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Figure 4. Variation of the maximum latitudinal excursion of the heliospheric current sheet during 1967–2008; here, the highest latitude reached by the source-surface
neutral line has been averaged between the Northern and Southern hemispheres. Also plotted are the dipole tilt angle δ = tan−1(Deq/Dax), the equatorial dipole
strength, and the total quadrupole strength. Three-rotation running means have been taken, and the equatorial dipole and quadrupole moments have been expressed as
equivalent field strengths at 1 AU. The latitudinal excursion of the current sheet from the heliographic equator is unusually large during the present sunspot minimum
because of the weakness of the polar fields. Nevertheless, as is evident from Figure 3(c), the total open flux is still almost entirely dominated by the axial dipole
component.
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Figure 5. Scatter plot of maximum sunspot number Rmax vs. radial IMF strength
at the preceding sunspot minimum, derived from the aa index as described in
Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually
averaged data.

13–22 against the amplitude of the following cycle. A
least-squares fit to the scatter plot yields Rmax = −39 +
85(|Br |ssmin/nT), with a standard deviation of 25 and a corre-
lation coefficient of 0.80. In situ spacecraft measurements give
|Br | = 1.6 nT for the average radial IMF strength over the period
2008 January–September. Employing |Br |ssmin as the precursor,
then, we find that Rmax = 97 ± 25 for cycle 24. This value is
roughly consistent with the predictions based on the minimum
of the aa index (Rmax ! 110) and on its last peak (Rmax " 87),
but is much smaller than the estimate Rmax " 160 derived from
the large 2003 peak. On the other hand, it is somewhat higher

than the values Rmax " 75–80 inferred by comparing current po-
lar field measurements with those made during the 1976, 1986,
and 1996 sunspot minima (Svalgaard et al. 2005; Schatten 2005;
Choudhuri et al. 2007). We note, however, that the latter fore-
casts are based on magnetograph data extending only over the
past ∼40 yr.

In the scatter plots of Figures 2 and 5, cycle 19 is an obvious
outlier located far above the regression line. Based on both
the aa index and the aa-derived radial IMF strength, which
was somewhat lower during the minimum preceding cycle 19
than during that preceding cycle 22, cycle 19 should have
been weaker than cycle 22, but instead turned out to have a
much higher amplitude. The polar faculae measurements of
Sheeley (2008), however, indicate that the polar fields were
as much as ∼70% stronger in 1954 than in 1986; eclipse
photographs also show that the coronal streamers were highly
flattened toward the equator. These observations, as well as
the unusually low level of sunspot activity in 1954, suggest
that the Earth remained very close to the heliospheric current
sheet, as is indeed consistent with the pronounced semi-annual
modulation in the geomagnetic activity recorded at that time
(when the current sheet was so flat that the local IMF polarity
was determined entirely by the 7◦ tilt of the solar rotation axis: cf.
Rosenberg & Coleman (1969)). In that case, the average radial
IMF strength at Earth may not have reflected the full strength of
the Sun’s axial dipole component, leading to an underestimate
of Rmax(19).

It should be emphasized that most of the scatter in Figures 2
and 5 is likely to be of physical origin, since the cycle
amplitude will depend on parameters in addition to Dax. The
amount of scatter that might be expected is illustrated by
Figure 6(a) in Wang et al. (2005), who used a surface flux-
transport model with time-varying meridional flow to model
the evolution of the Sun’s large-scale field during cycles −3
through 22.

Dikpati et al. (2006) applied their flux-transport dynamo
model to predict that cycle 24 will be 30%–50% higher than
cycle 23 (see also Dikpati & Gilman 2006). In their two-
dimensional simulations, the magnetic field at the solar surface
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Figure 1. Annual averages of the aa index (thick solid line), of its “interplanetary
component” aaI = aa − 0.097R − 10.9 (thin solid lines), and of the sunspot
number R (dotted line) for solar cycles 11–23 (1868–2008). The pre-1957 aa
measurements have been scaled upward as discussed by Svalgaard et al. (2004)
and Svalgaard & Cliver (2007). The formula for aaI is from Hathaway & Wilson
(2006).

In the following section, we discuss the physical basis of the
geomagnetic precursor, focusing on the relationship between
geomagnetic activity and the large-scale solar magnetic field.
In Section 3, we propose a new predictor derived from the aa
index, and use it to forecast the amplitude of cycle 24. Our
conclusions are summarized in Section 4.

2. GEOMAGNETIC ACTIVITY AND THE SUN’S DIPOLE
VECTOR

When averaged over timescales greater than a month, the
aa index is highly correlated with V 2

wB, where Vw is the solar
wind speed and B is the total IMF magnitude at Earth (see, e.g.,
Murayama & Hakamada 1975; Crooker et al. 1977; Rouillard
et al. 2007; Svalgaard & Cliver 2007). Figure 3(a) shows three-
rotation (82 day) running means of aa, Vw, and the near-Earth
radial IMF strength |Br | during 1967–2008. We see a clear
tendency for the peaks in aa to occur where Vw or |Br |, and
in most cases both Vw and |Br |, are enhanced; the correlation
coefficients calculated between aa and Vw, |Br |, and V 2

w|Br | are,
respectively, 0.73, 0.75, and 0.87.

The radial IMF strength, being independent of helio-
graphic latitude and longitude (Balogh et al. 1995; Smith
et al. 2001; Smith & Balogh 2008), is proportional to the Sun’s
total open flux, which in turn varies approximately as its net
dipole strength (Wang & Sheeley 2002). The magnetic dipole
vector may be decomposed into an equatorial (l = 1, |m| = 1)
and an axial (l = 1, m = 0) component, whose respective evo-
lutions during 1967–2008 are plotted in Figures 3(b) and 3(c).
Here, we have used photospheric field measurements taken by
the Wilcox Solar Observatory (WSO) during 1976–1995 and by
the Mount Wilson Observatory (MWO) during the remaining
intervals. The axial or axisymmetric component Dax varies in
a manner similar to the Sun’s polar fields, attaining its maxi-
mum strength at sunspot minimum and vanishing near sunspot
maximum. In contrast, the equatorial dipole component Deq
varies roughly in phase with sunspot activity, while undergo-
ing large-amplitude fluctuations lasting ∼1–2 yr. The equatorial
dipole strength is a function of both the level of sunspot activity
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Figure 2. Scatter plot of maximum yearly sunspot number Rmax vs. lowest
yearly value of the aa index near the preceding sunspot minimum, for cycles
12–23. Dashed line represents a linear least-squares fit to the data.

and its distribution in longitude; the highest peaks (including
those of 1982, 1991, and 2003) occur when large active re-
gions emerge with their east–west dipole moments “in phase”
with each other (Wang & Sheeley 2003). Unless maintained by
new flux emergence, Deq decays on the timescale of the surface
meridional flow, which transports the active region remnants
to midlatitudes, where the steep rotational gradients combine
with supergranular diffusion to annihilate the nonaxisymmetric
component of the large-scale field.

