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◮ Using Reynolds’s decomposition, the velocity field can be
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v = v0 + V

where v0 is the deterministic mean part of the velocity and V

the fluctuating (turbulent) part.
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homogeneous, the two-point velocity correlations can be
written as

Rij(d, z1, z2) = 〈Vi (x, z1)Vj(x+ d, z2)〉.
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◮ The two-point velocity correlations Rij(x1, x2) is a measure of
convection. It converges to the Reynolds stresses when x1

tends to x2.

◮ Using Reynolds’s decomposition, the velocity field can be
written as

v = v0 + V

where v0 is the deterministic mean part of the velocity and V

the fluctuating (turbulent) part.

◮ Supposing that the turbulent part is horizontally spatially
homogeneous, the two-point velocity correlations can be
written as

Rij(d, z1, z2) = 〈Vi (x, z1)Vj(x+ d, z2)〉.

◮ Aim: recover Rij from SDO/HMI observations.
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τ∆(x) =
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V

K
∆(x′ − x, z) · v(x′, z)d2

x
′
dz + Λ∆∆

′

(x′)

τ1, ..., τN ✲ v1, ..., vN
Standard inversion
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Inversion possibilities

τ∆(x) =

∫

V

K
∆(x′ − x, z) · v(x′, z)d2

x
′
dz + Λ∆∆

′

(x′)

Advantage: Only one inversion required. Should be fast! Improve
the signal-to-noise ratio
Drawback: We need kernels, a noise model

τ1, ..., τN ✲ v1, ..., vN
Standard inversion

❄

Rij

CovarianceCovariance

❄

〈ττ〉 ✲

New inversion
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Relation between products of travel times and

two-points velocity correlations
◮ Relation between travel times and velocity

τ∆(x) =

∫

V

K
∆(x′ − x, z) · v(x′, z)d2

x
′
dz + Λ∆∆

′

(x′)

where Λ∆∆
′

(x′) = Cov [τ∆(x), τ∆
′

(x+ x′)].

◮ Similarly, the two-point velocity correlations are linked to a
product of travel times

new observables O∆∆
′

︷ ︸︸ ︷

〈τ∆(x), τ∆
′

(x+ d)〉 −

noise for τ

︷ ︸︸ ︷

Λ
∆∆

′

(d) =
∫

z′

∫

z

K
∆

i (x; z) ∗ K∆
′

j (x+ d; z ′)
︸ ︷︷ ︸

new kernels K∆∆′

ij

∗Rij(d, z , z
′)dzdz ′ + Γ∆∆

′
δδ

′

(d,d′)
︸ ︷︷ ︸

new noise

for τ
∆
τ
∆
′

where
Γ∆∆

′
δδ

′

(d,d′) = Cov [〈τ∆(x), τ∆
′

(x+d)〉, 〈τδ(x), τδ
′

(x+d′)〉].
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ττxx(d) =
1

V

∫

V

τ∆(x)τ∆
′

(x+ d)dx

Λxx(d) =
1

V

∫

V

n
∆(x)n∆

′

(x+ d)dx

Oxx(d) = ττ∆∆
′

(d)− Λ
∆∆

′

(d)
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Figure: ττxx(d) (left), Λxx(d) (middle) and ττxx(d)− Λxx(d) (right) in
s
2 in the real space as a function of d at a latitude of +20°. All units
are s

2.
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ττxy (d) =
1

V

∫

V

τ∆(x)τ∆
′

(x+ d)dx

Λxy (d) =
1

V

∫

V

n
∆(x)n∆

′

(x+ d)dx

Oxy (d) = ττ∆∆
′

(d)− Λ
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′

(d)
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Figure: ττxy (d) (left), Λxy (d) (middle) and ττxy (d)− Λxy (d) (right) in
s
2 in the real space as a function of d at a latitude of +20°. All units
are s

2.
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A good approximation of the noise covariance matrix for products
of travel times is given by [Fournier 2014]

Cov[τ1τ2, τ3τ4] ≈ Cov[τ1, τ3]Cov[τ2, τ4] + Cov[τ1, τ4]Cov[τ2, τ3].
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Figure: Observations Oxy (d) (left) and the non mirror
antisymmetric part at a latitude of +20°(middle) and -20°(right).
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Figure: Observations Oxy (d) (left) and the non mirror
antisymmetric part at a latitude of +20°(middle) and -20°(right).

