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ABSTRACT

Throughout the past decade, detailed helioseismic analyses of observations of solar surface oscillations have led to
advances in our knowledge of the structure and dynamics of the solar interior. Such analyses involve the decompo-
sition of time series of the observed surface oscillation pattern into its constituent wave modes, followed by inversion
procedures that yield inferences of properties of the solar interior. While this inverse problem has been a major focus
in recent years, the corresponding forward problem has received much less attention. We aim to rectify this situation
by taking the first steps toward validating and determining the efficacy of the helioseismic measurement procedure.
The goal of this effort is to design a means to perform differential studies of various effects such as flows and thermal
perturbations on helioseismic observables such as resonant frequencies, travel-time shifts, etc. Here we describe our
first efforts to simulate wave propagation within a spherical shell, which extends from 0.2 to about 1.0004 R, (where
R, is the radius of the Sun) and which possesses a solar-like stratification. We consider a model containing no flows
that will serve as a reference model for later studies. We discuss the computational procedure, some difficulties en-
countered in a simulation of this kind, and the means to overcome them. We also present techniques used to validate

the simulation.

Subject headings: hydrodynamics — Sun: helioseismology — Sun: interior — Sun: oscillations — waves

Online material: color figure

1. INTRODUCTION

Solar oscillations possess abundant diagnostic information
about the solar interior. Helioseismology is the study of the var-
iations in the internal structure and properties of the dynamics
of the Sun from measurements of its surface oscillations. Sophis-
ticated observations of these oscillations have led to the inference
of the solar structure, the rotation rate, and large-scale dynamics
with considerable accuracy. For example, a major result of helio-
seismology has been the constraint on the solar neutrino flux,
which led to a reevaluation of the properties of the neutrino.
Helioseismic analyses use the line-of-sight Doppler velocity of
plasma at the solar photosphere. This surface is in continual mo-
tion due to the interaction, impact, and reflection of millions of
wave modes. The primary source of wave generation is the in-
tense turbulence present in the convecting uppermost surface lay-
ers. In the Sun, detected waves that possess diagnostic value are
either surface gravity or acoustic modes. While surface gravity
modes are constrained to sample only the surface layers, acous-
tic modes plumb the depths of the solar interior and reemerge
altered by the structure and dynamics of the solar interior. A sub-
stantial part of the wave modes that comprise the acoustic wave
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spectrum travel distances large enough that incorporating sphericity
into the model becomes unavoidable.

The first validation test involving acoustic simulations of time-
distance helioseismology was performed by Jensen et al. (2003),
who computed a three-dimensional wave field in a solar-like at-
mosphere in the presence of a finite-sized sound speed perturbation.
The inverted data recovered the main features of the perturbation
but was still quite noisy. Little has been done, however, in the con-
text of the forward problem in spherical domains to complement
the extensive inversion analyses applied to data obtained from the
Michelson Doppler Imager (MDI) on board the Solar and Helio-
spheric Observatory (SOHO), in operation since 1996.

Our objective is to construct a numerical model that allows
waves to propagate within a spherically stratified domain, from
which the wave field can be analyzed. The physics of the Sun
is governed by an enormous dynamic range, with scales stretch-
ing from as short as a meter to as long as several million meters.
It is not yet computationally feasible to model this plethora of
scales and the phenomena associated with them. Consequently,
the goal of this effort is not to produce accurate absolute frequen-
cies to compare with the observations. The aim is to design a
careful means to perform differential studies on the effects of large-
scale flows and asphericities, in the context of global and local
helioseismology. The expectation is that the helioseismological
signatures of the differences in the acoustic wave field induced
by the presence of flows or asphericities are mostly insensitive
to the physics we have chosen to discard. Simulations of the wave
field in the presence of large-scale perturbations can be compared
with a reference case that corresponds to a computation of the
wave field in the absence of any flows or perturbations.

In this paper, we discuss computational techniques and the
issues that are encountered in a system where thermodynamic
properties such as temperature, pressure, and density are strongly
spatially varying. We also present techniques of validation that
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were used to demonstrate the verity of this computation. The
problem is defined in § 2, § 3 describes the numerical techniques,
§ 4 introduces the reader to wave behavior in a solar-like me-
dium, § 5 addresses various computational difficulties, § 6 dis-
cusses methods of validation, and in § 7 we summarize and draw
conclusions.

