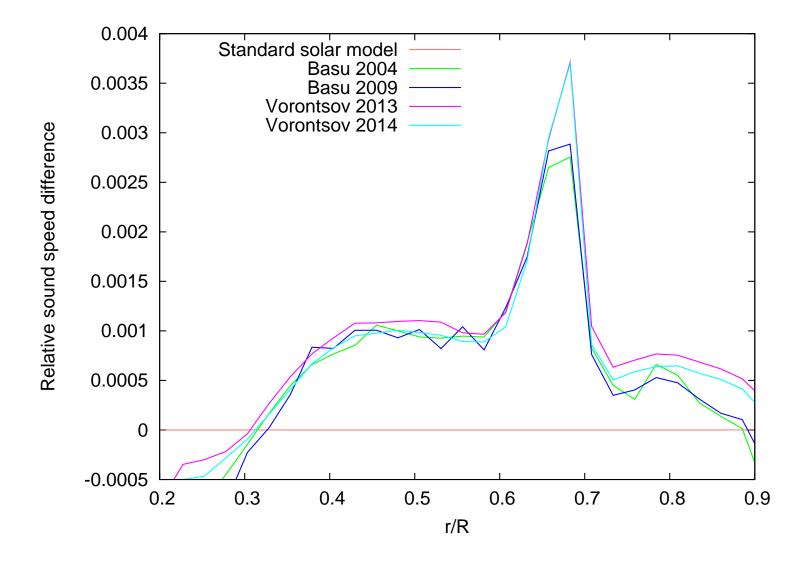
S.V.Ayukov, V.A.Baturin

On the possibility of constructing solar model with helioseismic convection zone

Sternberg Moscow Astronomical Institute Lomonosov Moscow State University, Russia

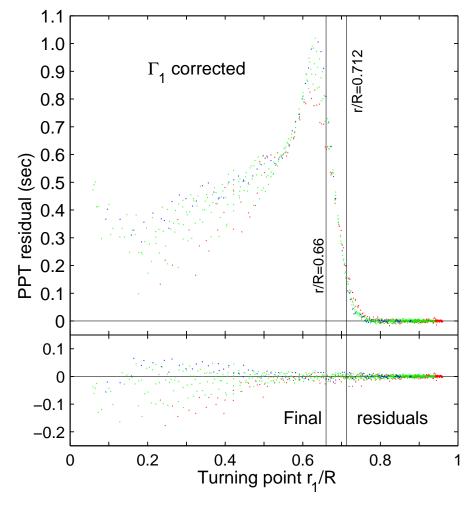
Standard Solar Model (SSM)

- Basic observational data (input for SSM) mass M_{\odot} , luminosity L_{\odot} , radius R_{\odot} , age t_{\odot} Z/X in the atmosphere (new 0.0181 or old 0.0245??)
- Helioseismic data: (NOT an input for SSM)

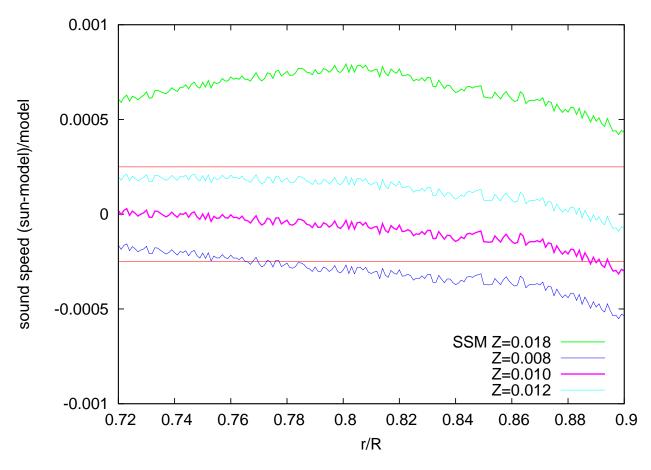

position of the convection zone base $R_{cz} = 0.7133 \pm 0.0005$ (Basu, Antia 2004) helium abundance in the convection zone

 $Y_{cz} = 0.2485 \pm 0.0034$ (Basu, Antia 2004)

heavy element abundance in the convection zone $Z_{cz} = 0.010 \pm 0.002$ (previous talk)


mass inside $0.75R_{\odot}$ $(M_{75} = m(r/R_{\odot} = 0.75)/M_{\odot})$ $M_{75} = 0.9822 \pm 0.0002$ (Vorontsov et al. MNRAS 2013, v.403, p.1636) sound speed, density, $\Gamma_1 \equiv (\partial \log P/\partial \log \rho)_{ad}$ profiles

