

DIRECTIONAL TIME-DISTANCE PROBING OF SOLAR MAGNETIC REGIONS

Hamed Moradi

with

Paul S. Cally

Monash Centre for Astrophysics School of Mathematical Sciences Monash University Victoria Australia

Motivation: Helioseismic Implications of MHD Mode Conversion

- Using local helioseismology we have observed travel-time shifts in active regions
- These shifts have typically been interpreted as arising predominantly from subsurface inhomogeneities
- Question: What is the role played by MHD mode conversion in these observed travel-time shifts?

- Method: conduct linear forward modelling & "directional helioseismology" to look for a correspondence between
 - i) the upward acoustic and magnetic wave losses
 - ii) time distance travel-time shifts
- If a correspondence exists, then what's happening in the atmosphere **is** affecting the helioseismology and we want to try and quantify it

Linking wave energy losses in the atmosphere and travel times (Cally & Moradi, 2013, *MNRAS*)

- Forward Modelling
 - Linear MHD wave propagation using SPARC
 - 3D computational box: 140 Mm x 140 Mm x 27 Mm
 - Model S + uniform inclined field ($0^\circ \le \theta \le 90^\circ$)
 - Random stochastic wave sources
- Analysis
 - Filtering:
 - Directional "ball" filter to isolate k_h and azimuthal direction ϕ (0° $\leq \phi \leq 180^{\circ}$)
 - · Frequency filters also applied
 - Wave Energy Flux
 - Wave vector energy flux: $\mathbf{F} = \mathbf{F}_{ac} + \mathbf{F}_{mag} = \operatorname{Re}[p_1 \mathbf{v}^* + \mathbf{e} \times \mathbf{b}^*]$
 - Vertical fluxes measured at z = 1.37 Mm (fast wave evanescent at these heights → no flux contribution)
 - Time-Distance Travel Times
 - (Phase) travel time perturbations ($\delta \tau$) extracted from Gabor wavelet fits to the cross-correlations
 - $\delta \tau$ calculated for each k_h , θ and ϕ and at z = 0.3 Mm

Directionally Filtered Wave Energy Fluxes

• Negligible acoustic power at low θ (acoustic cutoff frequency ~ 5 mHz)

- Once $\omega > \omega_c \cos \theta \rightarrow$ ramp effect kicks in and substantial acoustic flux is recorded
- Magnetic flux generally peaks at higher ${m \phi}$ than acoustic flux
- Results in good agreement with previous studies of fast-to-Alfvén mode conversion (e.g., Cally & Goossens 2008; Khomenko & Cally 2011, 2102)

Directionally Filtered Travel Times

- Strong correspondence with wave energy flux contours:
 - Clear manifestations of acoustic cutoff & directional (ϕ) dependence at 3 and 5 mHz
 - At low θ (below acoustic cutoff) $\rightarrow \delta \tau$ is small, primarily negative
 - At high θ (above acoustic cutoff) \rightarrow substantial negative $\delta \tau$ evident
 - Above acoustic cutoff and at ϕ associated with magnetic losses \rightarrow significant "slow down"/increases in $\delta \tau$

Comparison of Filtered Fluxes and Travel Times with BVP Calculations (Cally & Goossens 2008, Sol. Phys.)

1 kG, $k_h = 1.0 \text{ Mm}^{-1}$, 5 mHz

- As seen in Paul's talk \rightarrow fluxes and travel times consistent with SPARC calculations
- Results confirm a direct correspondence between wave energy losses and "travel time" perturbations
- What about a "realistic" sunspot atmosphere? \rightarrow large field strengths, low density on axis

Numerical Issue: Alfvén Wave Speed (c_a)

- Exponential increase in c_a above the surface introduces a significant CFL time-step constraint for explicit numerical codes (Δt ≈ Δz/c_a)
- Results in the need for very small Δt when simulating even moderate magnetic field strengths

Solutions?:

- i) Live with a very small $\Delta t \rightarrow$ not practical
- ii) Employ a Lorentz Force or c_a "limiter" \rightarrow popular in computational helioseismology
 - Scale the Lorentz Force by a factor when c_a/c_s becomes too big, effectively caps c_a at a particular value (e.g., Rempel et al. 2009; Cameron et al. 2011; Braun et al. 2012)
 - Scale the magnetic field by a factor so c_a does not exceed a predetermined value (e.g., Hanasoge et al. 2012)

Helioseismic Implications?:

- Fast waves: reflect off the c_a gradient back to the surface at height where $c_a \sim \omega/k_h$
- What are the effects on travel times if c_a limiter is too close to ω/k_b being studied?

Sensitivity of Helioseismic Travel Times to the Imposition of a Lorentz Force Limiter (Moradi & Cally 2014, *ApJL*)

- Forward Modelling
 - Linear MHD wave propagation using SPARC
 - 3D computational box: 140 Mm X 140 Mm X 27 Mm
 - Model S + uniform inclined field (500 G, $0^{\circ} \le \theta \le 90^{\circ}$)
 - Single source wave excitation
 - 50 x 1 hour simulations: no c_a cap, with various c_a caps, quiet sun reference

Analysis

- Using v_z at constant geometrical height (z = 0.3 Mm)
- Selecting a receiver point away from central axis in xy-plane allows us to isolate wave propagation direction (φ)
- Frequency filtered point-to-point directional $\delta \tau$ calculated for various travel distances Δ (and ω/k_h)

Directional Travel Times

Example: $\theta = 80^{\circ}$, v = 5 mHz

- "No limiter" case consistent with random sources results
- Significant $\delta \tau$ discrepancies arise when $c_a \operatorname{cap} < \omega/k_h$
- Situation improves as c_a cap is raised above ω/k_h
- Even with c_a cap at 160 km/s there are still $\delta \tau$ discrepancies of ~ 1–2 s \rightarrow can live with that?
- Conclusion: Keep c_a cap well above the ω/k_h you are intending to analyse!

Directional Time-Distance Probing of a Realistic Sunspot Atmosphere (Moradi & Cally, *in prep*)

Forward Modelling

- Linear MHD wave propagation using SPARC
- 3D computational box: 140 Mm × 140 Mm x 12 Mm
- MHS sunspot models from Khomenko & Collados (2008) + some improvements → see Damien Przybylski's poster
- Free parameters: radius, photospheric field strength (B_{phot}), inclination, Wilson depression (z_{Wd}) etc.
- Single source(s) wave excitation along -x, y = 0
- c_a cap at 80 km/s \rightarrow only small Δ /waves with ω/k_h well below c_a limit considered for the analysis

Analysis

1500 30 20 1000 10 y [Mm] XXXXX 0 $B_{7}(G)$ -10 500 -20 -30 -30 -20 10 20 30 -10 0 x [Mm]

- Data analysed at optical depth log $\tau_5 = -1.6$ (~ height where typical photospheric spectral lines formed)
- Point-to-point directional $\delta \tau$ calculated as function of source position (θ) and receiver direction (ϕ)

Directional Travel Times

Summary

- 1. Using forward modelling & directional helioseismology we found substantial wave "travel time" discrepancies of several tens of seconds related to phase changes resulting from mode conversion, and not "actual" travel time changes
- 2. These results were also separately verified using BVP methods
- 3. In a related study, we also found that employing a Lorentz Force/ c_a "limiter" severely impacts the reflection of fast waves in the atmosphere (and the $\delta \tau$ as a result) *unless* it is placed well above ω/k_h associated with the wave travel distances being studied
- 4. Results from directional time-distance probing of model sunspot atmospheres are consistent with uniform magnetic field + horizontally invariant atmosphere results
- 5. Overall our results indicate that processes occurring higher up in the atmosphere can strongly influence the helioseismology, and argue strongly for the viability of directional time-distance probing of real solar magnetic regions