From Figure 3(b), we note a general tendency for strength-
enings of the equatorial dipole to coincide with peaks in the aa
index. This correlation arises because: (1) an increase in Deq
leads to an increase in the total open flux and IMF strength; (2)
during the declining phase of the cycle, when Dax is large, an
increase in Deq causes the Sun’s net dipole vector to tip toward
the equator, giving rise to recurrent high-speed streams at Earth
from the pair of large open field regions centered on the tilted
dipole axis; (3) an increase in Deq is often accompanied by an
increase in the number of fast CMEs (see Figure 6(b) in Wang
et al. 2006). Thus, for example, the unprecedented peak in the
aa index in 2003 can be attributed to the combination of a strong
equatorial dipole, the associated year-long recurrent high-speed
stream from a large lobe of the south polar hole, and a succes-
sion of major flare/CME events late in the year. As discussed
in Wang & Sheeley (2003), the ∼1.2–1.7 yr quasi-periodicities
intermittently detected in geomagnetic activity and the solar
wind speed (Silverman & Shapiro 1983; Richardson et al. 1994;
Paularena et al. 1995; Mursula & Vilppola 2004) may be a result
of stochastic, meridional-flow-limited fluctuations in Deq.

Given that it represents a fluctuating, relatively short-lived
component of the large-scale field which must be continually
regenerated by sunspot activity, the equatorial dipole cannot act
as a seed for the toroidal flux of the next cycle. The axisymmetric
dipole component, on the other hand, undergoes a systematic
evolution over the sunspot cycle, reflecting the tendency for
the north–south dipole moments of the active regions to be
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axis or be transported to the opposite hemisphere by diffusion across the equator. The second

of these in particular might be important towards the end of a cycle. We denote these diffusive

fluxes across the equator and rotational axis by Dax
eq . We then obtain

∂

∂t

(
∫

Σ

BφdΣ
)

=
∫

0

90

(UφBr) |r=R! R!dθ +Dax
eq

This equation gives the amount of toroidal flux generated in any meridional plane. We can

average the equation in the φ direction to obtain

∂

∂t

(
∫

Σ

〈Bφ〉dΣ
)

=
∫

0

90

(〈Uφ〉〈Br〉) |r=R!
R!dθ +Dax

eq

where 〈...〉 indicates an azimuthal average and where we have assumed the fluctuations in Uφ

and Br are uncorrelated.

To evaluate the advective component in Equation 1 we use KPNO/VT and SOLIS synoptic

magnetograms. The longitudinally-averaged magnetic field as a function of time and longitude

is shown in Figure 2. The observationally based form of the surface differential rotation

ω = −2.3 cos2(θ)− 1.62 cos4(θ) [◦/day]

is also used (9).

The differential rotation profile is also plotted in Figure2, along with the integrand of Equa-

tion 1. Evidently that the generation of toroidal field is sensitive to the polar fields in each

hemisphere and need not be the same for each hemisphere. Integration over θ from cos θ = 0

to cos θ = 1 gives the time derivative of the total toroidal flux in the northern hemisphere, and

integrating from cos θ = −1 to cos θ = 0 gives the result for the southern hemisphere.

If we assume that there is no diffusion across the rotation axis or equator, Dax
eq = 0, then we

can also integrate with respect to time to obtain the total toroidal flux in each hemisphere. The

result is shown in Figure 3, along with the amount of unsigned surface flux in each hemisphere

as a function of time.
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where B(r, θ) and U(r, θ) are the φ-averaged magnetic field and plasma velocity, respectively,

and η is the magnetic diffusivity. Angular brackets indicate the azimuthal average. The term

〈u × b〉 denotes the correlation of the fluctuating quantities with respect to the azimuthal aver-

ages, which gives rise to the α-effect and to enhanced (‘turbulent’) magnetic diffusivity (13).

We define the contour δΣ enclosing the area Σ in a meridional plane of the Sun as shown

in Figure 1. The contour consists of the axis of rotation (a), an arc slightly below the bottom

of the convection zone (b), a radial segment in the equatorial plane (c), and the solar surface

(d). Applying Stokes’ theorem to the integral of the induction equation over Σ yields the time

derivative of the net toroidal flux, ΦN
tor, in the northern hemisphere of the convection zone,

dΦN
tor

dt
=

d

dt

(∫

Σ
BφdS

)
=

∫

δΣ
(U ×B + 〈u× b〉 − η∇×B) · dl , (2)

where dS is the surface element of Σ and dl is the line element along δΣ. An analoguous

procedure provides the toroidal flux in the southern hemisphere, ΦS
tor.

Rotation is by far the dominating component of the azimuthally averaged velocity, so that

we write U = Uφ φ̂ = (Ωr sin θ)φ̂, where Ω(r, θ) is the angular velocity and φ̂ the unit vector

in the azimuthal direction. The effect of
∫
δΣ〈u×b〉 ·dl reduces to that of the turbulent magnetic

diffusivity, ηt, since the contribution of the α-effect to the generation of the toroidal field can be

neglected against that of differential rotation (3). With ηt & η we thus obtain

dΦN
tor

dt
=

∫

δΣ
(U × B− ηt∇×B) · dl , (3)

Guided by empirical results from helioseismology (14), we take Ω to be independent of r

in the equatorial plane throughout the convection zone1, i.e., Ω(r, π/2) = Ωeq. This allows

us to work in a reference frame rotating with angular velocity Ωeq, for which Uφ = 0 in the

equatorial plane. We can further assume that the magnetic field does not penetrate the low-

diffusivity radiative zone below the convection zone. Together with Uφ = 0 along the rotational
1The effect of the slight radial variation of Ω in the so-called near-surface shear layer (15) is negligible as shown

in the supplementary online material.
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axis or be transported to the opposite hemisphere by diffusion across the equator. The second

of these in particular might be important towards the end of a cycle. We denote these diffusive

fluxes across the equator and rotational axis by Dax
eq . We then obtain

∂

∂t

(
∫

Σ

BφdΣ
)

=
∫

0

90

(UφBr) |r=R! R!dθ +Dax
eq

This equation gives the amount of toroidal flux generated in any meridional plane. We can

average the equation in the φ direction to obtain

∂

∂t

(
∫

Σ

〈Bφ〉dΣ
)

=
∫

0

90

(〈Uφ〉〈Br〉) |r=R!
R!dθ +Dax

eq

where 〈...〉 indicates an azimuthal average and where we have assumed the fluctuations in Uφ

and Br are uncorrelated.

