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Introduction

Motivation: We need spherical Kernels.

e They are already used in the current scientific debate, e.g. :
e Meridional flow measurements: e.g. Zhao et al. (2013),
Kholikov et al. (2014).
e Studies on supergranules: e.g. Duvall & Hanasoge (2013),
Duvall et al. (2014).
— Both perform modelling with ray approximation kernels.
e Born kernels not yet available in spherical geometry.
e Cartesian Born kernels used in HMI pipeline for subsurface
flow inversions (e.g. Zhao et al., 2012).

Graphics: R. Arlt, AIP
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Introduction

How to calculate Born Kernels?

e Using general recipe of Gizon and Birch (2002), and for flows
Birch and Gizon (2007) = BG2007.

e Solve zero and first order damped and stochastically driven
wave equation.

e Via Green's functions, using Model S eigenfunctions.

e Find expression for perturbed cross-correlation.

e Find travel-time difference shift as a function of flow:
5Tdiff = f K-v d3r.
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Introduction

How to calculate Born Kernels?

e Using general recipe of Gizon and Birch (2002), and for flows
Birch and Gizon (2007) = BG2007.

e Solve zero and first order damped and stochastically driven
wave equation.

e Via Green's functions, using Model S eigenfunctions.

e Find expression for perturbed cross-correlation.

e Find travel-time difference shift as a function of flow:
5Tdiff = f K-vdir.

— And how to do spherical?
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Introduction

How to calculate Born Kernels?

e Using general recipe of Gizon and Birch (2002), and for flows
Birch and Gizon (2007) = BG2007.

e Solve zero and first order damped and stochastically driven
wave equation.

e Via Green's functions, using Model S eigenfunctions.

e Find expression for perturbed cross-correlation.

e Find travel-time difference shift as a function of flow:
5Tdiff = f K-v d3r.

— And how to do spherical?
e First attempts by Roth, Gizon & Birch (2006).
e Expand Green'’s functions in spherical harmonics.

e Find a formula that can actually be calculated numerically.
e Validate the method.
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Sanity Check: The Cartesian Limit
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Sanity Check

Sanity Check: The Cartesian Limit

With A. C. Birch & L. Gizon.

Setup: point-to-point travel-times on equator, A = 10 Mm

Ky(r, 0, ¢) = K«(x, y, z), sensitivity for zonal flows, horizontal cuts.
Line asymmetry not taken into account: Both results only using f-mode
ridge in computation.

Spherical: Cartesian (BG2007 code):

y [Mm] / theta-direction

y [Mm] / theto-direction

-10 -5 0 5 10 -10 -5 0 5
x [Mm] / phi-direction x [Mm] / phi—direction

Maximum value: 8 % off.
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Sanity Check: The Cartesian Limit

Horizontal integrals: K, = K, sensitivity for zonal flows.

From Cartesian BG2007 code (solid) and from spherical code (dashed).
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Maximum value: 3 % off. Similar to additional consistency tests.
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Validation of Method with Simulated Data

Meridional flow model
e Data and flow model 10T —
(right) from Hartlep et al.
(2013). ,
.. 0.8
® QOriginal flow model from L
Rempel (2006), amplified
by factor of 36: 0.6 L
Vmax = 500 m/s at the o
surface. ™~
— Do simulated and 0.4
forward-modelled
travel-times agree?
0.2
® Analysis done without
filters, proceeding |
similarly to Hartlep et al. 0.0L.=
(2013). 0.0 02
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Validation of Method with Simulated Data

A = 12.65 deg A = 17.57 deg
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Deep Meridional Flow Kernels: First results

e We compare kernels with different filters (no filter, low-pass in
|, phase-speed).

e Ky, i.e. sensitivity to southward flow,

e cuts at central meridian and just below photosphere,

e A =42.19deg in N-S-direction,

e centered at latitude 40 degrees north,

e computation uses / < 170, same as simulation in Hartlep et
al. (2013),

e modelling radial component of wavefield.
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Unfiltered, A = 42.19deg

Ke' cut at central meridian [s (Mm)’a 1 (km/s)]
1 T T T T T T T

0.2
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r/rs'un
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Unfiltered, A = 42.19deg

Ky cut 100km below photosphere [s (Mm)’3/ (km/s)]

K, cutatconval merdian s () ki)

Distance in latitude [Mm]




Unfiltered, A = 42.19deg

K‘), cut at central meridian [s (Mm)_3 1 (km/s)] 107
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Deep Meridional Flow Kernels

A = 42.19deg, filtered: F(I,w) = exp(—557), d1 = 50

Ke' cut at central meridian [s (Mm)’3 1 (km/s)]
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Deep Meridional Flow Kernels

A = 42.19deg, filtered: F(I,w) = exp(—557), 01 = 20

Ke' cut at central meridian [s (Mm)’3 1 (km/s)]
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Phase-speed filt.,vyp = 284.3km/s, v = 7km/s (Kholikov et al., 2014)

Ke' cut at central meridian [s (Mm)’3 1 (km/s)]
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Deep Meridional Flow Kernels

Phase-speed filt.,vo = 284.3km/s,dv = Tkm/s, A = 42.19 deg

K., cut at central meridian [s (Mm)’3 1 (km/s)] 5
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How big is the sensitivity to the return flow? (A = 42deg)

e Kernel integrated over Hartlep et al. (2013) meridional flow profile.

