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Global convective dynamo simulations
Wedge geometry

We model a spherical sector (`wedge’) where only parts of the latitudinal 
and longitudinal extents are taken into account.

Normal field condition for B at the outer radial boundary and perfect 
conductor at all other boundaries. Impenetrable stress-free boundaries on 
all boundaries. 

Käpylä et al. (2010b), Astron. Nachr., 331, 73

Differential rotation and magnetism across the HR diagram, Stockholm, 11th Apr 2013

Mitra et al. (2009), Astrophys. J., 697, 923
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• high-order finite-difference code 
• scales up efficiently to over 60.000 cores 
• compressible MHD
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FIG. 3.— Same as Fig. 1 but for Runs C1 (top panel) and C2 (bottom). Note
the difference in cycle frequency between early times when the frequency is
similar to that of Run B2 (Fig. 2) and late times.

FIG. 4.— Same as Fig. 1 but for Runs D1 (top panel) and D2 (bottom).
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Multi-cell circulation, cycles appear in the nonlinear regime, magnetic fields 
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Figure 10. Meridional circulation in the northern hemisphere of the convection zone of Run C1 (left panel) and Run D1 (right) shown as vectors of the mass flux
ρ(ur , uθ , 0), which is also averaged over a time span of around 250 turnover times in the saturated state. The black solid lines indicate the surface (r = R) and the
bottom of the convection zone (r = 0.7 R), and the red solid line indicates the position of the inner tangent cylinder. Note that for Run D1 (right), the mass flux have
been multiplied by a factor of five to emphasize the structure.
(A color version of this figure is available in the online journal.)

Furthermore, ∆(θ)
Ω generally decreases within each set of runs

as Co increases, except for Runs D1 and D2 where the value
increases; see Table 2. However, in Run D1 the lower Reynolds
number possibly contributes to the weak differential rotation
in comparison to Run D2 with comparable Co. The rotation
profiles appear to be dominated by the Taylor–Proudman bal-
ance, except at very low latitudes where the baroclinic term
is significant; see Figure 9 of Warnecke et al. (2013). In this
companion paper, we show that an outer coronal layer seems
to favor a solar-like rotation, which shows even radially orien-
tated contours of constant rotation. Such “spoke-like” rotation
profiles have thus far only been obtained in mean-field mod-
els involving anisotropic heat transport (e.g., Brandenburg et al.
1992; Kitchatinov & Rüdiger 1995) or a subadiabatic tachocline
(Rempel 2005), and in purely hydrodynamic LES models where
a latitudinal entropy gradient is enforced at the lower boundary
(Miesch et al. 2006) or where a stably stratified layer is included
below the convection zone (Brun et al. 2011).

The meridional circulation is weak in all cases and typically
shows multiple cells in the radial direction. In Figure 10, we plot
the mean mass flux, ρ(ur, uθ , 0), of the meridional circulation
for Runs C1 and D1. In Run C1 the circulation pattern is mostly
concentrated in the equatorial region outside the inner tangent
cylinder, where we find a solar-like anti-clockwise cell at low
latitudes (<30◦) in the upper third of the convection zone. There
are additional cells deeper down and also at higher latitudes.
Only the cell near the surface seems to have the same curvature
as the surface, while the others, in particular the strong one above
the inner tangent cylinder, seem to be parallel to the rotation
axis. This is similar to earlier results by Käpylä et al. (2012)
where the meridional circulation pattern was shown in terms of
the velocity. The circulation pattern in Run D1 is qualitatively

quite similar, but the velocity is smaller by roughly a factor
of five. Similar patterns of multi-cellular meridional circulation
have also been seen in anelastic simulations using spherical
harmonics (see, e.g., Nelson et al. 2013) and in models with
an outer coronal layer (Warnecke et al. 2013). In addition, as
we will show in the next section, the importance of meridional
circulation relative to the turbulent magnetic diffusivity is rather
low, which is another reason why it cannot play an important
role in our models.