To evaluate the advective component in Equation 1 we use KPNO/VT and SOLIS synoptic

magnetograms. The longitudinally-averaged magnetic field as a function of time and longitude

is shown in Figure 2. The observationally based form of the surface differential rotation

ω = −2.3 cos2(θ)− 1.62 cos4(θ) [◦/day]

is also used (9).

The differential rotation profile is also plotted in Figure2, along with the integrand of Equa-

tion 1. Evidently that the generation of toroidal field is sensitive to the polar fields in each

hemisphere and need not be the same for each hemisphere. Integration over θ from cos θ = 0

to cos θ = 1 gives the time derivative of the total toroidal flux in the northern hemisphere, and

integrating from cos θ = −1 to cos θ = 0 gives the result for the southern hemisphere.

If we assume that there is no diffusion across the rotation axis or equator, Dax
eq = 0, then we

can also integrate with respect to time to obtain the total toroidal flux in each hemisphere. The

result is shown in Figure 3, along with the amount of unsigned surface flux in each hemisphere

as a function of time.
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How much toroidal flux is produced in a cycle? The induction equation is

∂B

∂t
= ∇× (U×B− η∇×B) .

We define the contour δΣ in a meridional plane as shown in Figure 1. The contour consists

of –1– the axis of rotation, –2– an arc below the tachocline, –3– the equator and –4– the solar

surface. Applying stokes theorem yields

∫

Σ

∂Bφ

∂t
dΣ =

∫

δΣ
(U×B− η∇×B) · d(δΣ)

where B is the magnetic field, U is the large-scale solar velocity, η is a turbulent diffusivity, t

is time, Σ is a surface and δΣ is the curve encloses Σ.

Based on heliosiesmic results (8) we assume that the angular velocity, ω, is independent of

r at the equator throughout the convection zone, and work in a (non-inertial) reference frame

where Uφ = 0 in the convection zone at the equatorial plane. We further assume that the

magnetic field does not penetrate below the convection zone, so that there is no flux of toroidal

field through the bottom of the convection zone. With these assumptions the U×B term in the

integrand of equation 2 is zero on the contour δΣ except at the surface. Hence

∫

δΣ
(U×B) · d(δΣ) =

∫ 0

90
(UφBr) |r=R! R!dθ

where θ is the colatitude.

Diffusion of toroidal flux through the solar surface is small because near-surface magnetic

pumping keeps the toroidal field associated with the large-scale dynamo away from the upper

boundary (3). The toroidal flux can however be destroyed by diffusing across the rotational

axis or be transported to the opposite hemisphere by diffusion across the equator. The second

of these in particular might be important towards the end of a cycle. We denote these diffusive

fluxes across the equator and rotational axis by Dax
eq . We then obtain

∂

∂t

(
∫

Σ
BφdΣ

)

=
∫ 0

90
(UφBr) |r=R! R!dθ +Dax

eq
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This equation gives the amount of toroidal flux generated in any meridional plane. We can

average the equation in the φ direction to obtain

∂

∂t

(
∫

Σ
〈Bφ〉dΣ

)

=
∫ 0

90
(〈Uφ〉〈Br〉) |r=R!

R!dθ +Dax
eq

where 〈...〉 indicates an azimuthal average and where we have assumed the fluctuations in Uφ

and Br are uncorrelated.

To evaluate the advective component in Equation 1 we use KPNO/VT and SOLIS synoptic

magnetograms. The longitudinally-averaged magnetic field as a function of time and longitude

is shown in Figure 2. The observationally based form of the surface differential rotation

ω − ωeq = −2.3 cos2(θ)− 1.62 cos4(θ) [◦/day]

is also used (9).

The differential rotation profile is also plotted in Figure2, along with the integrand of Equa-

tion 1. Evidently that the generation of toroidal field is sensitive to the polar fields in each

hemisphere and need not be the same for each hemisphere. Integration over θ from cos θ = 0

to cos θ = 1 gives the time derivative of the net toroidal flux in the northern hemisphere, and

integrating from cos θ = −1 to cos θ = 0 gives the result for the southern hemisphere.

If we assume that there is no diffusion across the rotation axis or equator, Dax
eq = 0, then we

can also integrate with respect to time to obtain the total toroidal flux in each hemisphere. The

result is shown in Figure 3, along with the amount of unsigned surface flux in each hemisphere

as a function of time.

An opposite extreme to assuming that Dax
eq = 0 is to assume that a large amount of flux

is quickly swept out of each hemisphere. We model this case by assuming that Dax
eq causes a

simple exponential decrease in the toroidal flux with an e-folding time of 4 years. The results

from this approximation are shown in Figure 4. We note that the peak levels of toroidal flux
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How much toroidal flux is produced in a cycle? The induction equation is

∂B

∂t
= ∇× (U×B− η∇×B) .

We define the contour δΣ in a meridional plane as shown in Figure 1. The contour consists

of –1– the axis of rotation, –2– an arc below the tachocline, –3– the equator and –4– the solar

surface. Applying stokes theorem yields

∫

Σ

∂Bφ

∂t
dΣ =

∫

δΣ
(U×B− η∇×B) · d(δΣ)

where B is the magnetic field, U is the large-scale solar velocity, η is a turbulent diffusivity, t

is time, Σ is a surface and δΣ is the curve encloses Σ.

Based on heliosiesmic results (8) we assume that the angular velocity, ω, is independent of

r at the equator throughout the convection zone, and work in a (non-inertial) reference frame

where Uφ = 0 in the convection zone at the equatorial plane. We further assume that the

magnetic field does not penetrate below the convection zone, so that there is no flux of toroidal

field through the bottom of the convection zone. With these assumptions the U×B term in the

integrand of equation 2 is zero on the contour δΣ except at the surface. Hence

∫

δΣ
(U×B) · d(δΣ) =

∫ 0

90
(UφBr) |r=R! R!dθ

where θ is the colatitude.

