

Observational constraints on the global solar dynamo

Robert Cameron & Manfred Schüssler (Jie Jiang, Dieter Schmitt, Emre Isik, Laurent Gizon)

Babcock-Leighton Dynamo

Sunspots (and unsigned flux) are a measure of toroidal flux

Sunspots (and unsigned flux) are a measure of toroidal flux

The number of sunspots (a measure of the toroidal field) varies from cycle to cycle.

What do observations say?

after Wang and Sheeley (2009).

The axial dipole moment near minimum is strongly correlated with the strength of the next cycle

Figure 2. Scatter plot of maximum yearly sunspot number R_{max} vs. lowest yearly value of the *aa* index near the preceding sunspot minimum, for cycles 12–23. Dashed line represents a linear least-squares fit to the data.

Figure 5. Scatter plot of maximum sunspot number R_{max} vs. radial IMF strength at the preceding sunspot minimum, derived from the *aa* index as described in Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually averaged data.

Wang and Sheeley (2009).

So polar field is at least strongly correlated with *the* poloidal field of the dynamo

Summary

• The polar fields are highly correlated with the activity level of the next cycle

How much toroidal flux is produced in each hemisphere?

How much toroidal flux is produced by the Babcock-Leighton mechanism?

Solar differential rotation

Babcock-Leighton key feature: Polar field is <u>the</u> poloidal field of the dynamo How much toroidal field is generated by differential rotation and the polar fields?

$$\frac{\mathrm{d}\Phi_{\mathrm{tor}}^{\mathrm{N}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Sigma} B_{\phi} \mathrm{d}S \right) = \int_{\delta\Sigma} \left(\mathbf{U} \times \mathbf{B} + \langle \mathbf{u} \times \mathbf{b} \rangle - \eta \nabla \times \mathbf{B} \right) \cdot \mathrm{d}\mathbf{l}$$

$$\frac{\partial}{\partial t} \left(\int_{\Sigma} B_{\phi} d\Sigma \right) = \int_{90}^{0} \left(U_{\phi} B_{r} \right) |_{r=R \odot} R_{\odot} d\theta + D_{eq}^{ax}$$

Cameron & Schüssler (in prep)

How much toroidal field is generated by differential rotation and the polar fields?

Work in reference frame rotating at the Rate of the equator.

Induction Equation,

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B} + \langle \mathbf{u} \times \mathbf{b} \rangle - \eta \nabla \times \mathbf{B})$$

Stokes Theorem

$$\frac{\mathrm{d}\Phi_{\mathrm{tor}}^{\mathrm{N}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_{\Sigma} B_{\phi} \mathrm{d}S \right) = \int_{\delta\Sigma} \left(\mathbf{U} \times \mathbf{B} + \langle \mathbf{u} \times \mathbf{b} \rangle - \eta \nabla \times \mathbf{B} \right) \cdot \mathrm{d}\mathbf{I}$$

 $\frac{\partial}{\partial t} \left(\int_{\Sigma} B_{\phi} d\Sigma \right) = \int_{90}^{0} \left(U_{\phi} B_{r} \right) |_{r=R_{\odot}} R_{\odot} d\theta + D_{eq}^{ax}$

Observed latitudinal differential rotation

Summary

- The polar fields are highly correlated with the activity level of the next cycle
- All of the net toroidal flux in each hemisphere is produced by the winding up of the polar fields.
- This produces a net toroidal field of about 5x10²³ Mx/Hem in a cycle
- This is about equal to the unsigned radial flux from the active regions
- Most sunspots groups throughout cycle obey Hale's Law (which suggests toroidal field involved in the global dynamo is mainly of one sign).
- Both these points provide independent strong support for the Babcock-Leighton dynamo.

What causes the modulation of solar activitiy from cycle to cycle?

Hathaway, Living reviews

The modulation occurs before the magnetic field reaches the poles.

Comparison of dipolar field (observations vs model)

Figure 5. Scatter plot of maximum sunspot number R_{max} vs. radial IMF strength at the preceding sunspot minimum, derived from the *aa* index as described in Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually averaged data.

Observations (Wang and Sheeley 2009) Results from SFT model without inflows (Cameron and Schuessler 2012)

Not included above: flow variations?

Active regions drive flows

Gizon et al 2001

But we know the flow is time dependent This *should* be included in the model.

activity related radiance changes

Observed magnetic field

Non linear SFT model, including Waldmeier effect and the inflows into the active regions

Cameron and Schüssler (2012)

Comparison of dipolar field (observations vs simulations with inflows & Waldmeier effect)

Figure 5. Scatter plot of maximum sunspot number R_{max} vs. radial IMF strength at the preceding sunspot minimum, derived from the *aa* index as described in Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually averaged data.

Observations (Wang and Sheeley 2009)

Results from SFT model including Waldmeier effect and inflows (Cameron & Schüssler 2012) We have regular synoptic magnetograms since cycle 21, and so can find what else the model is missing.

Observations of the radial magnetic field from cycles 21 onwards

What determines the polar fields (or e.g. axial dipole moment)?

Flux in the northern hemisphere: observations & SFT model

Emergence of highly tilted large groups near or across the equator is a large source of randomness.

Summary of activity modulation.

Cross Equatorial Plumes are a substantial source of randomness

• Inflows are a substantial nonlinearity

• Together these are enough to explain the observed variability from 1874 onwards.

Conclusions

- Observations strongly support Babcock-Leighton model
- Inflows are sufficient to explain observed nonlinearity
- Cross-Equator Plumes are sufficient to explain randomness.

Open questions:

1. Where is the toroidal field stored?

(Detecting changes in the flows or structure associated with the solar cycle)

How does the emergence process of active regions fit in?

Standard picture, possibly/probably wrong in subsurface detail.

Eruption, Coriolis force (detecting flows before emergence?)

Dynamic disconnection
(sunspot seismology?)

Pumping (measuring correlations in the flow?)