3.5. Estimates of Local Dynamo Parameters

To estimate the dynamo parameters related to α-effect, radial
differential rotation, and meridional circulation, we consider
local (r- and θ -dependent) versions of dynamo numbers, referred
to as local dynamo parameters that are defined by

cα = α∆r

ηt0
, cΩ = ∂Ω/∂r(∆r)3

ηt0
, cU = urms

mer∆r

ηt0
, (35)

where ∂Ω/∂r is the r- and θ -dependent radial gradient of Ω,
∆r = R − r0 is the thickness of the layer, and α is a proxy of
the α-effect (Pouquet et al. 1976),

α = −1
3
τ (ω · u − j · b/ρ), (36)

with τ = αMLTHP/urms(r, θ ) being the local convective turnover
time and αMLT the mixing length parameter. We use αMLT = 5/3
in this work. We estimate the turbulent diffusivity by ηt0 =
τu2

rms(r, θ )/3. Furthermore, urms
mer =

√
u2

r + u2
θ is the rms value

of the meridional circulation.
The results for the local dynamo parameters are shown in

Figures 11–13. Generally, the values of cα are fairly large, and

10
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FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)

Pr=ν/χ=2.5  
Pm=ν/η=1

Pr=0.5 
Pm=0.5
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FIG. 4.— Top row: ⟨|Bφ|⟩t during the saturated stage for Runs I–III (left to right). Middle row: Ω(r, θ)/Ω0 for the same runs. Bottom row: Arrows of the
normalized direction of migration smig(r, θ) = −αêφ ×∇Ω, see Eq. (3) following Parker (1955) and Yoshimura (1975). The red contours indicate the region
of strong toroidal field. The black dashed lines indicate the surface (r = R).

predicts EM. This is exactly how the toroidal field is observed
to behave in the simulation at these latitudes and depth, as
seen from Figure 2. The calculated EM in this region is due to
a positive α and a negative ∇rΩ. Additionally, in a smaller re-
gion of strong field closer to the surface and at lower latitudes
the calculated migration direction is poleward. This coincides
with the high-frequency poleward migrating field found in
Figure 2. In Run II, due to the absence of a negative ∇rΩ,
see middle row of Figure 4, smig points towards the poles in
most of the convection zone, in particular in the region where
the field is strong, see bottom row of Figure 4. Also here the
calculated migration direction is the same as the actual one in
the simulation, see Figure 2. In Run III, there exists a negative
radial gradient of Ω, but in the region, where the toroidal field
is strong, the calculated migration direction is inconclusive.

There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field, seen in Figure 2. However, also here in the smaller field
concentration closer to the surface and at lower latitudes the
calculated migration direction is poleward, which seems to
explain the rapidly poleward migrating toroidal field found in
Run III, see Figure 2. This agreement between the calculated
migration direction and actual migration of toroidal field im-
plies that the EM in Käpylä et al. (2012, 2013) for Runs I and
IV can be ascribed to an αΩ dynamo wave traveling equator-
ward due to the local minimum of Ω.

To support our case, we compute a 2D histogram of the
mean absolute toroidal field |Bφ| and the radial gradient of
Ω in the latitudinal band of ±15◦ to ±40◦ for Runs I and II;
see Figure 5. For Run I, the strong (>5 kG) fields correlate

3
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but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers
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where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near

Electronic address: warnecke@mps.mpg.de (Revision: 1.66 )

the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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FIG. 4.— Top row: ⟨|Bφ|⟩t during the saturated stage for Runs I–III (left to right). Middle row: Ω(r, θ)/Ω0 for the same runs. Bottom row: Arrows of the
normalized direction of migration smig(r, θ) = −αêφ ×∇Ω, see Eq. (3) following Parker (1955) and Yoshimura (1975). The red contours indicate the region
of strong toroidal field. The black dashed lines indicate the surface (r = R).

predicts EM. This is exactly how the toroidal field is observed
to behave in the simulation at these latitudes and depth, as
seen from Figure 2. The calculated EM in this region is due to
a positive α and a negative ∇rΩ. Additionally, in a smaller re-
gion of strong field closer to the surface and at lower latitudes
the calculated migration direction is poleward. This coincides
with the high-frequency poleward migrating field found in
Figure 2. In Run II, due to the absence of a negative ∇rΩ,
see middle row of Figure 4, smig points towards the poles in
most of the convection zone, in particular in the region where
the field is strong, see bottom row of Figure 4. Also here the
calculated migration direction is the same as the actual one in
the simulation, see Figure 2. In Run III, there exists a negative
radial gradient of Ω, but in the region, where the toroidal field
is strong, the calculated migration direction is inconclusive.