Diffusion of toroidal flux through the solar surface is small because near-surface magnetic

pumping keeps the toroidal field associated with the large-scale dynamo away from the upper

boundary (3). The toroidal flux can however be destroyed by diffusing across the rotational

axis or be transported to the opposite hemisphere by diffusion across the equator. The second

of these in particular might be important towards the end of a cycle. We denote these diffusive

fluxes across the equator and rotational axis by Dax
eq . We then obtain

∂
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(
∫

Σ
BφdΣ

)

=
∫ 0

90
(UφBr) |r=R! R!dθ +Dax

eq

4

where B(r, θ) and U(r, θ) are the φ-averaged magnetic field and plasma velocity, respectively,

and η is the magnetic diffusivity. Angular brackets indicate the azimuthal average. The term

〈u × b〉 denotes the correlation of the fluctuating quantities with respect to the azimuthal aver-

ages, which gives rise to the α-effect and to enhanced (‘turbulent’) magnetic diffusivity (13).

We define the contour δΣ enclosing the area Σ in a meridional plane of the Sun as shown

in Figure 1. The contour consists of the axis of rotation (a), an arc slightly below the bottom

of the convection zone (b), a radial segment in the equatorial plane (c), and the solar surface

(d). Applying Stokes’ theorem to the integral of the induction equation over Σ yields the time

derivative of the net toroidal flux, ΦN
tor, in the northern hemisphere of the convection zone,

dΦN
tor

dt
=

d

dt

(∫

Σ
BφdS

)
=

∫

δΣ
(U ×B + 〈u× b〉 − η∇×B) · dl , (2)

where dS is the surface element of Σ and dl is the line element along δΣ. An analoguous

procedure provides the toroidal flux in the southern hemisphere, ΦS
tor.

Rotation is by far the dominating component of the azimuthally averaged velocity, so that

we write U = Uφ φ̂ = (Ωr sin θ)φ̂, where Ω(r, θ) is the angular velocity and φ̂ the unit vector

in the azimuthal direction. The effect of
∫
δΣ〈u×b〉 ·dl reduces to that of the turbulent magnetic

diffusivity, ηt, since the contribution of the α-effect to the generation of the toroidal field can be

neglected against that of differential rotation (3). With ηt & η we thus obtain

dΦN
tor

dt
=

∫

δΣ
(U × B− ηt∇×B) · dl , (3)

Guided by empirical results from helioseismology (14), we take Ω to be independent of r

in the equatorial plane throughout the convection zone1, i.e., Ω(r, π/2) = Ωeq. This allows

us to work in a reference frame rotating with angular velocity Ωeq, for which Uφ = 0 in the

equatorial plane. We can further assume that the magnetic field does not penetrate the low-

diffusivity radiative zone below the convection zone. Together with Uφ = 0 along the rotational
1The effect of the slight radial variation of Ω in the so-called near-surface shear layer (15) is negligible as shown

in the supplementary online material.
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was pioneered by E.N. Parker (12) and later formalized and quantitatively developed in terms

of the so-called turbulent α-effect (13). This approach considers the effect of rotation on (tur-

bulent) convection, leading to dynamo action in terms of the growth of a mean field. The main

differences between turbulent dynamo models and the BL-type dynamos are the mechanism

and the location of the poloidal field generation. Turbulent dynamos operate deep in the con-

vection zone and the surface field resulting from flux emergence represents an epiphenomenon

that is not essential for the dynamo process. For BL dynamos, the tilt of emerged bipolar re-

gions, which results from the action of the Coriolis force on rising loops of magnetic flux, is the

source of the poloidal field in the dynamo process: flux transport by surface flows leads to the

cyclic reversal and built-up of the polar fields.

Both types of models are able to reproduce the basic observed features of the solar cycle, but

only if various free parameters and functions are chosen appropriately. This lack of predictive

power, which can be traced back to our insufficient knowledge about the convective flows and

the magnetic field structure in the convection zone, is the reason why a decision between the

two classes of dynamo models was not possible so far.

Here we use a simple method to test the BL approach by determining, solely on the basis of

observations, the amount of net toroidal flux generated by differential rotation from the large-

scale surface fields and particularly from the polar fields. For a BL dynamo, this amount of

flux should be at least comparable to the large-scale surface flux and vary in a similar manner.

Specifically, we calculate the net hemispheric toroidal flux corresponding to the azimuthally

averaged azimuthal component of the magnetic field. This quantity is the relevant source flux

for the large bipolar magnetic regions and sunspot groups emerging in the course of the solar

cycle. We consider spherical polar coordinates, (r, θ, φ), and the azimuthally averaged induction

equation of magnetohydrodynamics,

∂B

∂t
= ∇× (U × B + 〈u × b〉 − η∇×B) , (1)
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Cameron & Schüssler.: Inferring the Sun’s subsurface toroidal field.

Sun’s differential rotation is substantial, directly comparable to
the amount of activity related radial flux seen at the surface (as
an observable measure of the Sun’s toroidal flux). It is thus suf-
ficient to explain the observed levels of solar activity. Models
competing with that of Babcock and Leighton now need to not
only explain the correlation between the observed polar fields at
the end of a cycle and the strength of the next cycle, but also why
the toroidal field which is produced by the polar fields play no
role.

2. How much toroidal flux is produced in a cycle?

The induction equation is

∂B

∂t
= ∇ × (U × B − η∇ × B) . (1)

Applying stokes theorem yields
∫

Σ

∂B

∂t
· dΣ =

∫

δΣ

(U × B − η∇ × B) · d(δΣ) (2)

where B is the magnetic field, U is the large-scale solar veloicy,
η is a turbulent diffusivity, t is time, Σ is a surface and δΣ is
the curve encloses Σ. For Σ we choose the a cut in the merid-
ional plane of the convection zone in the northern hemisphere,
as shown in Figure 1. In this case Σ = φ̂.

Based on Heliosiesmic results (Schou 1999) we assume that
Uφ is independent of r at the equator throughout the convection
zone, and work in a (non-inertial) reference frame where Uφ = 0
in the convection zone at the equatorial plane. We further assume
that the magnetic field does not penetrate below the convection
zone, so that there is no flux of toroidal field through the bottom
of the convection zone. With these assumptions,

∫

δΣ

(U × B) · d(δΣ) =

∫ 90

0

(

UφBr

)

|r=R$ dθ (3)

Diffusion of toroidal flux through the solar surface is small
because near-surface magnetic pumping keeps the toroidal field
associated with the large-scale dynamo away from the upper
boundary (Cameron et al. 2012). The toroidal flux can however
be destroyed by diffusing across the roational axis or be trans-
ported to the opposite hemisphere by diffusion across the equa-
tor. The second of these in particular might be important towards
the end of a cycle. We dentote these diffusive fluxes across the
equator and rotational axis by Dax

eq . We then obtain

∂

∂t

(
∫

s

Bφds

)

=

∫ 90

0

(

UφBr

)

|r=R$ dθ + Dax
eq (4)

This equation gives the amount of toroidal flux generated
in any meridional plane. We can average the equation in the φ
direction to obtain

∂

∂t

(
∫

s

〈Bφ〉ds

)

=

∫ 90

0

(

〈Uφ〉〈Br〉
)

|r=R$ dθ + Dax
eq (5)

where 〈...〉 indicates an azimuthal average and where we have
assumed the fluctuations in Uφ and Br are uncorrelated.