2. PROBLEM DEFINITION

We solve the three-dimensional linearized Euler equations of
fluid motion in a spherical shell encompassing 0.2—-1.0004 R,
expanded around the spherically symmetric background state
described by model S of the Sun (Christensen-Dalsgaard et al.
1996). The assumption of linearity is justifiable, since acoustic
wave velocity amplitudes are much smaller than the background
sound speed within the bulk of the computational domain. Be-
cause timescales of acoustic propagation are much smaller than
the timescale over which large-scale flows or features (of interest
to us) change, we assume that the background state is stationary.
In the equations that follow, all background quantities are sub-
scripted with a 0, and all other components are fluctuating.

dp
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Equations (1), (2), and (3) are equations of continuity, mo-
mentum, and energy, respectively. The derivative on the right-
hand side of equation (4) is evaluated along an adiabatic process
curve (as denoted by the subscript ““ad”’). The nomenclature is
as follows: p is the density, p is the pressure, w is the vorticity,
I') = I'y(r) is the first adiabatic exponent, g is gravity, and v is
the vector velocity. Equation (3), which states that wave propa-
gation is adiabatic, is justified because the viscous and heat trans-
fer timescales are long in comparison to the acoustic timescales
over much of the computational domain.

The term I'(r)v in equation (2) plays the role of a damping
agentand S(r, 6, ¢, )f is the radially directed dipole source. It is
believed that wave excitation in the Sun occurs in an extremely
narrow spherical envelope (50 km thick) bounded by the sur-
face, and we assume therefore S(r, 0, ¢, t) = S(6, ¢, )6(r — rex),
where 7.x = 0.9997 Ro_was chosen to be the radial location
ofthe source. The term S is a spatially broadband random func-
tion for all but the largest horizontal wavenumbers, which are
not included so as to avoid any issues of spatial aliasing. The
solar acoustic power spectrum possesses maximum power in the
range 20005500 pHz, with a peak in power around 3200 pHz.
In order to mimic this excitation behavior, we generate a Gaussian
distributed power spectrum with a mean of 3200 pHz and a stan-
dard deviation of 1000 Hz in frequency space, which we then
Fourier transform to produce a time series with the appropriate
source spectrum.

In this study, we perform simulations over a time period that
exceeds the time at which the acoustic energy reaches a statistical
steady state. The other requirement for the temporal length of the
simulation is that the frequency resolution be sufficient for the
application at hand. The velocity time series, extracted at the sur-
face, is projected onto a line of sight and used as artificial Dopp-
ler velocity data.

3. NUMERICAL METHOD

The procedure we employ is pseudospectral; we use a spher-
ical harmonic representation of the spherical surface, sixth-order
compact finite differences in the radial direction (see Lele 1992)
and a fourth-order, five-stage low dissipation and dispersion runge-
kutta (LDDRK) time-stepping scheme (see Hu et al. 1996). Lati-
tudes are Gaussian collocation points and longitudes are equidistant.
The radial grid is mostly based on the sound speed distribution and
is discussed further in § 5.1. The code was developed and run on a
multiprocessor SGI-Altix machine at Stanford.

The parallel implementation is in OpenMP with radial loca-
tions domain distributed, allowing all the spherical harmonic
transforms to be performed in-processor. Spherical harmonic trans-
forms are computed in two steps: longitudinal fast Fourier trans-
forms (FFTs) at each latitude and radius followed by Legendre
transforms for each Fourier coefficient and radius. FFTs are per-
formed using the Guru routines provided in FFTW 3.0 and
Legendre transforms using matrix multiplication techniques im-
plemented in Level 3 Basic Linear Algebra Subroutines (BLAS).
The associated Legendre polynomials P}", where / and m are the
spherical harmonic degree and order respectively, are divided
into a series of matrices corresponding to different m’s, each of
which is further divided into two matrices according to whether
(I — m) is even or not. This is done to exploit the symmetry of the
associated Legendre polynomials about the equator, which speeds
up the transform by a significant amount.

