFI (Hartogh et al.
2010b; de Val-Borro et al. 2010), the baseline ripple on the
Mars observations is rather large, (as frequently experienced
by ground-based telescope observations of planets), because of
its strong continuum emission. While in the cometary case the
baseline ripple has been removed with a polynomial fit, in the
case of Mars we determined the baseline frequencies by a nor-
malized periodogram according to Lomb (1976) and subtracted
them from the original spectrum. This was applied separately for
horizontal and vertical polarization. After removal of the base-
line ripple, both polarizations were averaged. In the case of O2
observations, we found that the line strengths in both sidebands
were the same, and we therefore averaged the spectra obtained
in both sidebands.

The observed spectral lines were modeled using a stan-
dard radiative transfer code: Mars was assumed to be a per-
fect sphere surrounded by a set of a hundred concentric atmo-
spheric layers each of 1 km thickness (compare Rengel et al.
2008). Within each layer, the atmospheric temperature, pres-
sure, and volume mixing ratio of carbon monoxide were as-
sumed to be constant. The surface continuum emission was mod-
eled as black-body emission using a temperature distribution
falling off towards the edge of the apparent disk according to
T (α) = T0× (1−0.2× (1−cos(α))), with α running from 0–90 Å
across the apparent disk (see also Cavalié et al. 2008). The disk-
averaged emission was obtained by integrating over the apparent
disk using sixty four concentric rings distributed unevenly over
the disk and the limb region. The variation in the path lengths
through the atmosphere were fully taken into account when cal-
culating the radiation transfer of each ring. In our model, the
total continuum flux emitted by the surface depends purely on
the choice of the temperature T0, which defines the temperature
scale for the temperature profile to be retrieved. We adjusted T0
in such a way to match exactly the total flux of about 4230 Jy
predicted by the “Mars continuum model” provided by Lellouch
& Amri (2008).

The absorption coefficients of the spectral lines were calcu-
lated using the JPL spectral line catalog using the terrestrial iso-
topic ratios. Pressure broadening coefficients for HCl and H2O2
were available only for air, while they have been measured in
the laboratory in a CO2 atmosphere for O2. Most lab measure-
ments display greater pressure broadening in a CO2 atmosphere.
Its impact on the determination of upper limits is small. A 50%
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Fig. 1. Temperature profiles predicted by EMCD (blue) (Forget et al.
1999; Lewis et al. 1999), MAOAM (red) (Hartogh et al. 2005;
Medvedev & Hartogh 2007), and retrieved vertical profile from simul-
taneous observations of 13CO and C18O.
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Fig. 2. Observation of HCl centered around 1876 GHz and inserted
model calculation (red) for a constant volume mixing ratio of 300 ppt.

increase in the pressure broadening coefficient leads to an in-
crease in the upper limit of 10–20%.

For the retrieval of the mean volume mixing ratio of the three
molecules, we applied the temperature profile derived from HIFI
observations of 13CO and 12C18O during OD 334 (Hartogh et al.
2010a) shown in Fig. 1.

3.1. HCl

Figure 2 shows the result of the 3746 s integration time on the
1876 GHz H35Cl line. We have inserted a modeled spectrum
of HCl assuming a constant volume mixing ratio of 300 ppt.
HCl was obviously not detected. If we define a line amplitude
of 2σ as the upper limit, we derive 200 ppt for HCl. This is
one order of magnitude lower than the upper limit derived by
(Krasnopolsky et al. 1997) from IR observations. We found no
evidence of recent volcanic activity or outgassing from a hot spot
on Mars. Nevertheless, the absence of HCl does not preclude ex-
tant Martian volcanic activity.
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Fig. 3. Observation of H2O2 spectrum at 1847 GHz in the upper side-
band and inserted model calculation (red) for a constant volume mixing
ratio of 3 ppb. The strong absorption feature is CO (16-15) in the lower
sideband.