To evaluate the advective componet in Equation 5 we
use KPNO/VT and SOLIS synoptic magnetograms. The
longiduinally-averaged magnetic field as a function of time and
longitude is shown in Figure 2. The observationally based form
of the surface differentential rotation

ω = −2.3 cos2(θ) − 1.62 cos4(θ)[◦/day]

ω(λ   )eq

ω(λ  )3

ω(λ )1

ω(λ  )2

Fig. 1. Illustrative model of the generation of net toroidal flux in
a hemisphere. The red solid line represents the solar surface, the
red-dashed curve the boundary between the convection zone and
the radiative interior. The solid black curve outlines the space
over which the toroidal flux is calculated. The light-blue curve
shows the field line both ends of which emerge in the same hemi-
sphere, projected onto a meridional plane. The Dark blue curve
shows the projection of a field line which crosses the equator
beneath the surface.

is also used (Snodgrass 1983).

The differential rotation profile is plotted in Figure3, and the
integrand of Equation 5 in Figure 4. From this it is evident that
the generation of toroidal field is sensitive to the polar fields in
each hemisphere and need not be the same for each hemisphere.
Integration over θ from cos θ = 0 to cos θ = 1 gives the time
derivative of the total toroidal flux in the northern hemisphere,
and integrating from cos θ = −1 to cos θ = 0 gives the result for
the southern hemisphere.

If we assume that there is no diffusion across the rotation
axis or equator, Dax

eq = 0, then we can also integrate with respect
to time to obtain the total toroidal flux in each hemisphere. The
result is is shown in Figure 5, along with the amount of unsigned
surface flux in each hemisphere as a function of time.

An opposite extreme to assuming that Dax
eq = 0 is to assume

that a large amount of flux is quickly swept out of each hemi-
sphere. We model this case by assuming that Dax

eq causes a sim-
ple exponential decrease in the toroidal flux with an e-folding
time of 4 years. The results from this approximation are shown
in Figure 6. We note that the peak levels of toroidal flux are ap-
proximately 5×1023 Mx per hemisphere and are similar to those
from the case where Dax

eq = 0.

We get a qualitative agreement with the toroidal field produc-
tion rate if we consider that the minima of the Sun’s open flux
comes from the polar fields at minima. The minima of the open
flux for strong cycles is approximately 6× 1022 Mx (Lockwood
2003). From Equation 6 we can easily calculate that the poles
of the sun make approximately 4 fewer rotations per year then
equator, which means that the 6× 1022 Mx of poloidal flux gen-
erates approximately 2.4 × 1023 Mx of toroidal flux per hemi-
sphere per year during minimum. The flux during other phases
of the cycle will be lower, and peak fluxes of 5×1023 Mx derived
above using Magnetogram data are supported.

2

This equation gives the amount of toroidal flux generated in any meridional plane. We can

average the equation in the φ direction to obtain

∂

∂t

(
∫

Σ
〈Bφ〉dΣ

)

=
∫ 0

90
(〈Uφ〉〈Br〉) |r=R!

R!dθ +Dax
eq

where 〈...〉 indicates an azimuthal average and where we have assumed the fluctuations in Uφ

and Br are uncorrelated.

To evaluate the advective component in Equation 1 we use KPNO/VT and SOLIS synoptic

magnetograms. The longitudinally-averaged magnetic field as a function of time and longitude

is shown in Figure 2. The observationally based form of the surface differential rotation

ω − ωeq = −2.3 cos2(θ)− 1.62 cos4(θ) [◦/day]

is also used (9).

The differential rotation profile is also plotted in Figure2, along with the integrand of Equa-

tion 1. Evidently that the generation of toroidal field is sensitive to the polar fields in each

hemisphere and need not be the same for each hemisphere. Integration over θ from cos θ = 0

to cos θ = 1 gives the time derivative of the net toroidal flux in the northern hemisphere, and

integrating from cos θ = −1 to cos θ = 0 gives the result for the southern hemisphere.

If we assume that there is no diffusion across the rotation axis or equator, Dax
eq = 0, then we

can also integrate with respect to time to obtain the total toroidal flux in each hemisphere. The

result is shown in Figure 3, along with the amount of unsigned surface flux in each hemisphere

as a function of time.

An opposite extreme to assuming that Dax
eq = 0 is to assume that a large amount of flux

is quickly swept out of each hemisphere. We model this case by assuming that Dax
eq causes a

simple exponential decrease in the toroidal flux with an e-folding time of 4 years. The results

from this approximation are shown in Figure 4. We note that the peak levels of toroidal flux

5

Cameron	
  &	
  Schüssler	
  (in	
  prep)	
  



Toroidal	
  flux	
  northern	
  hemisphere	
  

Toroidal	
  flux	
  southern	
  hemisphere	
  

Surface	
  radial	
  flux	
  northern	
  hemisphere	
  

Surface	
  radial	
  flux	
  southern	
  hemisphere	
  

Based	
  on	
  KPNO	
  synop(c	
  magnetograms	
  
Recall	
  sunspots	
  (&	
  their	
  flux)	
  are	
  a	
  
	
  measure	
  of	
  the	
  toroidal	
  field	
  	
  

Cameron & Schüssler.: Inferring the Sun’s subsurface toroidal field.

Sun’s differential rotation is substantial, directly comparable to
the amount of activity related radial flux seen at the surface (as
an observable measure of the Sun’s toroidal flux). It is thus suf-
ficient to explain the observed levels of solar activity. Models
competing with that of Babcock and Leighton now need to not
only explain the correlation between the observed polar fields at
the end of a cycle and the strength of the next cycle, but also why
the toroidal field which is produced by the polar fields play no
role.

2. How much toroidal flux is produced in a cycle?

The induction equation is

∂B

∂t
= ∇ × (U × B − η∇ × B) . (1)

Applying stokes theorem yields
∫

Σ

∂B

∂t
· dΣ =

∫

δΣ

(U × B − η∇ × B) · d(δΣ) (2)

where B is the magnetic field, U is the large-scale solar veloicy,
η is a turbulent diffusivity, t is time, Σ is a surface and δΣ is
the curve encloses Σ. For Σ we choose the a cut in the merid-
ional plane of the convection zone in the northern hemisphere,
as shown in Figure 1. In this case Σ = φ̂.

