Extension to Spherical Geometry -Sensitivity Kernels for Flows in Time-Distance Helioseismology

Vincent Böning

Kiepeneuer-Institut für Sonnenphysik, Freiburg

04.09.2014

Collaborators: M. Roth & W. Zima, KIS Freiburg

contact: vboening@kis.uni-freiburg.de

European Research Council

Established by the European Commission

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Motivation: We need spherical Kernels.

- They are already used in the current scientific debate, e.g. :
 - Meridional flow measurements: e.g. Zhao et al. (2013), Kholikov et al. (2014).
 - Studies on supergranules: e.g. Duvall & Hanasoge (2013), Duvall et al. (2014).
 - $\rightarrow\,$ Both perform modelling with ray approximation kernels.
- Born kernels not yet available in spherical geometry.
- Cartesian Born kernels used in HMI pipeline for subsurface flow inversions (e.g. Zhao et al., 2012).

Graphics: R. Arlt, AIP

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

How to calculate Born Kernels?

- Using general recipe of Gizon and Birch (2002), and for flows Birch and Gizon (2007) = BG2007.
 - Solve zero and first order damped and stochastically driven wave equation.
 - Via Green's functions, using Model S eigenfunctions.
 - Find expression for perturbed cross-correlation.
 - Find travel-time difference shift as a function of flow: $\delta \tau_{\text{diff}} = \int \mathbf{K} \cdot \mathbf{v} \, \mathrm{d}^3 r.$

How to calculate Born Kernels?

- Using general recipe of Gizon and Birch (2002), and for flows Birch and Gizon (2007) = BG2007.
 - Solve zero and first order damped and stochastically driven wave equation.
 - Via Green's functions, using Model S eigenfunctions.
 - Find expression for perturbed cross-correlation.
 - Find travel-time difference shift as a function of flow: $\delta \tau_{\text{diff}} = \int \mathbf{K} \cdot \mathbf{v} \, \mathrm{d}^3 r.$
- $\rightarrow\,$ And how to do spherical?

How to calculate Born Kernels?

- Using general recipe of Gizon and Birch (2002), and for flows Birch and Gizon (2007) = BG2007.
 - Solve zero and first order damped and stochastically driven wave equation.
 - Via Green's functions, using Model S eigenfunctions.
 - Find expression for perturbed cross-correlation.
 - Find travel-time difference shift as a function of flow: $\delta \tau_{\text{diff}} = \int \mathbf{K} \cdot \mathbf{v} \, \mathrm{d}^3 r.$
- $\rightarrow\,$ And how to do spherical?
 - First attempts by Roth, Gizon & Birch (2006).
 - Expand Green's functions in spherical harmonics.
 - Find a formula that can actually be calculated numerically.
 - Validate the method.

- With A. C. Birch & L. Gizon.
- Setup: point-to-point travel-times on equator, $\Delta=10\,\text{Mm}$
- $K_{\phi}(r, \theta, \phi) = K_x(x, y, z)$, sensitivity for zonal flows, horizontal cuts.
- Line asymmetry not taken into account: Both results only using *f*-mode ridge in computation.

Maximum value: 8 % off.

Horizontal integrals: $K_{\phi} = K_x$, sensitivity for zonal flows.

From Cartesian BG2007 code (solid) and from spherical code (dashed).

Maximum value: 3 % off. Similar to additional consistency tests.

Validation of Method with Simulated Data

- Data and flow model (right) from Hartlep et al. (2013).
- Original flow model from Rempel (2006), amplified by factor of 36: $v_{max} = 500 \text{ m/s}$ at the surface.
- → Do simulated and forward-modelled travel-times agree?
 - Analysis done without filters, proceeding similarly to Hartlep et al. (2013).

Validation of Method with Simulated Data

- Travel-times fitted with Gizon and Birch (2004) procedure to simulated data (solid line).
- Travel-times from forward-model, i.e. kernel integrated over flow model (dashed line).
- Travel-time differences: S-N!

Deep Meridional Flow Kernels: First results

- We compare kernels with different filters (no filter, low-pass in l, phase-speed).
- K_{θ} , i.e. sensitivity to southward flow,
- cuts at central meridian and just below photosphere,
- $\Delta = 42.19 \text{ deg in N-S-direction}$,
- centered at latitude 40 degrees north,
- computation uses l ≤ 170, same as simulation in Hartlep et al. (2013),
- modelling radial component of wavefield.

Unfiltered, $\Delta = 42.19 \deg$

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Unfiltered, $\Delta = 42.19 \deg$

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Unfiltered, $\Delta = 42.19 \deg$

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Phase-speed filt., $v_0 = 284.3 \text{ km/s}$, $\delta v = 7 \text{ km/s}$ (Kholikov et al., 2014)

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

Phase-speed filt., $v_0 = 284.3 \text{ km/s}, \delta v = 7 \text{ km/s}, \Delta = 42.19 \text{ deg}$

HELAS VI/ SOHO-28/ SPACEINN: Spherical Born Kernels for Flows

How big is the sensitivity to the return flow? $(\Delta = 42 \deg)$

• Kernel integrated over Hartlep et al. (2013) meridional flow profile.

Kernel	δau for $r/R_{\odot} \leq$ 0.79	% of total δau	ray kernels *
unfiltered	-0.446 s	10.4 %	pprox 20 %
$\delta I = 50$	-0.489 s	13.4 %	
$\delta I = 20$	-0.467 s	14.8 %	
phase-sp.	-0.503 s	11.4 %	

Table: * Ray kernel value from Hartlep et al. (2013).