The associated Legendre polynomials are computed accord-
ing to a highly stable four-term recurrence algorithm given
by Belousov (1962), available at the Netlib Web site (the
STSWM package). Each transform is a computation of order
O(nlzonnlatnmd log (n10n)), Where ny,, is the number of longitudinal
gridpoints, n, is the number of latitudinal gridpoints, and 7,4 18
the number of radial gridpoints. To prevent aliasing, we apply
the two-thirds rule (Orszag 1970) which sets the lower bound
on the number of latitudes at 3/,,,,x/2 where [, is the maximum
[ of the simulation. To ensure equal resolution in the latitudinal
and longitudinal directions, we set nj,, = 2ny,. Recasting the
minimum operation count in term of /;;,x, we obtain an expen-
sive operation count of O(nradlfnax); it is therefore important to
minimize the number of times spherical harmonic transforms
are performed. Every time step requires the computation of a curl,
divergence, and four gradients, each of which involves a com-
putational equivalent of a forward-inverse transform pair. Level 3
BLAS is known to operate near the peak performance of the pro-
cessor, so these computations are generally very efficient, when
they are performed in-processor.

We place transmitting boundary conditions (Thompson 1990)
at both radial boundaries of the computational domain. While
this particular boundary condition is most effective at absorbing
waves that are of normal incidence, it reflects a significant per-
centage of all other waves. To mitigate this effect, we introduce
an absorbent buffer zone (see, e.g., Lui 2003; Colonius & Lele
2004), placed in the evanescent region, that damps waves out
substantially before they reach the boundary. This is one of the
purposes that the term I'(») in equation (2) fulfills.
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4. ACOUSTIC WAVE PROPAGATION IN THE SUN

Acoustic modes are uniquely identified by three parameters,
the spherical harmonic degree /, azimuthal order m, and radial
order n. A detailed description of this classification system and
more on wave behavior as a function of these parameters can
be found in chapter 5 of Christensen-Dalsgaard (2003). Because
sound speed increases with depth, waves that are initially prop-
agating at a nonzero angle to the upper boundary refract contin-
ually as they propagate deeper, until they undergo total internal
refraction at some depth and reemerge at the surface. At the point
of total internal refraction, also known as the inner turning point,
the wave is propagating purely horizontally. To determine the lo-
cation of the inner turning point we proceed as follows. The dis-
persion relation is

w = ck, (5)

where w is the frequency, ¢ the sound speed, and k = |k|, where
k is the vector wavenumber. We decompose k into a radial (, 7)
and a horizontal (k;) component according to

k = k7 + k. (6)

We have, using equations (5) and (6),

2

2 2 _ W
k> +k = (7)

where &, = |k;|, the horizontal wavenumber, is given by

VIT+1
b = Y (8)

To determine the inner turning point, r,, we set k. = 0, and
obtain

c(r) w (9)
no VIAFT

This relation thus provides us a means to identify the maximum
penetration depth of each wavemode. The inverse is true as well:
the frequency-wavenumber range of waves that can access a
given depth may be determined from equation (9).

4.1. Upper Turning Point: Reflection at the Surface

The acoustic cutofffrequency w4, below which waves become
evanescent, is related to the density scale height, H,, in the fol-
lowing manner (Deubner & Gough 1984)

c di,\"?
= (1-2%2) . 1
i 2Hp< dr> (10)

We define H), as

dlnp\ ™"
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and in a similar manner, the pressure scale height, 1, as

dinp\ ™'
H,=—- . 12
= () (12)
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Fic. 1.—Background properties from model S of the Sun (Christensen-
Dalsgaard et al. 1996) as functions of radius. The horizontal coordinate of all the
panels above is the fractional radius, 7/R . Panel () shows the dependence of
sound speed (in km s~!) with #/R. Panel (b) contains the fractional pressure
scale height variation (H,/R; H,, has been defined in eq. [12]) with the frac-
tional radius. Note the rapidly decreasing scale height in the near-surface layers.
Panels (c) and (d ) show logarithmic variations in density and pressure as a func-
tion of the fractional radius.

