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Abstract

This is the second paper in a series that considers first-order, gauge-invariant and
covariant, gravitational perturbations to locally rotationally symmetric (LRS)
class II vacuum spacetimes. Focusing on the 1+1+2 gravito-electromagnetic
(GEM) formalism, the first paper used linear algebra techniques to derive four
decoupled equations that govern four specific combinations of the GEM 2-
tensor harmonic amplitudes. This paper completes the decoupling of the 1+1+2
GEM system by showing how to derive seven new decoupled quantities. Four
of these arise when considering the GEM 2-vector harmonic amplitudes and it
is found that decoupling is achieved by combining these with the (2/3-sheet)
shear 2-tensor harmonic amplitudes. The remaining three arise from the 1+1+2
GEM scalars. Two of which concern the 2-gradient of the gravito-electric scalar
that must also be combined with shear 2-tensor amplitudes, whereas the other
involves the gravito-magnetic scalar only.

PACS numbers: 04.25.Nx, 04.20.−q, 04.40.−b, 03.50.De, 04.20.Cv

1. Introduction

Clarkson and Barrett’s, gauge-invariant and covariant, 1+1+2 formalism [2, 3] is very well
suited for describing locally rotationally symmetric (LRS) spacetimes [4–6]. This formalism
was first developed in [2] for an analysis of vacuum gravitational perturbations to a covariantly
defined Schwarzschild spacetime, and was later used to study first-order electromagnetic (EM)
perturbations to both LRS class II spacetimes in [7–9] and LRS spacetimes in [10, 11].

In [9], we expressed Maxwell’s equations in a new 1+1+2 complex form that was
convenient for decoupling the first-order 1+1+2 EM 2-vectors and scalars. It was discovered
that there exists four specific combinations of the EM 2-vector amplitudes that decouple and
these were separated into polar {Ev +B̄v,Ev −B̄v} and axial {Bv + Ēv,Bv − Ēv} perturbations.
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Subsequent to this, the first paper in this series [1], hereafter paper I, presented an analysis
of 1+1+2 first-order gravitational and energy–momentum perturbations to vacuum LRS class
II spacetimes. The focus was on demonstrating how to decouple specific components of the
gravito-electromagnetic (GEM) 2-tensors Eμν and Hμν . It is well established that the GEM
formalism has remarkably similar features when compared to the EM formalism [12, 13].
Thus, based on the success of the methods used in [9], we applied the same eigenvector
analysis to the 1+1+2 GEM formalism. This ultimately leads to the discovery that there are
four specific combinations of the GEM 2-tensor amplitudes that decouple and these may also
be categorized into polar {ET + H̄T, ET − H̄T} and axial {HT + ĒT,HT − ĒT} perturbations. This
once again illustrates the strong similarities between the GEM and EM formalisms when one
makes the direct correspondence between ET ↔ Ev and HT ↔ Bv.

To complete the decoupling of Maxwell’s equations it is also possible to decouple
equations for the EM scalars, E and B, and their corresponding scalar harmonic amplitudes,
Es and Bs. This was initially demonstrated in [7], and later reproduced and analyzed further
by using the new 1+1+2 complex formalism in [9]. The purpose of this paper is to complete
the decoupling of the first-order 1+1+2 GEM formalism, as presented in paper I, by showing
how to decouple an additional seven new quantities. This is achieved by constructing specific
combinations of the GEM 2-vectors and scalars with the 2/3-sheet shear 2-tensors. Four of
these quantities concern the GEM 2-vectors whereas the remaining three govern the GEM
scalars. Furthermore, this analysis also demonstrates the decoupling between the gravito-
magnetic and gravito-electric scalars.

In this series, the decoupling has been achieved in two levels. Paper I first demonstrated
how to decouple the complex GEM 2-tensor, �μν := Eμν + iHμν , which was useful for inferring
that the GEM 2-tensors clearly decouple from the remaining GEM 2-vectors and scalars.
General harmonic expansions [1–3, 7] of the GEM 2-tensors were then useful for pushing
the decoupling further for a more pragmatic result, i.e. the four real decoupled equations
as mentioned above. This paper follows a similar trend by first decoupling newly defined
2-vectors, and subsequently, uses harmonic expansions to ultimately result in seven decoupled
quantities. The use of harmonic expansions to render equations into a more pragmatic form has
been traditionally used throughout the literature. Spherical harmonic expansions were used to
derive the famous Regge–Wheeler (RW) [14] equation that govern the metric perturbations of
a Schwarzschild spacetime (also see [15] for a collection of some important developments).
Other examples include perturbations of higher-dimensional spacetimes by Kodama et al
[16, 17] who used the harmonic expansions defined by [18–20] to derive decoupled
equations for their perturbation variables, essentially generalizing four-dimensional cases by
[21, 22].