Kernel ‘ ot for r/Rs < 0.79 ‘ % of total 67 ‘ ray kernels *

unfiltered -0.446 s 10.4 % ~ 20 %
6/ =50 -0.489 s 13.4 %
6l =20 -0.467 s 14.8 %
phase-sp. -0.503 s 11.4 %

Table: * Ray kernel value from Hartlep et al. (2013).
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How big is the sensitivity to the return flow? (A = 42deg)

e Kernel integrated over Hartlep et al. (2013) meridional flow profile.

Kernel ‘ ot for r/Rs < 0.79 ‘ % of total 67 ‘ ray kernels *

unfiltered -0.446 s 10.4 % ~ 20 %
6/ =50 -0.489 s 13.4 %
6l =20 -0.467 s 14.8 %
phase-sp. -0.503 s 11.4 %

Table: * Ray kernel value from Hartlep et al. (2013).

® Divide §7 by =~ 25 to get realistic numbers: §7<¢.79 ~ 0.02s!
® The sensitivity is always concentrated in the upper convection zone.

® Ray and Born kernel values are quite different. Is that a problem?
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How big is the sensitivity to the return flow? (A = 42deg)

e Kernel integrated over Hartlep et al. (2013) meridional flow profile.

Kernel ‘ ot for r/Rs < 0.79 ‘ % of total 67 ‘ ray kernels *

unfiltered -0.446 s 10.4 % ~ 20 %
6/ =50 -0.489 s 13.4 %
6l =20 -0.467 s 14.8 %
phase-sp. -0.503 s 11.4 %

Table: * Ray kernel value from Hartlep et al. (2013).

® Divide §7 by =~ 25 to get realistic numbers: §7<¢.79 ~ 0.02s!

® The sensitivity is always concentrated in the upper convection zone.

® Ray and Born kernel values are quite different. Is that a problem?
= Unfiltered kernel has smallest sensitivity to return flow.
= Low-pass filtering in | gives the strongest relative sensitivity to return flow.
= Phase-speed filtered kernels are best localised at the target depth.
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Summary

Summary

1. We can adequately calculate spherical Born kernels:

V" Results from Cartesian geometry (BG2007) reproduced.
v’ Effect of meridional flow correctly modelled (Hartlep et al.,
2013).

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows



Summary

1. We can adequately calculate spherical Born kernels:

V" Results from Cartesian geometry (BG2007) reproduced.

v’ Effect of meridional flow correctly modelled (Hartlep et al.,
2013).

2. Example kernels for meridional flow measurements:

e 10-15% of the total sensitivity is due to the return flow for a
standard meridional flow profile.

e Ray and Born kernels have different sensitivity to return flow
by a factor of 2.

o Low-pass filtering in | gives the strongest relative sensitivity to
return flow.

o Phase-speed filtered kernels are best localised at target depth.
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Summary

1. We can adequately calculate spherical Born kernels:
V" Results from Cartesian geometry (BG2007) reproduced.
v’ Effect of meridional flow correctly modelled (Hartlep et al.,
2013).
2. Example kernels for meridional flow measurements:
e 10-15% of the total sensitivity is due to the return flow for a
standard meridional flow profile.
e Ray and Born kernels have different sensitivity to return flow
by a factor of 2.
o Low-pass filtering in | gives the strongest relative sensitivity to
return flow.
o Phase-speed filtered kernels are best localised at target depth.

Thank you very much!
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Summary

Power: kernel vs simulated data

Unfiltered power integrated over k, normalized, for Hartlep et al. 2013 (solid) and
spherical kernels (dashed), using /| < 169:
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Unfiltered Kernel
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Low-pass |, 6/ = 50
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Low-pass |, 0/ = 20
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Phase-speed
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Unfiltered Kernel

K_006, t_inner=70min, t_outer=120min

i 1]
-150 -100 -50 [¢] 50 100 150
Time [min]
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Low-pass |, 6/ = 50

K_003, t_inner=70min, t_outer=120min

A [deg]

-150 -100 -50 [¢] 50 100 150
Time [min]
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Low-pass |, 6/ = 20

K_004, t_inner=70min, t_outer=120min

A [deg]

-150 -100 -50 [¢] 50 100 150
Time [min]
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Phase-speed

K_023, t_inner=70min, t_outer=120min

A [deg]

-150 -100 -50 [¢] 50 100 150
Time [min]
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Vmax = 500 m /s still in linear regime?

For A = 22.5deg, travel-times from E-W-kernel (dashed) at equator and exact
perturbed cross-correlation (crosses, method see Jackiewicz et al., 2007) for a solid
body rotation corresponding to a certain equatorial zonal flow speed (x-axis): Linear
regime extends to these flow speeds.
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Sanity Check: The Cartesian Limit

Ks = K, sensitivity for zonal flows, integrated wrt depth, cut

along y = 0:
Spherical: BG2007-Code (Cartesian)

0
x/$ [Mm]
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Sanity Check: The Cartesian Limit

Ks = K, sensitivity for zonal flows.

Spherical: BG2007-Code (Cartesian)

0.0

o

m E
-
& : ot b 8
{5 (Mmp(-3) /)]

|
o2
N

r [Mm]
v [Mm]

7
~

€

&
04X
-

L

X

€

=

s

-4
-10 -5 0 5 10 -10 - o
x [Mm] / phi-direction x [Mm] / phi-direction

Maximum value: 8 % off.

Summary
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Summary

Sanity Check: The Cartesian Limit

y [Mm] / theta—direction

Ky = —K,, sensitivity for meridional flows.

Spherical:
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Sanity Check: The Cartesian Limit

K, = K, sensitivity for convective flows.

Spherical: BG2007-Code (Cartesian)
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