3.2. H2O2

Figure 3 shows the result of the H2O2 observation on 1847
GHz in the upper sideband. The integration time was 2505 s.
The strong absorption feature is the CO (16-15) line. Since
the line is in the lower sideband centered around 1841 GHz,
it does not absorb any features of the H2O2 line. We did not
detect any H2O2. A modeled H2O2 spectrum with a constant
volume mixing ratio of 4 ppb has been inserted into the mea-
sured spectrum. We deduced a 2-σ upper limit of less than
3 ppb of H2O2. At first glance, this value seems far too low
taking into account former observations providing 20–40 ppb
(see Introduction). On the other hand H2O2, is connected to
the water cycle and its high variability. Krasnopolsky (2009)
compared the annual variability of H2O2 based on observations
and model calculations averaged over ±35◦ around the subso-
lar latitude. Unfortunately, no other observation for Ls = 78◦ is
available. The model calculations provided predictions for this
season (Krasnopolsky 2006, 2009; Moudden & McConnell
2007; Lefèvre et al. 2008), but all overestimated the volume
mixing ratio compared to our observation. Lefèvre et al. (2008)
found about 10 ppb, Moudden & McConnell (2007) for Ls = 90◦
about 15 ppm and even the lowest value of ∼5 ppb calculated
by Krasnopolsky (2009) is above the upper limit of our ob-
servation. Nevertheless, the photochemical models predict low-
est H2O2 values for the season between Ls = 70◦ and 80◦.
Water vapour and its photolysis products are subject to solar cy-
cle variations (Hartogh et al. 2010c). A low Lyman-alpha flux
(observations were performed shortly after the solar minimum)
may be consistent with less than average production of H2O2 in
the Martian atmosphere and explain a negative deviation from
the model values.

3.3. O2

The upper panel of Fig. 4 shows the HIFI observation of the
774 GHz O2 line – the first submm detection of O2 in Mars
– and a model fit of a constant volume mixing ratio. The best
fit provides a volume mixing ratio of 1400 ± 120 ppm. This
value fits within the error limits to the value of 1300 ppm
derived in 1972. We investigated the sensitivity of the pres-
sure broadening coefficient to this value. We initially applied
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Fig. 4. Observation of O2 at 774 GHz. The best fit of a constant altitude
profile infers a volume mixing ratio of 1400±120 ppm. The lower panel
shows the difference between observation and model.

the data from Golubiatnikov & Krupnov (2003) for O2 in air:
1.62 MHz hPa−1 (half width half maximum, HWHM). Taking
into account the higher molecular mass of CO2 as the main col-
lider compared with air, we multiplied the pressure broadening
coefficients in 0.1 hPa steps from 1.1 to 2 and found the best
fit of the model to the observation for a factor of 1.2, corre-
sponding to 1.95 MHz hPa−1 (HWHM). We note that the mix-
ing ratio was not found to be very sensitive to these changes,
the retrieved value always remaining within the error limits. The
pressure broadening factor of 1.2 is smaller than the factor of 1.4
(with CO2 rather than air being the main collider) for CO that has
been found in laboratory measurements (e.g. Dick et al. 2009).
The quality of the observation is excellent, the signal-to-noise
ratio being higher than 300. Unfortunately, the fit is not opti-
mal. The model underestimates the emission feature and over-
estimates the depth of the absorption peak. This indicates that
the assumption of a constant volume mixing ratio may not be
correct. Deviations from the constant profile seem to be positive
in the lower and negative in the upper atmosphere. Future work
will focus on the vertical profile of O2.

4. Summary

We have presented initial results for HIFI observations of the
Martian atmosphere on HCl, H2O2, and O2. The upper limit of
200 ppt volume mixing ratio determined for HCl is one order of
magnitude below the previous value. There is no indication of
present volcanic activity. The upper limit to H2O2 of 2 ppb is
remarkably low compared with former detections. However, this
observation is the first one around Ls = 77◦, a season where pho-
tochemical models predict the annual minimum of H2O2. Future
HIFI observations of H2O2 during other solar longitudes will
provide additional constraints on photochemical models. The
O2 volume mixing ratio of 1400 ± 120 ppm agrees with for-
mer ground-based observations. The assumption of a constant
vertical profile does not lead to an optimal fit of the model to
the observations. The residuals suggest an oxygen fall off with
height. Future work will focus on the retrieval of the vertical O2
profile.
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