About the sound speed inversions


Uncertainty in lower part of CZ and in radiative zone: about 0.0005

Determination of envelope mass parameter M_{75}

from: Figure Figure 1: Vorontsov S.V., Proc. SOHO 11 Symposium, Davos, Switzerland, 11–15 March 2002, ESA SP-508. Scattering of the initial residuals of the structural inversion after the adiabatic exponent profile has been corrected (top panel), and the final residuals of the inversion (bottom panel) for Model S $(M_{75} = 0.9824).$

Can we compose 'fully seismic' convection zone? Model of the convection zone (CZ) with $M_{75} = 0.9822$, $Y_{cz} = 0.25$, $Z_{cz} = 0.010$: sound speed inside convection zone

Convection zone depth: $0.257 \div 0.272$ instead of $0.287 (0.2 \div 0.4 H_P)$. Convective overshooting? Opacities?

Can we compute evolved model with seismic CZ? Convection zone parameters:

helium abundance in the convection zone $Y_{cz} = 0.2485 \pm 0.0034$ heavy element abundance in the convection zone $Z_{cz} = 0.010 \pm 0.002$ mass inside $0.75R_{\odot} (m(r/R_{\odot} = 0.75)/M_{\odot})$ $M_{75} = 0.9822 \pm 0.0002$

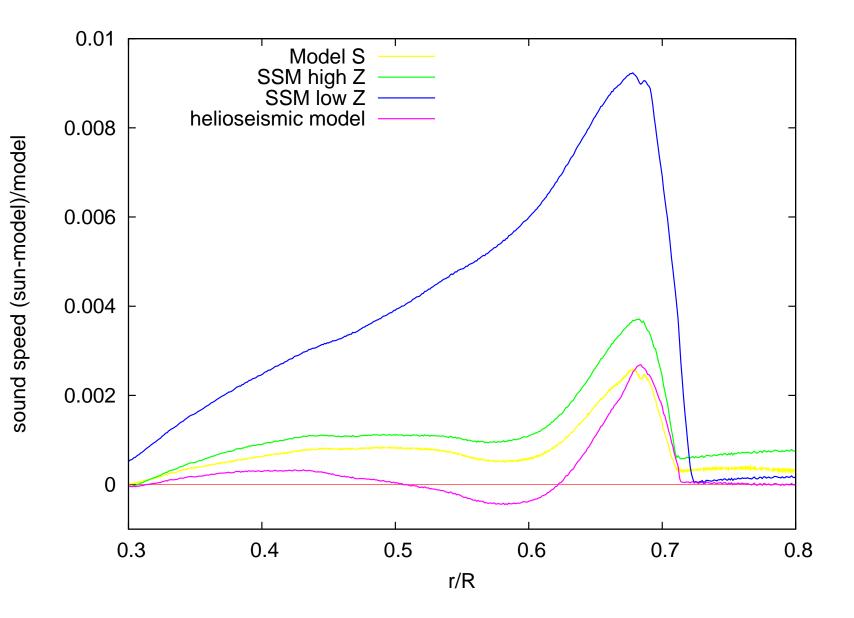
Full (evolved) solar model?

Have to give up on low Z abundances! Assume Z = 0.010 in convection zone, high-Z (Grevesse, Noels 1993) in the radiative zone and core

Extended model calibration

Extended calibration:

adjust physics to obtain required values of model parameters such as M_{75}, R_{cz}, Y_{cz} etc.


Free parameters to adjust:

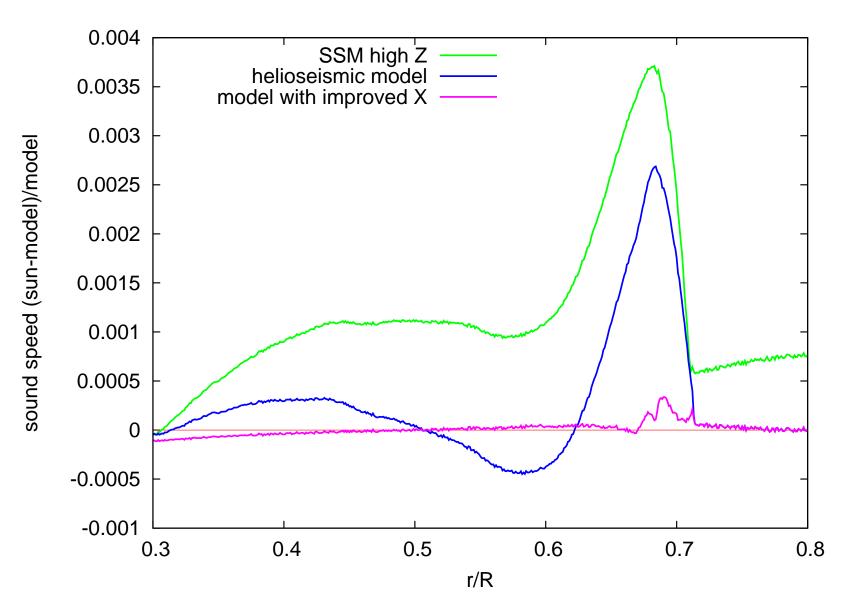
K global opacity correction K_b local opacity correction near CZ lower boundary pp reaction cross section