How big is the sensitivity to the return flow? $(\Delta = 42 \deg)$

• Kernel integrated over Hartlep et al. (2013) meridional flow profile.

Kernel	δau for $r/R_{\odot} \leq$ 0.79	% of total δau	ray kernels *
unfiltered	-0.446 s	10.4 %	pprox 20 %
$\delta I = 50$	-0.489 s	13.4 %	
$\delta I = 20$	-0.467 s	14.8 %	
phase-sp.	-0.503 s	11.4 %	

Table: * Ray kernel value from Hartlep et al. (2013).

- Divide $\delta \tau$ by \approx 25 to get realistic numbers: $\delta \tau_{\leq 0.79} \approx 0.02 \, \text{s!}$
- The sensitivity is always concentrated in the upper convection zone.
- Ray and Born kernel values are quite different. Is that a problem?

How big is the sensitivity to the return flow? $(\Delta = 42 \deg)$

• Kernel integrated over Hartlep et al. (2013) meridional flow profile.

Kernel	δau for $r/R_{\odot} \leq$ 0.79	% of total δau	ray kernels *
unfiltered	-0.446 s	10.4 %	pprox 20 %
$\delta I = 50$	-0.489 s	13.4 %	
$\delta I = 20$	-0.467 s	14.8 %	
phase-sp.	-0.503 s	11.4 %	

Table: * Ray kernel value from Hartlep et al. (2013).

- Divide $\delta \tau$ by \approx 25 to get realistic numbers: $\delta \tau_{\leq 0.79} \approx 0.02 \, \text{s!}$
- The sensitivity is always concentrated in the upper convection zone.
- Ray and Born kernel values are quite different. Is that a problem?
- \Rightarrow Unfiltered kernel has smallest sensitivity to return flow.
- $\Rightarrow\,$ Low-pass filtering in I gives the strongest relative sensitivity to return flow.
- \Rightarrow Phase-speed filtered kernels are best localised at the target depth.

- $1. \ \mbox{We can adequately calculate spherical Born kernels:}$
 - ✓ Results from Cartesian geometry (BG2007) reproduced.
 - $\checkmark\,$ Effect of meridional flow correctly modelled (Hartlep et al., 2013).

Introduction Sanity Check Validation of Method Deep Meridional Flow Kernels Summary
Summary

- $1. \ \mbox{We can adequately calculate spherical Born kernels:}$
 - ✓ Results from Cartesian geometry (BG2007) reproduced.
 - $\checkmark\,$ Effect of meridional flow correctly modelled (Hartlep et al., 2013).
- 2. Example kernels for meridional flow measurements:
 - 10-15% of the total sensitivity is due to the return flow for a standard meridional flow profile.
 - Ray and Born kernels have different sensitivity to return flow by a factor of 2.
 - Low-pass filtering in I gives the strongest relative sensitivity to return flow.
 - Phase-speed filtered kernels are best localised at target depth.

Introduction Sanity Check Validation of Method Deep Meridional Flow Kernels Summary
Summary

- $1. \ \mbox{We can adequately calculate spherical Born kernels:}$
 - ✓ Results from Cartesian geometry (BG2007) reproduced.
 - $\checkmark\,$ Effect of meridional flow correctly modelled (Hartlep et al., 2013).
- 2. Example kernels for meridional flow measurements:
 - 10-15% of the total sensitivity is due to the return flow for a standard meridional flow profile.
 - Ray and Born kernels have different sensitivity to return flow by a factor of 2.
 - Low-pass filtering in I gives the strongest relative sensitivity to return flow.
 - Phase-speed filtered kernels are best localised at target depth.

Thank you very much!

References

- Zhao et al. (2013)
- Kholikov et al. (2014)
- Duvall & Hanasoge (2013)
- Duvall et al. (2014).
- Zhao et al. (2012)
- Gizon and Birch (2002)
- Birch and Gizon (2007, BG2007)
- Roth, Gizon & Birch (2006)
- Hartlep et al. (2013)
- Rempel (2006)
- Gizon and Birch (2004)

Sanity Check	Deep Meridional Flow Kernels	Summary

Sanity Check	Deep Meridional Flow Kernels	Summary

Power: kernel vs simulated data

Unfiltered power integrated over k, normalized, for Hartlep et al. 2013 (solid) and spherical kernels (dashed), using $l \le 169$:

Unfiltered Kernel

Introduction Sanity Check Validation of Method Deep Meridional Flow Kernels Summary

Low-pass I, $\delta I = 50$

Introduction Sanity Check Validation of Method Deep Meridional Flow Kernels Summary

Low-pass I, $\delta I = 20$

Phase-speed

Summary

Unfiltered Kernel

Low-pass I, $\delta I = 50$

Low-pass I, $\delta I = 20$

Phase-speed

$v_{max} = 500 \text{ m/s}$ still in linear regime?

For $\Delta = 22.5$ deg, travel-times from E-W-kernel (dashed) at equator and *exact* perturbed cross-correlation (crosses, method see Jackiewicz et al., 2007) for a solid body rotation corresponding to a certain equatorial zonal flow speed (x-axis): Linear regime extends to these flow speeds.

 $K_{\phi} = K_{x}$, sensitivity for zonal flows, integrated wrt depth, cut along y = 0:

 $K_{\phi} = K_x$, sensitivity for zonal flows.

Maximum value: 8 % off.

 $K_{\theta} = -K_y$, sensitivity for meridional flows.

 $K_r = K_z$, sensitivity for convective flows.