As waves propagate toward the surface, the density and pres-
sure scale heights become increasingly small, as depicted in
Figure 1. The dependence of the cutoff frequency as a function
of radius is shown in Figure 2. Waves possessing frequencies
higher than 6000 pHz or so escape into the atmospheric layers,
and they are of little interest to us. The rest of the spectrum is
reflected at locations, also known as the upper turning points,
where the wave frequency equals the cutoff frequency. This prop-
erty was taken into account when choosing the excitation param-
eters. A useful consequence of this arrangement is that above their
upper turning points, waves with frequencies less than the cutoff
become evanescent. This aids the design of a transparent bound-
ary condition, since these waves can be damped into nonexistence
much more easily.

5. COMPUTATIONAL ISSUES

Computationally speaking, the properties of the Sun are rel-
atively well behaved and comparatively easy to model up to
about » = 0.98 R . The near-surface layers however, introduce
the multiple difficulties of rapidly dropping density height scales,
increasingly unstable stratification, the presence of an ionization
zone, complexity in the equation of state, and nonlinearities into
the wave propagation physics. Added to these issues is the fact
that acoustic waves spend most of their time in the near-surface
layers because the sound speed is smallest there. The conse-
quences of not taking into account some or all of the complex
near-surface dynamics is not entirely clear because the issues
listed above are inextricably linked to each other.

Keeping in mind the important issue of computational feasi-
bility, we cannot hope to resolve the complex small-scale physics
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FiG. 2.—Acoustic cutoff frequency w,/2 as a function of radius in the model.
The steep rise in wy in the near-surface layers is due to rapid changes in the den-
sity scale height, and causes outward-propagating waves with frequencies w < wy
to reflect and propagate inward.

of the near-surface layers or model the convecting solar inte-
rior. In fact, we see the formalism presented in this article as
complementary to the work of, e.g., Rosenthal et al. (1999) and
Georgobiani et al. (2003), who perform detailed hydrodynam-
ical simulations of the near-surface layers to extract informa-
tion about their effects on the frequencies and excitation of the
modes. We reiterate that the method presented here is a means
to study the differential effects of flows and asphericities on
various helioseismological measures, such as resonant frequen-
cies, travel-time anomalies, etc.

5.1. Choice of Radial Grid

To determine an appropriate radial grid, we have taken into
account the strong radial dependence of background solar prop-
erties such as pressure, density, and sound speed. Consider a
wave propagating at the speed of sound in the radial direction
according to the simple advection equation

Ou Ou
E—&-c(r)E:O. (13)

It makes immediate sense to choose a grid stretching function

dx
T(r):/r@a (14)

that transforms equation (13) to

Oou Ou

—+—=0 15
a form that is much easier to handle. The relation between two
adjacent grid points then is

it ]
/ ar _s. (16)
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where ri, 7oy are the inner and outer radii respectively and 7,4
is the number of radial grid points including the boundaries.
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Fic. 3.—Fractional grid spacing as a function of radius for n,,g = 350. Plot-
ted is dr/R, where dr is the local grid spacing, as a function of the fractional ra-
dius, 7/R.,. Forr < 0.99 R, the grid spacing is chosen to maintain the constancy
of'the traveltime of an acoustic wave between adjacent grid points. To account for
rapidly decreasing scale heights, the radial grid points from 0.9915 R, to the up-
per boundary are equally spaced in In p. Third order splines are used to vary the
grid spacing between 0.99 and 0.9915 R, as smoothly as possible.

Since sound speed is a monotonically decreasing function of
radius, the radial grid spacing becomes larger at depth. It is also
important to note that gradients of background quantities become
smaller with depth, so it makes sense that the grid is coarser.

However, as noted in § 4, pressure and density scale heights
tend to become very small at the surface, and pressure and den-
sity fall much more rapidly with radius than sound speed. It is
therefore useful to choose a different heuristic for the grid spac-
ing for the outer layers, perhaps along the lines of a logarithmic
pressure grid. In this simulation, we have adopted a constant
travel-time grid for r < 0.99 R, patched smoothly with one
equally spaced in In p from 0.9915 R to the upper boundary.
Third-order splines are used to vary the grid spacing between
0.99 and 0.9915 R as smoothly as possible. Figure 3 displays
the grid spacing as a function of radius.