Based on Heliosiesmic results (Schou 1999) we assume that
Uφ is independent of r at the equator throughout the convection
zone, and work in a (non-inertial) reference frame where Uφ = 0
in the convection zone at the equatorial plane. We further assume
that the magnetic field does not penetrate below the convection
zone, so that there is no flux of toroidal field through the bottom
of the convection zone. With these assumptions,

∫

δΣ

(U × B) · d(δΣ) =

∫ 90

0

(

UφBr

)

|r=R$ dθ (3)

Diffusion of toroidal flux through the solar surface is small
because near-surface magnetic pumping keeps the toroidal field
associated with the large-scale dynamo away from the upper
boundary (Cameron et al. 2012). The toroidal flux can however
be destroyed by diffusing across the roational axis or be trans-
ported to the opposite hemisphere by diffusion across the equa-
tor. The second of these in particular might be important towards
the end of a cycle. We dentote these diffusive fluxes across the
equator and rotational axis by Dax

eq . We then obtain

∂

∂t

(
∫

s

Bφds

)

=

∫ 90

0

(

UφBr

)

|r=R$ dθ + Dax
eq (4)

This equation gives the amount of toroidal flux generated
in any meridional plane. We can average the equation in the φ
direction to obtain

∂

∂t

(
∫

s

〈Bφ〉ds

)

=

∫ 90

0

(

〈Uφ〉〈Br〉
)

|r=R$ dθ + Dax
eq (5)

where 〈...〉 indicates an azimuthal average and where we have
assumed the fluctuations in Uφ and Br are uncorrelated.

To evaluate the advective componet in Equation 5 we
use KPNO/VT and SOLIS synoptic magnetograms. The
longiduinally-averaged magnetic field as a function of time and
longitude is shown in Figure 2. The observationally based form
of the surface differentential rotation

ω = −2.3 cos2(θ) − 1.62 cos4(θ)[◦/day]

ω(λ   )eq

ω(λ  )3

ω(λ )1

ω(λ  )2

Fig. 1. Illustrative model of the generation of net toroidal flux in
a hemisphere. The red solid line represents the solar surface, the
red-dashed curve the boundary between the convection zone and
the radiative interior. The solid black curve outlines the space
over which the toroidal flux is calculated. The light-blue curve
shows the field line both ends of which emerge in the same hemi-
sphere, projected onto a meridional plane. The Dark blue curve
shows the projection of a field line which crosses the equator
beneath the surface.

is also used (Snodgrass 1983).

The differential rotation profile is plotted in Figure3, and the
integrand of Equation 5 in Figure 4. From this it is evident that
the generation of toroidal field is sensitive to the polar fields in
each hemisphere and need not be the same for each hemisphere.
Integration over θ from cos θ = 0 to cos θ = 1 gives the time
derivative of the total toroidal flux in the northern hemisphere,
and integrating from cos θ = −1 to cos θ = 0 gives the result for
the southern hemisphere.

If we assume that there is no diffusion across the rotation
axis or equator, Dax

eq = 0, then we can also integrate with respect
to time to obtain the total toroidal flux in each hemisphere. The
result is is shown in Figure 5, along with the amount of unsigned
surface flux in each hemisphere as a function of time.

An opposite extreme to assuming that Dax
eq = 0 is to assume

that a large amount of flux is quickly swept out of each hemi-
sphere. We model this case by assuming that Dax

eq causes a sim-
ple exponential decrease in the toroidal flux with an e-folding
time of 4 years. The results from this approximation are shown
in Figure 6. We note that the peak levels of toroidal flux are ap-
proximately 5×1023 Mx per hemisphere and are similar to those
from the case where Dax

eq = 0.

We get a qualitative agreement with the toroidal field produc-
tion rate if we consider that the minima of the Sun’s open flux
comes from the polar fields at minima. The minima of the open
flux for strong cycles is approximately 6× 1022 Mx (Lockwood
2003). From Equation 6 we can easily calculate that the poles
of the sun make approximately 4 fewer rotations per year then
equator, which means that the 6× 1022 Mx of poloidal flux gen-
erates approximately 2.4 × 1023 Mx of toroidal flux per hemi-
sphere per year during minimum. The flux during other phases
of the cycle will be lower, and peak fluxes of 5×1023 Mx derived
above using Magnetogram data are supported.
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This equation gives the amount of toroidal flux generated in any meridional plane. We can

average the equation in the φ direction to obtain

∂

∂t

(
∫

Σ
〈Bφ〉dΣ

)

=
∫ 0

90
(〈Uφ〉〈Br〉) |r=R!

R!dθ +Dax
eq

where 〈...〉 indicates an azimuthal average and where we have assumed the fluctuations in Uφ

and Br are uncorrelated.

To evaluate the advective component in Equation 1 we use KPNO/VT and SOLIS synoptic

magnetograms. The longitudinally-averaged magnetic field as a function of time and longitude

is shown in Figure 2. The observationally based form of the surface differential rotation

ω − ωeq = −2.3 cos2(θ)− 1.62 cos4(θ) [◦/day]

is also used (9).

The differential rotation profile is also plotted in Figure2, along with the integrand of Equa-

tion 1. Evidently that the generation of toroidal field is sensitive to the polar fields in each

hemisphere and need not be the same for each hemisphere. Integration over θ from cos θ = 0

to cos θ = 1 gives the time derivative of the net toroidal flux in the northern hemisphere, and

integrating from cos θ = −1 to cos θ = 0 gives the result for the southern hemisphere.

If we assume that there is no diffusion across the rotation axis or equator, Dax
eq = 0, then we

can also integrate with respect to time to obtain the total toroidal flux in each hemisphere. The

result is shown in Figure 3, along with the amount of unsigned surface flux in each hemisphere

as a function of time.

An opposite extreme to assuming that Dax
eq = 0 is to assume that a large amount of flux

is quickly swept out of each hemisphere. We model this case by assuming that Dax
eq causes a

simple exponential decrease in the toroidal flux with an e-folding time of 4 years. The results

from this approximation are shown in Figure 4. We note that the peak levels of toroidal flux
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Summary	
  

•  The	
  polar	
  fields	
  are	
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  with	
  the	
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  of	
  the	
  next	
  
cycle	
  

•  All	
  of	
  the	
  net	
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  flux	
  in	
  each	
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  is	
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  by	
  the	
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up	
  of	
  the	
  polar	
  fields.	
  