There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field, seen in Figure 2. However, also here in the smaller field
concentration closer to the surface and at lower latitudes the
calculated migration direction is poleward, which seems to
explain the rapidly poleward migrating toroidal field found in
Run III, see Figure 2. This agreement between the calculated
migration direction and actual migration of toroidal field im-
plies that the EM in Käpylä et al. (2012, 2013) for Runs I and
IV can be ascribed to an αΩ dynamo wave traveling equator-
ward due to the local minimum of Ω.

To support our case, we compute a 2D histogram of the
mean absolute toroidal field |Bφ| and the radial gradient of
Ω in the latitudinal band of ±15◦ to ±40◦ for Runs I and II;
see Figure 5. For Run I, the strong (>5 kG) fields correlate

3

FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)
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2,3 , MAARIT J. KÄPYLÄ
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near

Electronic address: warnecke@mps.mpg.de (Revision: 1.66 )

the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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FIG. 4.— Top row: ⟨|Bφ|⟩t during the saturated stage for Runs I–III (left to right). Middle row: Ω(r, θ)/Ω0 for the same runs. Bottom row: Arrows of the
normalized direction of migration smig(r, θ) = −αêφ ×∇Ω, see Eq. (3) following Parker (1955) and Yoshimura (1975). The red contours indicate the region
of strong toroidal field. The black dashed lines indicate the surface (r = R).

predicts EM. This is exactly how the toroidal field is observed
to behave in the simulation at these latitudes and depth, as
seen from Figure 2. The calculated EM in this region is due to
a positive α and a negative ∇rΩ. Additionally, in a smaller re-
gion of strong field closer to the surface and at lower latitudes
the calculated migration direction is poleward. This coincides
with the high-frequency poleward migrating field found in
Figure 2. In Run II, due to the absence of a negative ∇rΩ,
see middle row of Figure 4, smig points towards the poles in
most of the convection zone, in particular in the region where
the field is strong, see bottom row of Figure 4. Also here the
calculated migration direction is the same as the actual one in
the simulation, see Figure 2. In Run III, there exists a negative
radial gradient of Ω, but in the region, where the toroidal field
is strong, the calculated migration direction is inconclusive.

There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field, seen in Figure 2. However, also here in the smaller field
concentration closer to the surface and at lower latitudes the
calculated migration direction is poleward, which seems to
explain the rapidly poleward migrating toroidal field found in
Run III, see Figure 2. This agreement between the calculated
migration direction and actual migration of toroidal field im-
plies that the EM in Käpylä et al. (2012, 2013) for Runs I and
IV can be ascribed to an αΩ dynamo wave traveling equator-
ward due to the local minimum of Ω.

To support our case, we compute a 2D histogram of the
mean absolute toroidal field |Bφ| and the radial gradient of
Ω in the latitudinal band of ±15◦ to ±40◦ for Runs I and II;
see Figure 5. For Run I, the strong (>5 kG) fields correlate

3

FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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FIG. 5.— (a) to (b): Correlation of the absolute of mean toroidal magnetic

field |Bφ| from the latitudinal band ±15◦ −±40◦ and the logarithmic gra-
dient of Ω for Runs I (a) and II (b). Overplotted are the mean (white) and

the zero lines (white-black-dashed). (c) to (d): Phase relation between Bφ

(black) and Br (red) at 25◦ latitude and r = 0.98R (c) and at r = 0.84R
(d) for Run I. (e): Time averaged radial dependence of |Bφ| (black) and |Br|
(red) at 25◦ latitude for Run I.

markedly with negative Rd lnΩ/dr. For Run II, the strong
fields are clearly correlated with positive Rd lnΩ/dr. These
correlations have two implications: first, strong fields in these
latitudes are related to and most likely generated by radial
shear rather than an α-effect. Second, the negative shear in
Run I is related to and probably the cause of the toroidal field
migrating equatorward and the positive shear in Run II is re-
sponsible for the poleward migration.