5.2. CFL Restrictions

The Courant-Friedrich-Lewy (CFL) condition determines the
maximum size of the time step based on spatial resolution and, in
this case, sound speed. The time step is limited by the more re-
strictive of the accuracy and stability conditions (see Hu et al.
1996). The accuracy condition requires that well-resolved waves
are captured to within accepted numerical error, and the stability
condition ensures that the highest resolved wavenumber is sta-
ble. Since waves travel at various angles, we must consider lim-
itations due to the horizontal wavenumber as well.

The shortest wavelength that can be accommodated on the
radial grid (without any aliasing) is twice the largest grid spac-
ing, which is the distance between the deepest two grid points.
Since the spatial differencing scheme can only capture deriva-
tives with wavenumbers in a given range, we introduce two rele-
vant measures (e.g., Lele 1992; Lui 2003) used to describe this
effect: the highest well-resolved wavenumber and the highest
resolved wavenumber. The highest well-resolved wavenumber
represents the largest wavenumber that is resolved accurately by
the differencing scheme. The highest resolved wavenumber is
the maximum effective wavenumber of the spatial differencing
scheme. The highest well-resolved radial wavenumber, which
we refer to as k,,, and highest resolved radial wavenumber, &,



1272 HANASOGE ET AL.

for the choice of our differencing scheme are ks = 1.7 and
kywnh = 2.0, where h is the local radial grid spacing. The highest
well-resolved horizontal wavenumber (for a spectral method,
there is no difference between the highest resolved and highest
well-resolved wavenumbers) is given by

V fmax (fmax 1
kh,maxzwv (18)

Fin

where /[, is the spherical harmonic bandwidth. The time step
restriction is given by

R L
(CkW)max ’ (Ckwn)max ’ (Ckh)max ’

At < min

(19)

where R and L are limited by the boundary of the stability foot-
print and the accuracy limit, respectively (Hu et al. 1996). The
time-stepping scheme adopted in this calculation is accurate and
stable for L < 1.35 and R < 3.54, and therefore the largest al-
lowed time step is given by

At = min [1.67 (ﬁ> RS S R N RO
min max(fmax + 1) Cmax

where & and ¢ are functions of radius and ¢ = c(rjy) is the
maximum sound speed in the domain.

5.3. Lower Boundary Issues

Pushing the lower boundary deep (like 0.2 R) is certain to
ensure a tight CFL restriction, especially if there is a horizontal
background structure (like a density inhomogeneity or a flow)
that interacts with the acoustics. Consider equations (18) and
(19): as one proceeds deeper, the inner radius, rj,, reduces and
sound speed (see Fig. 1) increases. The time step restriction be-
comes tighter and consequently the computation becomes very
expensive. We have therefore actively made the choice of a
spherically symmetric background model with no flows at this
depth. Consider also the fact that a large number of waves have
already undergone total internal refraction. For example, at a
frequency of 5000 pHz, the highest / that penetrates a depth of
0.2 R is 10, which means that when determining the CFL con-
dition from equation (20), one need not use the entire spherical
bandwidth. In other words, one may replace lyax by Inax(7), de-
noting the highest / that can propagate at a given radius (given
by eq. [9]), a number which deep in the Sun is much smaller
than the bandwidth. The resulting time step increase one can
obtain by applying this property can be as large as a factor of 2
depending on /,,x and the number of radial gridpoints.