•  This	
  produces	
  a	
  net	
  toroidal	
  field	
  of	
  about	
  5x1023	
  Mx/Hem	
  in	
  a	
  cycle	
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  is	
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  to	
  the	
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  flux	
  from	
  the	
  ac(ve	
  regions	
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  sunspots	
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  cycle	
  obey	
  Hale‘s	
  Law	
  (which	
  suggests	
  

toroidal	
  field	
  involved	
  in	
  the	
  global	
  dynamo	
  is	
  mainly	
  of	
  one	
  sign).	
  

•  Both	
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Leighton	
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Figure 4. Variation of the maximum latitudinal excursion of the heliospheric current sheet during 1967–2008; here, the highest latitude reached by the source-surface
neutral line has been averaged between the Northern and Southern hemispheres. Also plotted are the dipole tilt angle δ = tan−1(Deq/Dax), the equatorial dipole
strength, and the total quadrupole strength. Three-rotation running means have been taken, and the equatorial dipole and quadrupole moments have been expressed as
equivalent field strengths at 1 AU. The latitudinal excursion of the current sheet from the heliographic equator is unusually large during the present sunspot minimum
because of the weakness of the polar fields. Nevertheless, as is evident from Figure 3(c), the total open flux is still almost entirely dominated by the axial dipole
component.
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Figure 5. Scatter plot of maximum sunspot number Rmax vs. radial IMF strength
at the preceding sunspot minimum, derived from the aa index as described in
Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually
averaged data.

13–22 against the amplitude of the following cycle. A
least-squares fit to the scatter plot yields Rmax = −39 +
85(|Br |ssmin/nT), with a standard deviation of 25 and a corre-
lation coefficient of 0.80. In situ spacecraft measurements give
|Br | = 1.6 nT for the average radial IMF strength over the period
2008 January–September. Employing |Br |ssmin as the precursor,
then, we find that Rmax = 97 ± 25 for cycle 24. This value is
roughly consistent with the predictions based on the minimum
of the aa index (Rmax ! 110) and on its last peak (Rmax " 87),
but is much smaller than the estimate Rmax " 160 derived from
the large 2003 peak. On the other hand, it is somewhat higher

than the values Rmax " 75–80 inferred by comparing current po-
lar field measurements with those made during the 1976, 1986,
and 1996 sunspot minima (Svalgaard et al. 2005; Schatten 2005;
Choudhuri et al. 2007). We note, however, that the latter fore-
casts are based on magnetograph data extending only over the
past ∼40 yr.

In the scatter plots of Figures 2 and 5, cycle 19 is an obvious
outlier located far above the regression line. Based on both
the aa index and the aa-derived radial IMF strength, which
was somewhat lower during the minimum preceding cycle 19
than during that preceding cycle 22, cycle 19 should have
been weaker than cycle 22, but instead turned out to have a
much higher amplitude. The polar faculae measurements of
Sheeley (2008), however, indicate that the polar fields were
as much as ∼70% stronger in 1954 than in 1986; eclipse
photographs also show that the coronal streamers were highly
flattened toward the equator. These observations, as well as
the unusually low level of sunspot activity in 1954, suggest
that the Earth remained very close to the heliospheric current
sheet, as is indeed consistent with the pronounced semi-annual
modulation in the geomagnetic activity recorded at that time
(when the current sheet was so flat that the local IMF polarity
was determined entirely by the 7◦ tilt of the solar rotation axis: cf.
Rosenberg & Coleman (1969)). In that case, the average radial
IMF strength at Earth may not have reflected the full strength of
the Sun’s axial dipole component, leading to an underestimate
of Rmax(19).

It should be emphasized that most of the scatter in Figures 2
and 5 is likely to be of physical origin, since the cycle
amplitude will depend on parameters in addition to Dax. The
amount of scatter that might be expected is illustrated by
Figure 6(a) in Wang et al. (2005), who used a surface flux-
transport model with time-varying meridional flow to model
the evolution of the Sun’s large-scale field during cycles −3
through 22.

Dikpati et al. (2006) applied their flux-transport dynamo
model to predict that cycle 24 will be 30%–50% higher than
cycle 23 (see also Dikpati & Gilman 2006). In their two-
dimensional simulations, the magnetic field at the solar surface
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where u(φ, θ, t) is the velocity in the longitudinal (φ̂) direction, !(φ, θ, t) is the velocity
in the latitudinal (θ̂) direction, ηH is the horizontal diffusivity at the surface (which
we have assumed is uniform), D is some operator representing the removal of flux
from the surface, and S is a source term describing the emergence of new flux rising
from below, φ and θ are the solar longitude and colatitude respectively and R! is the
solar radius.

In principle both the the surface velocity, u(φ, θ, t)φ̂ + !(φ, θ, t)θ̂, and the radial
component of the magnetic field are structured on all scales from tens of meters
to the size of Sun, and evolves on time scales of seconds for the small scales to
years for the largest scales. This renders the full problem intractable. For almost all
problems however the full range of scales do not need to be dealt with, and average
values of u and ! can be used, with smaller unresolved velocities being treated as an
enhanced diffusivity ηH . There is no single best choice of what temporal or spatial
averaging should be done: different temporal and spatial averaging allows different
science questions to be addressed.

In the following sections we will add flesh to Eq. (1) by describing in detail the
relevant physical processes and the ways in which they can be modeled. We start
with a deeper exposition of the basis for the surface flux transport model in Section
2. Then we describe some of the ways in which the source term S can be constructed
in Section 3, and the flows and diffusivity in Section 4. The removal of the magnetic
flux from the solar surface is reviewed in Section 5. The results from using the surface
flux transport model will be presented in Section 6. Section 7 concludes our review.

2 Observational Basis for Solar Surface Flux Transport

The part of the magnetic field at the Sun’s surface that dominates the signal in mag-
netograms, such as those recorded by the MDI instrument (Scherrer et al. 1995) on
SOHO or on the HMI instrument (Scherrer et al. 2012; Schou et al. 2012) on SDO,
is thought to be produced by a dynamo that resides deep in the solar convection
zone or in the convective overshoot layer below the convection zone (e.g. Weiss and
Thompson 2009; Charbonneau 2010). The toroidal field concentrated there becomes
buoyantly unstable once it reaches a critical strength and a part of it, thought to be in
the form of magnetic flux tubes, rises through the convection zone until it reaches the
solar surface (Parker 1955; Choudhuri and Gilman 1987; Schüssler et al. 1994). On
the way to the surface the rising magnetic flux tube is affected by solar rotation (via
the Coriolis force) and convection, which affect its path and hence the longitudes and
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Figure 4. Variation of the maximum latitudinal excursion of the heliospheric current sheet during 1967–2008; here, the highest latitude reached by the source-surface
neutral line has been averaged between the Northern and Southern hemispheres. Also plotted are the dipole tilt angle δ = tan−1(Deq/Dax), the equatorial dipole
strength, and the total quadrupole strength. Three-rotation running means have been taken, and the equatorial dipole and quadrupole moments have been expressed as
equivalent field strengths at 1 AU. The latitudinal excursion of the current sheet from the heliographic equator is unusually large during the present sunspot minimum
because of the weakness of the polar fields. Nevertheless, as is evident from Figure 3(c), the total open flux is still almost entirely dominated by the axial dipole
component.
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Figure 5. Scatter plot of maximum sunspot number Rmax vs. radial IMF strength
at the preceding sunspot minimum, derived from the aa index as described in
Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually
averaged data.