The indications let us conclude that the dominating dynamo
mode is an αΩ dynamo. However, in Käpylä et al. (2013), we
concluded, that the EM was due to α2 dynamo. This conclu-
sion was based on three indications. One indication was that
the two local dynamo numbers cα and cΩ had similar values;
see Figures 11 and 12 of Käpylä et al. (2013). However, a
1/3 factor was missing in the calculation of cα, so our values
are now 3 times smaller, see Figure 3. The second indication
was, that the phase difference of ≈ π/4 between the toroidal
and radial fields agrees with that of an α2 dynamo model as
demonstrated in Figure 15 of Käpylä et al. (2013). This is, as
shown in Figures 5(c) and (d), only true close to the surface
(r = 0.98R). At mid-depth (r = 0.84R), where the toroidal
field is strong, the phase different is close to ≈ 3/4π, which
fits well with a αΩ dynamo with negative shear, see Figure

15(e) of Käpylä et al. (2013). The third indication is the fact
that poloidal and toroidal fields have similar strength as shown
in Figure 15(a) and (b) of Käpylä et al. (2013). However, this
is also only true near the surface (r = 0.98R), where the
toroidal field has to decrease because of the radial field con-
dition at the boundary. As shown in Figure 5(e), toroidal and
poloidal fields are comparable only at r = 0.98R, whereas
in the rest of the convection zone the toroidal field dominates
and is around 4 times stronger than poloidal field.

One remaining issue is the behavior of the mean toroidal
field in Run III. Even though the input parameters are sim-
ilar to Runs I and IV, the fields do not migrate toward the
equator. The only difference between Runs III and IV is the
higher temperature in Run IV near the surface, see Figure 1.
This leads to a suppression of turbulent velocities and a sign
change of α close to the surface in those latitudes, where EM
occurs in Runs I and III, see Figure 3. One of the reasons
might be the fact that the sign changes, which suppresses the
dynamo cycle and causes a quasi-stationary field. Another
reason could be the negative ∇rΩ, which implies that CΩ is
not as strong as in Runs I and IV; see Figure 3.

4. CONCLUSIONS

We have presented in this Letter a viable mechanism that
can explain the equatorward migration found in the work by
Käpylä et al. (2012, 2013). Applying the Parker–Yoshimura
rule to compute the migration direction using the estimated α
and determined Ω, we obtain qualitative agreement with the
actual simulation in the regions where the toroidal magnetic
field is strongest. This result and the phase difference between
the toroidal and poloidal implies, that the mean field evolution
in these global convective dynamo simulations can be well de-
scribed by an αΩ dynamo with a propagating dynamo wave.
This underlines the usefulness of mean-field theory—at least
in this parameter regime.

In addition to Käpylä et al. (2012, 2013), the preliminary
work of Augustson et al. (2013) is another case of EM pro-
duced by a global convective dynamo simulation. They con-
clude that, even though the sign of an equatorward propagat-
ing dynamo wave is correct for some part of the field, the
effect is marginal elsewhere (Augustson et al. 2013). Their
differential rotation profile, see their Figure 2(b) possesses a
similar local minimum of Ω as in Runs I, III, and IV. There-
fore, in the light of our results, we suggest that an αΩ dynamo
wave is the cause for the equatorward migration also in their
case.

In the solar convection zone, as we know from helioseis-
mology (Schou et al. 1998), there is no local minimum of Ω.
However, we can still apply the results of this Letter to the
Sun. On the one hand there exists a near-surface shear layer
providing us with the right sign of Ω. If the equatorward mi-
gration of the Sun is due to a propagation of an αΩ dynamo
wave, the field has to be concentrated in the near-surface re-
gions, which might be spatially too small. On the other hand,
the model of Parker (1955) neglects the tensorial properties
of α, which could well lead to different conditions for prop-
agation directions. Even though the parameter regime of our
simulations might be too far away from the real Sun, analyz-
ing these simulations, and comparing them with e.g. mean-
field dynamo models, will lead to a better understanding of
the Sun and stars.