5.4. Buffer Layer

It was mentioned in § 3 that the transmitting boundary con-
ditions employed in this calculation reflect a large percentage of
waves that impact it at significant angles (as opposed to purely
radially propagating waves). The effect poses a serious threat
to both the stability and the accuracy of the simulation because
of'this aphysical reflection of waves. To deal with this problem,
we insert a buffer layer adjoining the upper boundary in which
upward traveling waves are significantly damped out prior to
reaching the upper boundary. This ensures that even if these
waves are reflected at the boundary, they will have to propagate
through the buffer layer again to reach the computational region
ofinterest. This layer serves to diminish the amplitudes of these
aphysical waves to insignificance. Thus, in order to prevent un-
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Fic. 4—Convective instability timescales, (1/|N| in minutes) as a function
of the non-dimensional radius. It can be seen that growth rates of the convective
instabilities lie in the same range as the timescales associated with the acoustic
waves. The instability arises as a direct consequence of the superadiabaticity of
the background model, and since we are not modeling the nonlinear physics of
convection, it is crucial that we prevent this linear instability (described in § 5.5)
from affecting the acoustic signal.

wanted reflections, we introduce buffer layers at each end of the
computational domain via the damping term I'(»)v in equation (2).

One problem associated with using such a lower boundary
buffer layer is in dealing with waves that have inner turning
points located in the midst of the buffer zone. These waves essen-
tially sample the buffer zone and undergo a total internal reflec-
tion only to reemerge corrupted by this aphysical layer. The task
then is to identify and filter out these waves. As explained in § 4
and specifically in equation (9), we can identify the frequency-
wavenumber range of waves which propagate to this depth and
nullify the corresponding part of the £ — w spectrum.

5.5. Convective Instabilities

The Brunt-Viisild frequency indicates whether a medium is
unstable to convection. It is given by (e.g., Christensen-Dalsgaard
2003, chap. 3)

) L@lnp_@lnp
N _g<I‘1 or or )’ @1)

where g is gravity, N is the Brunt-Vaiiséla frequency and I'; is the
first adiabatic exponent, defined in equation (4). The solar con-
vection zone extends all the way from roughly 0.7 R, to the sur-
face. For purposes of discussion, we divide the convection zone
into two regions, 0.7 R < r < 0.996 R, where timescales of
convective growth are considerably larger than acoustic time-
scales (5 minutes), and 0.996 R, < r < 1.0003 R, where the
convective growth rate and acoustic timescales are about equal.
Consider the inner region with slowly growing instabilities first.
Since we are dealing with a linear system, it might at first sight
seem odd that although we restrict acoustic excitation to the band-
width 2000-5500 pHz, we still see instabilities at much lower fre-
quencies. The reasons for this are the finiteness of the excitation
time series, which results in the broadening of the frequency re-
sponse, and numerical round-off errors, which act as broadband
sources.

The outer convective envelope introduces difficulties that
must be treated with greater care. As can be seen in Figure 4,
the instability timescales very close to the surface coincide with
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Fic. 5.—Comparison between the properties of the atmosphere given by
model S (dot-dashed line) and the artificial model (solid line) used in the com-
putation. The horizontal coordinate of all the above panels is the fractional radius,
/R . Panel (a) shows the cutoff frequency dependence with radius; the reflective
property of model S is recovered quite accurately by the artificial model. Panel (b)
is a comparison of the first adiabatic exponents; I'; has been altered to render the
artificial atmosphere convectively stable. Panel (¢) shows sound speed dependence
with radius; the layer extending from 0.9998 R, < r < 1.0007 R, is isothermal,
and therefore the sound speed is constant in that region. Panel () displays the all-
important measure of convective stability, the Brunt-Viiséla frequencys; it can be
seen that the artificial model is subadiabatic in the near surface layer, thus ensur-
ing the convective stability of the outer layers.

the center of the acoustic bandwidth. Since our interest lies in
capturing the interaction of the acoustics with the background
dynamics and not in the direct computation of the convection, we
must devise a means to remove this instability without affecting
the acoustics. One way to accomplish this is to alter the Brunt-
Viisila frequencies. A crucial requirement is that the acoustic
impedance of the surface layers not be changed by much, since
all the acoustic reflection occurs in and around these layers.

It is difficult to alter the timescales of convective growth in
the near-surface layers of model S without rendering the back-
ground model inconsistent. We have therefore replaced the near-
surface layers given by model S, more specifically the region
above 0.98 R, with an alternative empirical description that
satisfies requirements of hydrostatic consistency and convec-
tive stability, and preserves the crucial reflective property of the
solar atmosphere. Equally essential is that the atmosphere be a
smooth extension to the interior (given by model S). Some prop-
erties of the empirical model are shown in Figures 5 and 6 and
listed in Appendix; more details may be found in Hanasoge
(2006). It should be noted that this modification of the back-
ground model allows the temporal window of the simulation to
be extended to several days; longer simulations, on the order of
weeks, are still susceptible to the marginal superadiabaticity ex-
hibited by the interior.

