

Insights into the solar cycle from global helioseismology Anne-Marie Broomhall

Global Research Fellow Institute of Advanced Study, University of Warwick Centre for Fusion, Space, and Astrophysics, University of Warwick

Outline

- The work of Livingston and Penn has led to comparisons of global proxies of solar activity.
 - Magnetic fields in sunspots have weakened.
 - 10.7cm radio flux and SSN are diverging.
- Properties of the p modes are proxies of the solar activity.
 - Frequencies
 - Lifetimes
 - Powers.
- Energy supply rate.

Comparison of F10.7 and SSN

Seismic frequencies and the solar cycle

- Seismic frequencies respond to changes in the surface activity (Woodard & Noyes ,1985).
- Using Birmingham Solar Oscillations Network data.
 - 365d data, overlapping by 91.25d, include *I*=0,1,2, 2400≤v≤3400µHz.

Frequency shift inversions

• Howe et al. (2002) localized the frequency shifts in latitude.

Comparisons with global proxies

Difference with seismic frequencies

SSN

Sunspot area

Coronal index

What about cycle 21?

The unusual solar cycle – smoothed

Solute or Polanceo

THE UNIVERSITY OF

Changes in the magnetic layer

- The upper turning point of the low- ν modes are beneath the magnetic layer in cycle 23
- The changes must occur above $0.9965R_{o}$.

Mode damping rates and powers

- From cycle minimum to maximum
 - Damping rates increase.
 - Mode powers decrease.

Fill?

Variations in damping rates

Variations in powers

Significant departures?

Energy supply rate

- Mode energy=power × mode mass.
- Energy supply rate ∞ energy \times width.

Differences in proxies

- Livingston, Penn, Svalgaard (2012): average magnetic field of sunspots has decreased.
 - Sunspots can only form if magnetic field strength exceeds 1500G → magnetic field that reaches surface but cannot form spots.
- Clette & Lefevre (2012): small spot deficit.
 - Could be explained by decrease in average magnetic field of sunspots.
 - SSN gives equal weighting to all sunspots.
 - Sunspot area: dominated by largest active regions.
 - 10.7cm flux: dominated by largest active regions and chromospheric excess from additional plages and faculae.
 - CI: additional effect from low latitude coronal holes.

Conclusions

- Discrepancy observed between frequencies and proxies: SSN and CI
 - Consistent with explanations of discrepancy between SSN and 10.7cm flux.
- Change in frequency dependence of shift in frequencies implies thinning of magnetic layer.
- Discrepancy between powers and proxies in rising phase of C24.
 - Leads to small drop in energy supply rate.

Comparisons with global proxies

Comparing frequency ranges

- High-v and intermediate-v behave in a similar manner in all cycles.
- Low-v behaves differently in cycle 23.

Basu et al. (2012)

THE UNIVERSITY OF

WARWI

Survee . V. Polanceo

