Future of Observational Helioseismology

Jesper Schou
Max Planck Institute for
Solar System Research
schou@mps.mpg.de
Overview

• Why bother?
• Ground vs. space
• Some proposed projects
• Conclusion
Why Bother?

- **Utilitarian purposes**
 - E.g. space weather predictions

- **More of the same**
 - How similar are solar cycles?
 - Better coverage
 - More statistics on active regions
 - But \sqrt{N} increases very slowly
 - Factor of 2 over GONG/MDI/HMI requires a lifetime of observations

- **Something different**
So What Can We Do Differently?

• **Current limitations:**
 – Brain power – hard to fix
 • Systematics, non-optimal analysis techniques, …
 – Limited signal to noise
 • S/N is a limiting factor at low frequencies
 • Would like to see g modes and other low frequency modes
 – Excitation/realization noise
 • Linewidth sets a limit
 o Limiting factor near peak of power
 o At least in the standard damped oscillator model with frequent excitation

• **So what to do?**
 – Multiple lines/height in atmosphere
 – Increased spatial resolution
 – Better spatial coverage
 – Vector velocities
Multiple Height and Line Observations

- Signal to noise depends on height/observable
- Various systematic effects are also height dependent
 - Perhaps we can understand them?
- Granulation (noise) and oscillations (signal) have different dependence
 - Can various observations be combined to improve S/N?
- Can we detect excitation event in some observable or combination?
 - If so we may be able to beat realization noise
Increased Spatial Resolution

- **Already close to desired resolution(?)**
 - But perhaps being able to go even closer to the limb is desirable?
 - Anything interesting above the acoustic cutoff?

- **Can granulation and modes be separated?**
 - Perhaps some clever trick can be used

- **Can we see excitation events and characterize them?**
 - Much of the excitation is believed to be generated in intergranular lanes

- **Sunrise**
 - Poor coverage, small field

- **Ground based**
 - Various (NST, ATST)
 - Generally poor spatial and temporal coverage
 - But excellent resolution

- **Space based**
 - Can provide both high resolution and good coverage
Better Spatial Coverage

- **Only see about 1/3 of surface from (near) Earth**
 - Seeing the whole Sun will increase S/N
 - Few years of whole surface may not beat decades of 1/3
 - Not clear that g modes are right below the noise level
 - Reduced leaks - systematics will likely decrease
Vector Velocities

- Multi view point observations will allow us to determine vector velocity
- Usual arguments about granulation/modes and excitation events apply
Ground vs. Space

- **Resolution**
 - Very difficult to cover all desired degrees from the ground
 - At least in full disk. AO can, in principle, do smaller fields of view very well
 - But much science does not need high resolution

- **Temporal coverage**
 - Seems that ground observations should work
 - Visible – No need for UV or the like
 - Networks can and have been built (e.g. BiSON, IRIS, GONG, TON)
 - But 95+% duty cycle (MDI/HMI) probably requires 10+ sites. But is that needed?

- **Stability**
 - It is very difficult to provide uniform high quality time-series from the ground
 - Atmospheric transparency fluctuations, seeing, telluric lines, thermal effects, …

- **See only one side of Sun from ground**

- **But:**
 - Space is costly! And takes a long time!
 - Easy to fix thing one the ground. At best difficult to fix things in space!
 - Data return is a major problem
Changes in Solar Rotation Rate

Zonal flows from MDI+HMI f modes

Outer 1%. Relative to smooth variation with latitude. +/- 9m/s.
Ground Based Projects

• Some running and future single site projects
 – E.g. MOTH, HELLRIDE

• Two current networks:
 – GONG
 • Running fine. Some $$$ problems. Could b extended for a long time.
 – BISON
 • Single pixel, so does not address most science objectives

• One(?) future network project
 – SPRING
 • Multi height
 • Will provide continuity
 • Lots of work ongoing
 • No funding commitment
Space Based Projects - Current

- **Two current helioseismology projects**
 - SOHO
 - MDI, GOLF, VIRGO
 - MDI is still running but not taking data. Could be restarted.
 - SDO
 - HMI is running happily
 - No technical showstoppers
 - Funded to mid 2015. Will likely get funded for another 5 years. Then uncertain, but likely
 - AIA
 - Some science here too

- **One non-dedicated**
 - Hinode
 - Very small FOV
Space Based Projects - Future

- Solar Orbiter/PHI is only project under construction
 - Currently being constructed
 - Launch around 2018
 - Will provide different viewing angles
 - Will look from high(er) latitude
 - Very little data return
 - Short observing periods
 - See talk by Löptien
Many proposed projects

- Some primarily helioseismology, others not
- See next few pages
 - In random order
 - Incomplete
- See ISSI review by Sekii, Appourchaux, Fleck and Turck-Chieze
 - From whom I have stolen some material
Space Based Projects - Future

• **L5/EASCO**
 – Various versions and funding schemes considered.
 • From partial to comprehensive instrument packages
 – JPL and GSFC versions.
 – Observing from roughly Sun-Earth L5 point, 40-90 degrees away
 – Primarily space weather
 – Could be combined with L4 for better coverage

• **SAFARI**
 – Proposed multiple times by groups overlapping with the above
 – Would be parked at L3, 180 degrees away from the Earth
 – Various packages proposed

• **SAI**
 – Cubesat being proposed (6U)
 – Will fly MOF and demonstrate technology
 – Drift orbit at 1AU to of order 30 degrees
 – Short lifetime
Space Based Projects - Future

• **SPI and Polaris**
 – Proposed for US Decadal Survey and ESA Cosmic Visions
 – >75 degree inclination near polar orbit around 0.48AU
 – Solar sails
 – Comprehensive instrument package

• **Solaris**
 – Smaller version of the above
 • Minimal payload including Doppler/magnetograph
 – Part of longer term solar sail development program

• **Telemachus**
 – Similar, but using Jupiter gravity assist to reach high inclination
Space Based Projects - Future

• **4PI**
 – Proposed for Decadal Survey
 – As name indicates it would cover the entire surface
 – 4 spacecraft
 – Various payload options

• **Solar-D**
 – The mission formerly known as Solar-C Plan B
 – Moderately comprehensive package
 – >40 degree inclination
 – Ion engine propulsion

• **GOLD/GOLF-NG**
 – Improved GOLF instrument
 – Multiply points across line
 – Targeted at low degree modes (especially g-modes)
Conclusion

- Continuity needs to be ensured
- New observations are still needed
- Multi height observations represent one direction
- Multi viewpoints another
- Some can be done ground based
- Others require space

- “...there is no future visible at present.”
 - Out of context quote from speaker declining to give a talk about this subject.