Fic. 6.—Comparison between the properties of the atmosphere given by
model S (dot-dashed line) and the artificial model (solid line) used in the com-
putation. The horizontal coordinate of all the above panels is the fractional radius,
/R . Panels (@) and (b) show the variation of the logarithmic density and pressure
with radius; it can be seen that the two models are quite similar. Panel (c) is a
comparison between temperature profiles; the isothermal nature of the outermost
layers of the artificial model is visible. Panel (d) shows gravity dependence with
radius; the gravity profile of the artificial model is seen to decay more rapidly than
that of model S.

6. VALIDATION

An important indicator of solar wave structure (acoustic, sur-
face gravity) is the power spectrum, which embodies the frequency-
wavenumber response of the system to a specific excitation. It is
typically shown as the squared Doppler velocity as a function of
w and /. In other words, it is the frequency-wavenumber response
of the system to a specific excitation. It can also be understood
as a depiction of the resonant modes of the model. A mixture of
surface-gravity and acoustic modes appear when solar surface
(Doppler) velocities are analyzed. As stated before, the acoustic
modes possess maximum power in the frequency range of 2000—
5500 pHz. In terms of spatial wavenumbers, the solar power
spectrum stretches to extremely high harmonic orders (several
thousand), which are at present computationally infeasible. The
immediate aim is to replicate some part of the low- to medium-
[ (0 <1 < 400) acoustic spectrum of the Sun in the frequency
range described above. We achieve this by exciting waves only
in the specified frequency band. Figure 7 is the log power spec-
trum obtained from a 24 hr long simulation with transmitting
lower and upper boundaries placed at 0.226 and 1.0002 R, re-
spectively. Note that because the short-timescale convective in-
stabilities present in the atmospheric region of the background
model have been removed, we see no power at frequencies be-
low 2000 pHz.

6.1. ADIPACK

A convincing validation of the model is an independent theoreti-
cal computation of the resonant modes followed by a comparison
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Fic. 7—Logarithmic power spectrum for a model that extends from 0.226 to
1.00033 R, The excitation spectrum is a band that approximately encompasses
2000-5500 pHz in frequency and 0-80 in /. The highest /’s contain little or no
power to avoid spatial aliasing. Modes with inner turning points deeper than the
lower simulation boundary are absent from this spectrum. Note that because the
short timescale convective instabilities have been removed, as described in § 5.5,
we see no power at frequencies below 2000 pHz. This spectrum was extracted
from a 24 hr long simulation. [See the electronic edition of the Journal for a color
version of this figure.)

with the simulation. ADIPACK (Christensen-Dalsgaard &
Berthomieu 1991) is a software package that may be employed
to produce resonant mode data for the spherical shell under in-
vestigation. The simulation was performed in a shell that ex-
tended from 0.2 t0 0.975 R, with a transmitting lower boundary
and a radially oscillating upper boundary. The eigenfrequencies
for this simulation were extracted and compared with results
from ADIPACK for a similar model. The comparison result in
Figure 8 displays good agreement between the ADIPACK modes
and the simulation.

6.2. Shifts in Frequencies due to Rotation

We now discuss the validation of the model in the presence of
a background rotation profile. To ensure that these frequency
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Fic. 8.—Comparison between resonant wavemodes computed by ADIPACK
and the simulation. The modes extracted from the simulation are depicted as con-
tours of power, and the ADIPACK frequencies for this model are shown as stars.
Note that for ease of comparison, only one in every five modes that are predicted
by ADIPACK are depicted. The mode frequencies, located at contour centers, are
seen to match closely the frequencies given by ADIPACK. The ridge shapes of
the power spectrum extracted from the simulation agree well with those predicted
by ADIPACK.
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Fic. 9.—The m — v power spectrum with / = 52 for a simulation with pure
rotation, the rate being €2/27 = 4300 nHz. The solid line shows the analytically
calculated trend in the frequency shifts. The frequency resolution of this sim-
ulation was 28 pHz. In the absence of background flows, contours of maximum
power would be lines parallel to the y-axis. Rotation causes frequency splitting,
shifting prograde modes by +m¢? and retrograde modes by —m¢2, as indicated
by the solid line. Note that as expected, all the (shifted) lines are parallel.