13–22 against the amplitude of the following cycle. A
least-squares fit to the scatter plot yields Rmax = −39 +
85(|Br |ssmin/nT), with a standard deviation of 25 and a corre-
lation coefficient of 0.80. In situ spacecraft measurements give
|Br | = 1.6 nT for the average radial IMF strength over the period
2008 January–September. Employing |Br |ssmin as the precursor,
then, we find that Rmax = 97 ± 25 for cycle 24. This value is
roughly consistent with the predictions based on the minimum
of the aa index (Rmax ! 110) and on its last peak (Rmax " 87),
but is much smaller than the estimate Rmax " 160 derived from
the large 2003 peak. On the other hand, it is somewhat higher

than the values Rmax " 75–80 inferred by comparing current po-
lar field measurements with those made during the 1976, 1986,
and 1996 sunspot minima (Svalgaard et al. 2005; Schatten 2005;
Choudhuri et al. 2007). We note, however, that the latter fore-
casts are based on magnetograph data extending only over the
past ∼40 yr.

In the scatter plots of Figures 2 and 5, cycle 19 is an obvious
outlier located far above the regression line. Based on both
the aa index and the aa-derived radial IMF strength, which
was somewhat lower during the minimum preceding cycle 19
than during that preceding cycle 22, cycle 19 should have
been weaker than cycle 22, but instead turned out to have a
much higher amplitude. The polar faculae measurements of
Sheeley (2008), however, indicate that the polar fields were
as much as ∼70% stronger in 1954 than in 1986; eclipse
photographs also show that the coronal streamers were highly
flattened toward the equator. These observations, as well as
the unusually low level of sunspot activity in 1954, suggest
that the Earth remained very close to the heliospheric current
sheet, as is indeed consistent with the pronounced semi-annual
modulation in the geomagnetic activity recorded at that time
(when the current sheet was so flat that the local IMF polarity
was determined entirely by the 7◦ tilt of the solar rotation axis: cf.
Rosenberg & Coleman (1969)). In that case, the average radial
IMF strength at Earth may not have reflected the full strength of
the Sun’s axial dipole component, leading to an underestimate
of Rmax(19).

It should be emphasized that most of the scatter in Figures 2
and 5 is likely to be of physical origin, since the cycle
amplitude will depend on parameters in addition to Dax. The
amount of scatter that might be expected is illustrated by
Figure 6(a) in Wang et al. (2005), who used a surface flux-
transport model with time-varying meridional flow to model
the evolution of the Sun’s large-scale field during cycles −3
through 22.

Dikpati et al. (2006) applied their flux-transport dynamo
model to predict that cycle 24 will be 30%–50% higher than
cycle 23 (see also Dikpati & Gilman 2006). In their two-
dimensional simulations, the magnetic field at the solar surface
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Figure 4. Variation of the maximum latitudinal excursion of the heliospheric current sheet during 1967–2008; here, the highest latitude reached by the source-surface
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component.
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Figure 5. Scatter plot of maximum sunspot number Rmax vs. radial IMF strength
at the preceding sunspot minimum, derived from the aa index as described in
Rouillard et al. (2007). Dashed line represents a least-squares fit to the annually
averaged data.

13–22 against the amplitude of the following cycle. A
least-squares fit to the scatter plot yields Rmax = −39 +
85(|Br |ssmin/nT), with a standard deviation of 25 and a corre-
lation coefficient of 0.80. In situ spacecraft measurements give
|Br | = 1.6 nT for the average radial IMF strength over the period
2008 January–September. Employing |Br |ssmin as the precursor,
then, we find that Rmax = 97 ± 25 for cycle 24. This value is
roughly consistent with the predictions based on the minimum
of the aa index (Rmax ! 110) and on its last peak (Rmax " 87),
but is much smaller than the estimate Rmax " 160 derived from
the large 2003 peak. On the other hand, it is somewhat higher

than the values Rmax " 75–80 inferred by comparing current po-
lar field measurements with those made during the 1976, 1986,
and 1996 sunspot minima (Svalgaard et al. 2005; Schatten 2005;
Choudhuri et al. 2007). We note, however, that the latter fore-
casts are based on magnetograph data extending only over the
past ∼40 yr.

In the scatter plots of Figures 2 and 5, cycle 19 is an obvious
outlier located far above the regression line. Based on both
the aa index and the aa-derived radial IMF strength, which
was somewhat lower during the minimum preceding cycle 19
than during that preceding cycle 22, cycle 19 should have
been weaker than cycle 22, but instead turned out to have a
much higher amplitude. The polar faculae measurements of
Sheeley (2008), however, indicate that the polar fields were
as much as ∼70% stronger in 1954 than in 1986; eclipse
photographs also show that the coronal streamers were highly
flattened toward the equator. These observations, as well as
the unusually low level of sunspot activity in 1954, suggest
that the Earth remained very close to the heliospheric current
sheet, as is indeed consistent with the pronounced semi-annual
modulation in the geomagnetic activity recorded at that time
(when the current sheet was so flat that the local IMF polarity
was determined entirely by the 7◦ tilt of the solar rotation axis: cf.
Rosenberg & Coleman (1969)). In that case, the average radial
IMF strength at Earth may not have reflected the full strength of
the Sun’s axial dipole component, leading to an underestimate
of Rmax(19).

It should be emphasized that most of the scatter in Figures 2
and 5 is likely to be of physical origin, since the cycle
amplitude will depend on parameters in addition to Dax. The
amount of scatter that might be expected is illustrated by
Figure 6(a) in Wang et al. (2005), who used a surface flux-
transport model with time-varying meridional flow to model
the evolution of the Sun’s large-scale field during cycles −3
through 22.

Dikpati et al. (2006) applied their flux-transport dynamo
model to predict that cycle 24 will be 30%–50% higher than
cycle 23 (see also Dikpati & Gilman 2006). In their two-
dimensional simulations, the magnetic field at the solar surface
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Conclusions	
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