The simulations have been carried out on supercomput-
ers at Gesellschaft für wissenschaftliche Datenverarbeitung
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FIG. 4.— Differential rotation zoomed in the northern hemisphere in the convection zone. Top row: mean rotation profiles Ω(r, θ)/Ω0 color coded and as
white rotation contours for Runs A, and B. The black dashed lines indicate the zero line, the surface (r = R). Bottom row: mean rotation profiles at four different
latitudes for the four Runs A, Ab, Ac, and B: 90◦ − θ = 0◦ (solid black), 90◦ − θ = 15◦ (yellow), 90◦ − θ = 30◦ (red), 90◦ − θ3 = 45◦ (green), and
90◦ − θ3 = 75◦ (blue).

the poles and at the equator. In the presence of a latitudinal
entropy gradient, it would lead to an additional contribution
to the radial convective flux,

F r = −χrrρT∇rs− χrθρT∇θs. (19)

Since χrθ = χθr, and since there is a radial entropy gradient,
it would also lead to a contribution in the latitudinal flux,

F θ = −χθrρT∇rs− χθθρT∇θs. (20)

If we ignore the second term proportional to ∇θs, we could
estimate χθr by measuring

F θ = cPρu′
θT

′, (21)

so
χθr ≈ −cPu′

θT
′
/

T∇rs. (22)

The result is shown in Figure 7, where we also plot a similar
estimate of the radial component,

χrr ≈ −cPu′
rT

′
/

T∇rs. (23)

We normalize both by χt0 = urms/3kf and find that the latter
is about 3 in those units, and the former one is about 1. Fur-
thermore, χθr/χSGS and χrr/χSGS are around 0.06 and 0.02,
respectively.
In reality, and as a consequence, we cannot neglect the sec-

ond term proportional to∇θs, even though∇rs ≈ 10∇θs in
our simulation. To test the quality of the turbulent model of
Equation 22 and Equation 23, we compute two-dimensional
histograms of the latitudinal and radial fluxes over the latitudi-
nal and radial entropy gradients; see Figure 8. The determined
values for the turbulent heat diffusivities of Figure 7 are con-
sistent with the results of the histogram. In the first panel,
the line with χrr = 3χt0 lies slightly beside the maximum
of correlation. But already χrr = 2χt0, fit very well with
maximum of correlation. Actually, looking at right panel of
Figure 7, χrr = 2χt0 is well inside the plotting range. A
similar behavior can see form the second panel of Figure 8.
There the lines of χθr = ±χt0 fit well with the data, but a
slightly smaller values, fit even better, χθr = ±0.7χt0. But, it
seems like, that there occur an offset, we have not accounted
for. Moving the two lines to the left, with an offset of 0.2,
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the poles and at the equator. In the presence of a latitudinal
entropy gradient, it would lead to an additional contribution
to the radial convective flux,

F r = −χrrρT∇rs− χrθρT∇θs. (19)

Since χrθ = χθr, and since there is a radial entropy gradient,
it would also lead to a contribution in the latitudinal flux,

F θ = −χθrρT∇rs− χθθρT∇θs. (20)

If we ignore the second term proportional to ∇θs, we could
estimate χθr by measuring

F θ = cPρu′
θT

′, (21)

so
χθr ≈ −cPu′

θT
′
/

T∇rs. (22)

The result is shown in Figure 7, where we also plot a similar
estimate of the radial component,

χrr ≈ −cPu′
rT

′
/

T∇rs. (23)

We normalize both by χt0 = urms/3kf and find that the latter
is about 3 in those units, and the former one is about 1. Fur-
thermore, χθr/χSGS and χrr/χSGS are around 0.06 and 0.02,
respectively.
In reality, and as a consequence, we cannot neglect the sec-

ond term proportional to∇θs, even though∇rs ≈ 10∇θs in
our simulation. To test the quality of the turbulent model of
Equation 22 and Equation 23, we compute two-dimensional
histograms of the latitudinal and radial fluxes over the latitudi-
nal and radial entropy gradients; see Figure 8. The determined
values for the turbulent heat diffusivities of Figure 7 are con-
sistent with the results of the histogram. In the first panel,
the line with χrr = 3χt0 lies slightly beside the maximum
of correlation. But already χrr = 2χt0, fit very well with
maximum of correlation. Actually, looking at right panel of
Figure 7, χrr = 2χt0 is well inside the plotting range. A
similar behavior can see form the second panel of Figure 8.
There the lines of χθr = ±χt0 fit well with the data, but a
slightly smaller values, fit even better, χθr = ±0.7χt0. But, it
seems like, that there occur an offset, we have not accounted
for. Moving the two lines to the left, with an offset of 0.2,
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FIG. 4.— Differential rotation zoomed in the northern hemisphere in the convection zone. Top row: mean rotation profiles Ω(r, θ)/Ω0 color coded and as
white rotation contours for Runs A, and B. The black dashed lines indicate the zero line, the surface (r = R). Bottom row: mean rotation profiles at four different
latitudes for the four Runs A, Ab, Ac, and B: 90◦ − θ = 0◦ (solid black), 90◦ − θ = 15◦ (yellow), 90◦ − θ = 30◦ (red), 90◦ − θ3 = 45◦ (green), and
90◦ − θ3 = 75◦ (blue).
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F r = −χrrρT∇rs− χrθρT∇θs. (19)