shifts can be observed in a short simulation, we artificially am-
plify the average solar rotation rate by a factor of 10,

%(r, 0, ) = 4300 nHz. (22)

In the absence of background flows, resonant wavemode fre-
quencies are characterized only by /, having no dependence on
m. In general, flows induce changes in the resonant frequencies,
and specifically, rotation splits the mode frequencies by £m2,
where m is the azimuthal order, depending on whether the modes
propagate prograde or retrograde with respect to the direction of
rotation. We display the frequency shifts for the / = 52 set of
modes in Figure 9. The frequency resolution of this simulation
was 28 pHz. The frequency shifts extracted from the simula-
tion match the predicted shifts to within the allowed frequency
resolution.

7. SUMMARY AND CONCLUSIONS

A method to perform differential studies of the effects of flows
and asphericites on the acoustic wave field in full spherical geom-
etry has been proposed. We have designed a technique to attempt
the forward problem of helioseismology by performing linear
acoustic simulations in an appropriately perturbed solar-like spher-
ical shell. The utility of developing a means to independently test
the ability of a helioseismological technique to probe various in-
terior phenomena cannot be understated. Artificial data can also
be used to develop the existing methods of helioseismology.

In the past, there have been tests of helioseismology (see, e.g.,
Jensen et al. 2003) that have involved computations of acoustic
wave fields, but none have been performed in spherical geom-
etry. We are currently interested in validating and investigating
the inference of meridional flow, farside helioseismology, per-
forming studies of the tachocline, studying signatures of the con-
vective interior, etc.

We have discussed some of the issues associated with a com-
putation of this kind, methods to overcome them, and various
techniques used in the validation process. The presence of a
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varying background medium introduces several complications
that affect the stability and accuracy of the calculation. For ex-
ample, the choice of an appropriate radial grid is important to
the accuracy of the calculations, given a motivation to minimize
computational cost. Wave propagation in such a medium is quite
different from propagation in media that traditional aero-acoustic
computations are accustomed to. Of course, the side effects of a
changing base state can ease and hinder the computation, as has
been noted.

We have demonstrated a way of filtering out waves based on
their inner turning points, a technique for avoiding tight CFL re-
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strictions and circumventing instabilities created by an unstable
background model. Important to a calculation of this kind is the
need to validate the results. We have shown the utility of the pro-
cess of extracting resonant modes of the domain and techniques
to calculate the modes theoretically. The theoretical calculations
confirmed the results of the numerical computation.

The authors wish to thank Sebastien Couvidat and Phil Scherrer
for their useful comments and suggestions. The work was made
possible with funding from grant NASA MDI NNGO05GH14G.

APPENDIX

EMPIRICAL MODEL OF THE NEAR-SURFACE LAYERS

Properties for the region 0.98 R, < r < 0.9998 R, (R, = 6.959894677 x 10'° cm and r is in centimeters) are given by

po = 1.8068515 x 10'° (

po = 0.001441559o<

__ Ldpo
po dr’
To = Tos,

F] = max(FlS, 14921),

a_
0.998989 R., — r
a =0.998989 R, + 19.1257(r — 0.98 R.)*" cm,

a—r

0.998989 Ry —r

r

3.0358
> dynes cm ™2,

2.0358
P e,

where the subscript S refers to properties described by model S. The region 0.9998 R, < r < 1.0007 R, is described by

Ro —
po=22319.813 exp (JTF> dynes cm 2,

po=9.8535179 x 1078 exp(

H =9x10° cm,

g =25033.357 cm s~

Ty = 8727 K,

Fl = max(l"m 14921)

2
)

R@ —r -3
cm
H g )
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