See also: Ayukov S., Baturin V. A new approach to the solar evolutionary model with helioseismic constraints // Astronomical Society of the Pacific Conference Series, Vol. 479, 2013, p. 3

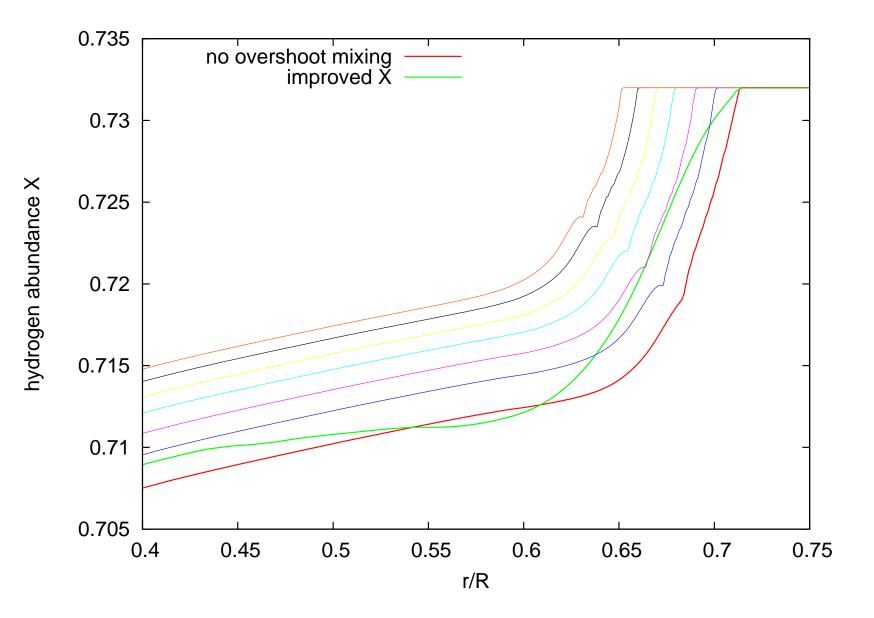
Target: construct evolved models with proper $M_{75} = 0.9822$, $R_{cz} = 0.7133$, $Y_{cz} = 0.25$, $Z_{cz} = 0.010$. **Required modification of physics:** Global opacity correction: almost absent (0.04%), local opacity correction near CZ bottom: -5%, pp rate correction: +5%

Model with seismic envelope parameters

Changing hydrogen profile to improve sound speed 1) $\Delta c^2 \rightarrow N^2 \ (\Delta c^2 = c_{\odot}^2 - c_{model}^2)$


$$c^{2} = \Gamma_{1} \frac{P}{\rho}, \quad \frac{N^{2}}{g} = \frac{1}{\Gamma_{1}} \frac{d \log P}{dr} - \frac{d \log \rho}{dr}$$
$$\frac{d(\log c^{2})}{dr} = \frac{d \ln \Gamma_{1}}{dr} + \frac{N^{2}}{g} + \frac{\Gamma_{1} - 1}{\Gamma_{1}} \cdot \frac{d \ln P}{dr}$$

2)
$$N^2 \rightarrow dX/dr$$


$$N^{2} = -g^{2} \frac{\rho}{P} \frac{\chi_{T}}{\chi_{\rho}} (\nabla - \nabla_{ad}) + \frac{g}{X} \frac{\chi_{X}}{\chi_{\rho}} \cdot \frac{dX}{dr}$$

here $\chi_{\rho} \equiv (\partial \log P / \partial \log \rho)_T$ etc.

Changing hydrogen profile to improve sound speed

Changing hydrogen profile to improve sound speed

Conclusions

- high-Z models with current equations of state have too high sound speed inside convection zone. If one attributes sound speed difference to Z then $Z_{cz} \approx 0.010 \pm 0.002$ which is even lower than AGSS09 data
- neither high-Z nor low-Z solar models reproduce convection zone mass parameter ($M_{75} = 0.9822 \pm 0.0002$). While standard high-Z model is fairly close (0.9826), low-Z model (0.9833) drastically deviates from helioseismic value. In this work change in pp reaction cross section was used to obtain models with proper M_{75} (4.7% for high Z model)
- \bullet our analysis suggests low heavy element abundances in convection zone but "conventional" Z below convection zone
- sound speed difference under convection zone can be attributed to tachocline mixing. No physical model of mixing is considered in this work; the size of the partially mixed area is about 10% by radius