HELAS VI, 1 September 2014

Spatially resolved vorticity in supergranulation with helioseismology (and LCT)

Jan Langfellner (PhD student) Laurent Gizon (main adviser) Aaron Birch

Motivation

- Known non-zero correlation (div_hcurl_z) in supergranular flows
- Probably due to Coriolis force acting on convective flows
- How does the circular flow component look in detail?
 - \rightarrow Resolve spatially

Gizon & Duvall 2003

(using f modes in MDI Dopplergrams)

- HMI Dopplergrams ~ 180 x 180 Mm²
- Tracked for 24h each (around central meridian)
- Remapped using Postel's projection
- Latitudes -60°, -40°, -20°, 0°, 20°, 40°, 60°
- 1 May 28 August 2010
- Select modes: f and p₁

- HMI Dopplergrams ~ 180 x 180 Mm²
- Tracked for 24h each (around central meridian)
- Remapped using Postel's projection
- Latitudes -60°, -40°, -20°, 0°, 20°, 40°, 60°
- 1 May 28 August 2010
- Select modes: f and p₁

- HMI Dopplergrams ~ 180 x 180 Mm²
- Tracked for 24h each (around central meridian)
- Remapped using Postel's projection
- Latitudes -60°, -40°, -20°, 0°, 20°, 40°, 60°
- 1 May 28 August 2010
- Select modes: f and p₁

Vorticity -sensitive travel times

 $\delta \tau^{\mho}$

- HMI Dopplergrams ~ 180 x 180 Mm²
- Tracked for 24h each (around central meridian)
- Remapped using Postel's projection
- Latitudes -60°, -40°, -20°, 0°, 20°, 40°, 60°
- 1 May 28 August 2010
- Select modes: f and p₁

 $\delta \tau^{O}$

- HMI Dopplergrams ~ 180 x 180 Mm²
- Tracked for 24h each (around central meridian)
- Remapped using Postel's projection
- Latitudes -60°, -40°, -20°, 0°, 20°, 40°, 60°
- 1 May 28 August 2010
- Select modes: f and p₁

 $\delta \tau^{U}$

- HMI Dopplergrams ~ 180 x 180 Mm²
- Tracked for 24h each (around central meridian)
- Remapped using Postel's projection
- Latitudes -60°, -40°, -20°, 0°, 20°, 40°, 60°
- 1 May 28 August 2010
- Select modes: f and p₁

Vorticity -sensitive travel times

$\langle \operatorname{div}_h \operatorname{curl}_z \rangle$ vs. latitude

Langfellner et al., A&A, accepted

Example travel-time maps

Vorticity -sensitive travel times

Example travel-time maps

The average supergranule

- Shift maps so supergranules are on top of each other
- Average over ~3,000 supergranules (many maps)

The average supergranule

• Convert travel times into velocities (using a constant factor)

The average supergranule

• Convert travel times into velocities (using a constant factor)

Comparison: f mode / p₁ mode

Local correlation tracking (LCT)

• Granules get advected by larger-scale flows

→ Use granules as tracers of supergranule motions

Cross-correlate image parts at times *t* and *t* + Δ*t* → get shift Δ*x*

$$\rightarrow$$
 get velocity $v = \frac{\Delta x}{\Delta t}$

Comparison: Time-distance vs. LCT

Comparison: Time-distance vs. LCT

LCT: avg. supergranule flow profiles

LCT: avg. supergranule flow profiles

LCT: Spatially resolved curl_z

LCT: Spatially resolved curl_z

Conclusions

- Circular velocity of the average supergranule measured with time-distance
- Result confirmed by LCT
- Horizontal flow profile measured with LCT
- curl_z spatially resolved with LCT
- Time-distance can provide depth dependence (inversion)

Thank you for your attention!

LCT: Spatially resolved div_h

LCT: Spatially resolved div_h

Comparison: Time-distance vs. LCT

LCT: avg. supergranule flow profiles

r = 10 Mm

r = 10 Mm

 $\langle \operatorname{div}_h \operatorname{curl}_z \rangle$ vs. latitude: HMI and MDI

Langfellner et al., A&A, accepted

Supergranule identification

Conversion factor (f mode)

Travel-time power spectra