Since χrθ = χθr, and since there is a radial entropy gradient,
it would also lead to a contribution in the latitudinal flux,

F θ = −χθrρT∇rs− χθθρT∇θs. (20)

If we ignore the second term proportional to ∇θs, we could
estimate χθr by measuring

F θ = cPρu′
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nal and radial entropy gradients; see Figure 8. The determined
values for the turbulent heat diffusivities of Figure 7 are con-
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the line with χrr = 3χt0 lies slightly beside the maximum
of correlation. But already χrr = 2χt0, fit very well with
maximum of correlation. Actually, looking at right panel of
Figure 7, χrr = 2χt0 is well inside the plotting range. A
similar behavior can see form the second panel of Figure 8.
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the poles and at the equator. In the presence of a latitudinal
entropy gradient, it would lead to an additional contribution
to the radial convective flux,

F r = −χrrρT∇rs− χrθρT∇θs. (19)

Since χrθ = χθr, and since there is a radial entropy gradient,
it would also lead to a contribution in the latitudinal flux,

F θ = −χθrρT∇rs− χθθρT∇θs. (20)

If we ignore the second term proportional to ∇θs, we could
estimate χθr by measuring

F θ = cPρu′
θT

′, (21)

so
χθr ≈ −cPu′

θT
′
/

T∇rs. (22)

The result is shown in Figure 7, where we also plot a similar
estimate of the radial component,

χrr ≈ −cPu′
rT

′
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T∇rs. (23)

We normalize both by χt0 = urms/3kf and find that the latter
is about 3 in those units, and the former one is about 1. Fur-
thermore, χθr/χSGS and χrr/χSGS are around 0.06 and 0.02,
respectively.
In reality, and as a consequence, we cannot neglect the sec-

ond term proportional to∇θs, even though∇rs ≈ 10∇θs in
our simulation. To test the quality of the turbulent model of
Equation 22 and Equation 23, we compute two-dimensional
histograms of the latitudinal and radial fluxes over the latitudi-
nal and radial entropy gradients; see Figure 8. The determined
values for the turbulent heat diffusivities of Figure 7 are con-
sistent with the results of the histogram. In the first panel,
the line with χrr = 3χt0 lies slightly beside the maximum
of correlation. But already χrr = 2χt0, fit very well with
maximum of correlation. Actually, looking at right panel of
Figure 7, χrr = 2χt0 is well inside the plotting range. A
similar behavior can see form the second panel of Figure 8.
There the lines of χθr = ±χt0 fit well with the data, but a
slightly smaller values, fit even better, χθr = ±0.7χt0. But, it
seems like, that there occur an offset, we have not accounted
for. Moving the two lines to the left, with an offset of 0.2,
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the poles and at the equator. In the presence of a latitudinal
entropy gradient, it would lead to an additional contribution
to the radial convective flux,

F r = −χrrρT∇rs− χrθρT∇θs. (19)

Since χrθ = χθr, and since there is a radial entropy gradient,
it would also lead to a contribution in the latitudinal flux,

F θ = −χθrρT∇rs− χθθρT∇θs. (20)

If we ignore the second term proportional to ∇θs, we could
estimate χθr by measuring