◮ With rotation, following [Kitchatinov 1986]

Oxy (k) = β
(

O
(0)
yy (k)−O

(0)
xx (k)

)

+ βxyO
(0)
xy (k) + βyxO

(0)
yx (k)

where O
(0)
ij (k) denotes Oij(k) in the absence of rotation.
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Figure: Observations Oxy (d) (left) and the non mirror
antisymmetric part at a latitude of +20°(middle) and -20°(right).

◮ With rotation, following [Kitchatinov 1986]

Oxy (k) = β
(

O
(0)
yy (k)−O

(0)
xx (k)

)

+ βxyO
(0)
xy (k) + βyxO

(0)
yx (k)

where O
(0)
ij (k) denotes Oij(k) in the absence of rotation.

◮ As O
(0)
xy is mirror antisymmetric, we observed a quantity

related to O
(0)
yy −O

(0)
xx as plotted in the mixing length

approximation [Rüdiger 2005].
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Figure: Observations Oxy (d) (left) and the non mirror
antisymmetric part at a latitude of +20°(middle) and -20°(right).

◮ With rotation, following [Kitchatinov 1986]

Oxy (k) = β
(

O
(0)
yy (k)−O

(0)
xx (k)

)

+ βxyO
(0)
xy (k) + βyxO

(0)
yx (k)

where O
(0)
ij (k) denotes Oij(k) in the absence of rotation.

◮ As O
(0)
xy is mirror antisymmetric, we observed a quantity

related to O
(0)
yy −O

(0)
xx as plotted in the mixing length

approximation [Rüdiger 2005].
◮ The term β contains sin(latitude) which explains the change

of sign between -20°and +20°.
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◮ Without rotation Oxx should be mirror symmetric
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Figure: Observations Oxx(d) (left) and the non mirror symmetric
part at a latitude of +20°(middle) and -20°(right). All units are s

2.
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◮ With rotation, following [Kitchatinov 1986]

Oxx(k) = αxxO
(0)
xx (k) +αxyO

(0)
xy (k) +αyxO

(0)
yx (k) +αyyO

(0)
yy (k)

where O
(0)
ij (k) denotes Oij(k) in the absence of rotation.
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◮ With rotation, following [Kitchatinov 1986]

Oxx(k) = αxxO
(0)
xx (k) +αxyO

(0)
xy (k) +αyxO

(0)
yx (k) +αyyO

(0)
yy (k)

where O
(0)
ij (k) denotes Oij(k) in the absence of rotation.

◮ As O
(0)
xx and O

(0)
yy are mirror symmetric, we observed a

quantity related to O
(0)
yx as plotted in the mixing length

approximation [Rüdiger 2005].
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Figure: Observations Oxx(d) (left) and the non mirror symmetric
part at a latitude of +20°(middle) and -20°(right). All units are s

2.

◮ With rotation, following [Kitchatinov 1986]

Oxx(k) = αxxO
(0)
xx (k) +αxyO

(0)
xy (k) +αyxO

(0)
yx (k) +αyyO

(0)
yy (k)

where O
(0)
ij (k) denotes Oij(k) in the absence of rotation.

◮ As O
(0)
xx and O

(0)
yy are mirror symmetric, we observed a

quantity related to O
(0)
yx as plotted in the mixing length

approximation [Rüdiger 2005].
◮ The term αxy contains sin(latitude) which explains the

change of sign between -20°and +20°.
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◮ We have linked the two-point velocity correlations to products
of travel times and derived the forward and noise models. A
first inversion showing the concept has been performed.

◮ It clearly shows that for more precise reconstructions,
additional data are required. This can be done by averaging
over angles, using more distances or different filters.

◮ Averaging over angles shows interesting features on the data
that can be mainly explained by Kitchatinov and Rüdiger
theory of rotating turbulence.

◮ Inversions with all the data must now be performed in order
to have a precise reconstruction and recover the Reynolds
stress.
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