Local helioseismic investigation of emerging active regions

D Braun (NWRA), H Schunker, A. Birch (MPS)

& using MHD simulations from M Rempel (NCAR/HAO) & R Stein (MSU)

NWRA

HELAS VI/ SOHO 28/ SPACEINN 2014

Irene González Hernández

8/30/2014

helioseismic surveys of emerging ARs (EARs)

- advantage of consistent analysis applied to many regions:
 - statistical (e.g. compare populations of emerging vs non-emerging regions)
 - enhance signal-to-noise (e.g. ensemble averaging)
- prior ring-diagram surveys (Komm, Howe & Hill 2009; 2011)
 - larger, broader survey than this one (flows & active region *evolution*)
- prior NWRA survey (GONG; Leka et al. 2013; Birch et al. 2013; Barnes et al. 2014)
 - goal: detect subsurface "precursors" of emerging flux
 - holography of ~100 ARs and 100 quiet regions
 - 0-20 Mm below photosphere & up to 28 hr. prior to emergence
- ongoing NWRA/MPS Survey (HMI-SDO data)
 - goal: explore physics of emergence & extend prior survey in time and depth
 - holography analysis & ensemble averages of ~100 EARs (2010 2012)

EAR selection

- discussed earlier by Hannah...
- "clean" emergence for simplicity in interpretation
 - use HARP information + visual inspection of magnetograms
- definition of emergence time, time intervals, identical to prior GONG survey
- results here use 80 cleanest EARs

holography

- deep-focus geometry results
 - 3 Mm focus depth shown
- travel-time shifts
 - EW, NS differences (flows)
 - mean shifts (EW & NS; wavespeed perturbations)
- EW, NS shifts as proxies for flows
 - avoids inversions (for now)
 - take simple operations (e.g. horizontal divergence component) on vector traveltime shifts

single AR (NOAA 11136)

EW, NS diffs dominated by supergranulation

HELAS VI/ SOHO 28/ SPACEINN 2014

ensemble average (~80 EARs)

8/30/2014

converging flow (especially visible in NS shifts)

horizontal component of divergence

- converging flows from -30hr ; changes to outflows t > t₀
- amplitude ~σ_{sG} (RMS in quiet-Sun supergranulation)
- also observed "in-out" travel-time differences

8/30/2014

time evolution of in-flows -> out-flows

amplitude of preemergence converging flows not strongly dependent on resulting AR size.

post-emergence outflows increase with AR size

magnetoconvective simulations of emerging flux

M Rempel (custom runs provided; as per Rempel & Cheung 2014 ApJ)

R Stein ("mhd48-1" see Stein & Nordlund 2012 ApJL)

Note: Stein's simulation emerges a pore (not sunspot!) through convection of horizontal field at the bottom - included for context only!

MURaM simulations (Rempel & Cheung 2014)

upward advected semi-torus: torus radius=16Mm

$$B = B_o e^{-r^2/r_o^2} \frac{r}{r_o} \le \sqrt{2}$$

identifier	Upward flow	total flux	tube radius r _o	field strength <i>B_o</i>
"MR 280"	280 m/s	10 ²² Mx	4.3 Mm	20 kG
"MR 140"	140	10 ²²	4.3	20
"MR 140a"	140	5 x 10 ²¹	4.3	10
"MR 140b"	140	5 x 10 ²¹	3	20

140m/s = average convective upflow at bottom (18Mm)

8/30/2014

divergence comparisons: averaged EARs & simulations

observations more consistent with gentler emergence

caveats: 10²² Mx flux in Rempel simulation larger than typical EAR in sample

deeper, further (back) in time?

• nothing obvious in mean shifts below ~few Mm (σ ~ 0.4 sec)

deeper, further continued...

• nothing obvious in flows; divergence signatures either...

• noise at 54 Mm \leq 1 sec (EW, NS) 0.4 sec (mean)

conclusions

- near-surface magnetic and mean travel-time shifts present in ensemble-averaged maps ~30 hr prior to "emergence time"
- pre-emergence converging flows, followed by outflows and prograde flows
- plausible sources are supergranulation boundaries
- comparisons with MHD simulations suggest emergence is "gentle" with upflows not much greater than convective flows
- lots more to do...

Supported by NASA Heliophysics SR (NNH12CF23C) & HGI (NNH12CF68C) programs

Data courtesy NASA/SDO and the AIA, EVE, and HMI science teams

HELAS VI/ SOHO 28/ SPACEINN 2014

evolution of prograde feature

HELAS VI/ SOHO 28/ SPACEINN 2014

16

HELAS VI/ SOHO 28/ SPACEINN 2014