F θ = cPρu′
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We normalize both by χt0 = urms/3kf and find that the latter
is about 3 in those units, and the former one is about 1. Fur-
thermore, χθr/χSGS and χrr/χSGS are around 0.06 and 0.02,
respectively.
In reality, and as a consequence, we cannot neglect the sec-

ond term proportional to∇θs, even though∇rs ≈ 10∇θs in
our simulation. To test the quality of the turbulent model of
Equation 22 and Equation 23, we compute two-dimensional
histograms of the latitudinal and radial fluxes over the latitudi-
nal and radial entropy gradients; see Figure 8. The determined
values for the turbulent heat diffusivities of Figure 7 are con-
sistent with the results of the histogram. In the first panel,
the line with χrr = 3χt0 lies slightly beside the maximum
of correlation. But already χrr = 2χt0, fit very well with
maximum of correlation. Actually, looking at right panel of
Figure 7, χrr = 2χt0 is well inside the plotting range. A
similar behavior can see form the second panel of Figure 8.
There the lines of χθr = ±χt0 fit well with the data, but a
slightly smaller values, fit even better, χθr = ±0.7χt0. But, it
seems like, that there occur an offset, we have not accounted
for. Moving the two lines to the left, with an offset of 0.2,
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to the radial convective flux,
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Since χrθ = χθr, and since there is a radial entropy gradient,
it would also lead to a contribution in the latitudinal flux,

F θ = −χθrρT∇rs− χθθρT∇θs. (20)
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is about 3 in those units, and the former one is about 1. Fur-
thermore, χθr/χSGS and χrr/χSGS are around 0.06 and 0.02,
respectively.
In reality, and as a consequence, we cannot neglect the sec-

ond term proportional to∇θs, even though∇rs ≈ 10∇θs in
our simulation. To test the quality of the turbulent model of
Equation 22 and Equation 23, we compute two-dimensional
histograms of the latitudinal and radial fluxes over the latitudi-
nal and radial entropy gradients; see Figure 8. The determined
values for the turbulent heat diffusivities of Figure 7 are con-
sistent with the results of the histogram. In the first panel,
the line with χrr = 3χt0 lies slightly beside the maximum
of correlation. But already χrr = 2χt0, fit very well with
maximum of correlation. Actually, looking at right panel of
Figure 7, χrr = 2χt0 is well inside the plotting range. A
similar behavior can see form the second panel of Figure 8.
There the lines of χθr = ±χt0 fit well with the data, but a
slightly smaller values, fit even better, χθr = ±0.7χt0. But, it
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FIG. 5.— Representation of the two dominant terms in the balance of mean azimuthal vorticity together with the latitudinal entropy gradient for Run A. Form
left to right, in the first panel the mean azimuthal component of the baroclinic term of the total entropy gradient and total temperature gradient (∇T ×∇s)φ is
plotted together with advection term r sin θ ∂Ω

2
/∂z in the middle panel. The values are normalized by Ω2

0. The last panel shows the mean latitudinal entropy
gradient R∇θs/cP. The white/black dashed line indicate the surface (r = R).

FIG. 6.— Differential rotation in the northern hemisphere including the
coronal layer. Mean rotation profiles, Ω(r, θ)/Ω0, at five different latitudes
for Runs A, 90◦−θ = 0◦ (solid black), 90◦−θ = 15◦ (yellow), 90◦−θ =
30◦ (red), 90◦ − θ3 = 45◦ (green), and 90◦ − θ3 = 75◦ (blue). The black
dashed lines indicate the zero line, the surface (r = R). Otherwise the legend
is similar to bottom row of Figure 4.

they would fit more accurately. These offset can be related

FIG. 7.— Off-diagonal component χθr and the radial component χrr of
the turbulent heat conductivity tensor normalized by χt0 = urms/3kf and
calculated from Equations (22) and (23) for Run A. Note the high values
at the bottom of the convection zone, which are due to the vanishing radial
entropy gradient. Otherwise the legend is similar to Figure 5.

to latitudinal entropy gradient, which we have neglected in
our calculations. The last two panels support our assumption
to neglect the latitudinal entropy gradient by calculating the
turbulent heat diffusivity. However, the structure of the 2 di-
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•Migration of  mean magnetic field can be entirely 

explained by an alpha-omega-dynamo wave 

•For equatorward mig. : alpha(+/-) x dOmega/dr(-/+)

•A coronal envelope helps for Spoke-like rotation profile

•Self-consistent produced by a baroclinic term.

•Near-surface shear layer is formed.

•Turbulent heat transport to the poles.
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Thank you!


