HMI Local Helioseismology Data: Status and Prospects

Richard Bogart

Stanford University

HELAS VI / SOHO 28 / SPACEINN, MPS, Göttingen, I September 2014

Local Helioseismology Data Products

series	module	cadence (sec/rec)	size (MB/rec)	Description		
hmi.V_avg120	datavg	396000	60	1/3 rotation averages of Dopplergrams with orbital velocity removed, for detrending		
hmi.rdVtrack_fd05	mtrack	12	18	mosaics of tracked mapped data cubes from data in series hmi.V_45s		
hmi.rdVtrack_fd15	mtrack	340	472			
hmi.rdVtrack_fd30	mtrack	2500	1000			
hmi.tdVtrack_synopHC	mtrack	993	250			
hmi.rdVpspec_fd05	pspec3	12	12	mosaics of the power spectra of the tracked tiles in the series hmi.rdVtrack_fd*, with 1-to-1 mapping of most parameters		
hmi.rdVpspec_fd15	рѕрес3	340	324			
hmi.rdVpspec_fd30	рѕрес3	2500	648			
hmi.rdVavgpspec_fd15	datavg	8400	324	<pre>mosaics of full-rotation averages of power spectra of tracked tiles in series hmi.rdVpspec_fd*</pre>		
hmi.rdVavgpspec_fd30	datavg	34400	648			
hmi.rdVfitsf_fd05	ringfitf	12	0.02	2		
hmi.rdVfitsf_fd15	ringfitf	340	0.09	mosaics of the "fast" ("dynamics") fits to the power spectra in series hmi rdVpspec_fd*		
hmi.rdVfitsf_fd30	ringfitf	2500	0.2	speeda in series ininita (pspee_ia		
hmi.rdVfitsc_fd05	ringfitc	12	0.1	mosaics of the "slow" ("structure") fits to the power spectra in series hmi.rdVpspec_fd*		
hmi.rdVfitsc_fd15	ringfitc	2500	0.7			
hmi.rdVfitsc_fd30	ringfitc	10000	0.9			
hmi.tdVtimes_synopHC	travel_times	993	22	mosaics of travel time fits to the data in series hmi.tdVtrack_synopHC		
hmi.rdVflows_fd15_frame	rdvinv	98000	2.25	flow inversions of the fits in all records for a given analysis time in series hmi.rdVfitsf_fd*		
hmi.rdVflows_fd30_frame	rdvinv	196000	0.57			
hmi.tdVinvrt_synopHC	invert_td_hr	248	11	flow and sound-speed inversions of the travel time fits in in series hmi.tdVtimes_synopHC		

Tracked Doppler data - common input for most local helioseismology analysis

Ring-diagram tiles at three size scales: 32°, 16°, and 5°.12 "squares"

(Uniform apodization to: 30°, 15°, and 5° circles)

Time-distance tiles: 30°.72 "squares"

R-D tile spacings: ~15°, 7°.5, and 2°.5 in arc; T-D tile spacings 24° in latitude and longitude

R-D Latitude spacing uniform, with tiles centered at $0, \pm s, \pm 2s, ...$

R-D Longitude spacing depends on latitude, same as latitude spacing at equator, and subject to constraint of integer divisor of 360°

4 additional T-D tiles at 20° spacings from edges on equator and meridian

Mapping with Postel's projection at scale of 0°.04 / pxl (5° and 15° tiles), 0°.08 / pxl (30° tiles), and 0°.06 / pxl (T-D tiles)

R-D regions tracked while within 80° of disc center

Three different sets, depending on heliographic latitude of SDO

R-D regions tracked at Carrington rate

Maximum photospheric zonal velocity 260 m/s at 50°

Maximum photospheric drift rate $4^{\circ}.34$ / day at poles

T-D regions tracked at nominal photospheric Doppler rate at center of region

Distribution of Ring-diagram Target Regions

Tracked Doppler data cubes, centred at 2152:210 (2014.07.09_08:45)

5° @ 12.5W07.5S

30° @ 15.0W00.0N

HELAS VI / SOHO 28 / SPACEINN, MPS, Göttingen, I September 2014

15° power spectrum, 2151:240 (2014.06.09_21:36), 00.0W00.0N

2.5 mHz

3.5 mHz

5.0 mHz

15° power spectrum, 2151:240 (2014.06.09_21:36), 00.0W00.0N

2.5 mHz

3.5 mHz

5.0 mHz

HELAS VI / SOHO 28 / SPACEINN, MPS, Göttingen, I September 2014

15° power spectra cuts @ 2.5 mHz around disc

I-ν for ring-diagram fits to power spectra, 2151:240, 00.0W00.0N

Sample flow inversions over the disc at different depths, 2101:240

latitude

Time-Distance Sound-Speed Inversions 2014.07.09_12:00

Gabor Wavelet

Target Depth [Mm]

Fitting Method

Gizon-Birch

Inversion Method

Born Approx

Ray Path

Time-Distance Sound-Speed Inversions 2014.07.09_12:00

CarrRot

2095.0

Local Helioseismology Data Recovery

During 57 rotations, 2096:250 – 2153:255 (2010.05.01 – 2014.08.02):

series	window	opportunities	threshold	l missed	recovery
5° ring diagrams	9:36	4104	0.7	51	0.988
15° ring diagrams	28:48	1368	0.7	4	0.997
30° ring diagrams	57:36	684	0.7	0	1.000
time distance	8:00	4572	0.5	36	0.992

Principal causes of lost 5° ring diagram data

Delay between Observation and Completion of Processing

Delay between Observation and Completion of Processing

Prospects

More of Same

Identical analysis (almost) applied to MDI, GONG, and Mt Wilson data sets

Ring-Diagrams

Addition of multi-ridge fit code to pipeline

Full-disc fitc fits for 15° tiles

Improved fitting procedures to account for spatial variations

Time-Distance

???

Spatial Distribution of Averaged mode-fit Parameters $n = I-3, 0.9875 < r_T < 0.9975$

4-year mean 5° *rdfitc* CR 2096:250–2149:050 (2010.05.01_02:12–2014.04.30_19:59)

(5 m/s contours)

(2.5 m/s contours)

last 2 yrs minus first 2 yrs 5° *rdfitc* CR 2123:330–2149:050 -CR 2096:250–2123:335

(2.5 m/s contours)

Comparing Ring-Diagram and Time-Distance Zonal Flow Anomalies (Depth 3–6 Mm)

Evolution of the Flow Anomaly Patterns, 5.2010 – 5.2014

Evolution of the Flow Anomaly Patterns, 5.2010 – 5.2014

HMI, MDI, & GONG Coverage during Comparison Interval 2096:240 – 2098:015 (2010 05.01–07.12)

0.9 0.8 Coverage 0.7 0.6 0.5 2010.05.01 2010.05.31 2010.06.30 MidTime

Differences in 4-year means of *rdfitf* and *rdfitc* flow parameters

Differences in 2.5-month means of *rdfitm* and *rdfitc* flow parameters (MDI data, 2096:150–2098:030)

(5 m/s contours)

But...

Differences in I-rotation means of 15° and 4-yr means of 5°

And...

Differences in 2.5-month means of MDI 15° and 4-yr means of HMI 5°

(20 m/s contours)

(5 m/s contours)