Some typical vacuum LRS class II applications include the Schwarzschild spacetime,
which can be easily expressed using a variety of different choices for the frame vectors.
Such as the traditional static metric, freely falling observers, or even the recently discovered
‘generalized Painleve–Gullstrand’ (GPG) coordinate systems [23]. LRS class II also applies
to some spatially homogeneous and anisotropic vacuum Bianchi models. For example, the
Kasner line element, ds2 = dt2 − t2p1 dx2 − t2p2 dy2 − t2p3 dz2 where the constants p1, p2

and p3 satisfy p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1, describes the vacuum Bianchi I models

[24], which are in general not LRS. However, it is possible to make specific choices for the
constants such that it reduces to LRS class II and hence a subset of vacuum Bianchi I [25].

In section 2, a brief qualitative review of the background LRS class II vacuum spacetime is
given as well as the corresponding first-order gravitational and energy–momentum perturbation
variables. There is also a summary of the important results arising from paper I. Section 3
explains the immediate complications that arise when attempting to use the 1+1+2 complex
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GEM system for further decoupling, and how a specific choice of new dependent variables
overcomes these issues. Sections 4 and 5 then deliver a treatment of the GEM 2-vectors and
scalars respectively. A summary then collates the results obtained here with the results from
paper I. Finally, we adhere to the notations and conventions of paper I and [2].

2. Preliminaries

This section presents a qualitative introduction to the notation used throughout this paper and
also a brief summary of the main results from paper I. For further information, refer to [2] for
the initial derivation of Clarkson and Barrett’s 1+1+2 formalism and see [1, 3, 7, 10, 11] for
later developments.

2.1. Background LRS class II spacetimes

The background comprises the most general vacuum LRS class II spacetime where there exists
a preferred spatial direction indicated by the radial vector nμ [2]. These spacetimes are defined
by six non-vanishing scalars,

LRS class II : {A, θ, φ,�, E,�}. (1)

Here, A is the radial acceleration of the 4-velocity, θ and φ are respectively the expansions of
the 3-sheets and 2-sheets, and � is the radial part of the shear of the 3-sheet. The radial part
of the gravito-electric tensor is E , and finally, � is the cosmological constant.

The background 1+1+2 Ricci identities, for both the timelike 4-velocity (uμ) and the
spacelike radial vector, and the Bianchi identities yield a set of evolution, transportation and
constraint equations governing these scalars. Those specific to this analysis can be seen in
paper I and they can also be found in [3, 7–10].

2.2. First-order gravitational and energy–momentum perturbations

The gravitational and energy–momentum perturbations on the background LRS class II
spacetimes are quantities of first-order (ε) and are reproduced from paper I,

first-order scalars: {ξ,
,H, μ, p,Q,�} = O(ε), (2)

first-order 2-vectors: {aμ, αμ,Aμ,
μ,�μ, Eμ,Hμ, V μ,Wμ,Xμ, Yμ, Zμ,Qμ,�μ}
= O(ε), (3)

first-order 2-tensors: {Eμν,Hμν, ζμν,�μν,�μν} = O(ε). (4)

The first-order scalars can be described as follows; ξ is the twisting of the 2-sheet, 
 is
the radial part of the vorticity of the 3-sheet and the radial part of the gravito-magnetic
tensor is H. The energy–momentum quantities, mass–energy density, pressure, radial heat
flux and radial anisotropic stress are denoted respectively μ,p,Q and �. The first-order
2-vectors are the acceleration aμ, the projection onto 2-sheets of the ‘dot’ derivative of
the radial vector produces αμ, and similarly the projection of the ‘dot’ derivative of the 4-
velocity gives Aμ. The vorticity 2-vector is 
μ, whereas �μ, Eμ and Hμ arise from the
1+1+2 decomposition of the shear of the 3-sheet and the GEM tensors respectively. The next
five terms were defined in paper I in order to maintain a gauge-invariant theory (according
to the Sachs–Stewart–Walker lemma [26, 27]) and this was initiated in [2]. They consist
of 2-gradients, δμ is the covariant 2-derivative associated with the 2-sheets, according to
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Vμ := δμ

(
� + 1

3θ
)
,Wμ := δμ

(
� − 2

3θ
)
, Xμ := δμE, Yμ := δμφ and Zμ := δμA. Finally,

the energy–momentum 2-vectors are Qμ and �μ which are related to flux and anisotropic
stresses respectively. The first-order GEM 2-tensors are Eμν and Hμν , the 2-tensors describing
the shear of the 2/3-sheets are respectively ζμν and �μν , and finally, �μν is the anisotropic
stress which has been projected onto the 2-sheets. In general, the quantities (2)–(4) will not
be frame invariant as they will depend on the choice of first-order 4-velocity and radial vector
and this issue is discussed in greater detail in [2].

Finally, the first-order 1+1+2 Ricci identities and twice contracted Bianchi identities give
a system of differential equations governing the gauge-invariant perturbation quantities. They
are not reproduced here but should be referred to in paper I along with important commutation
relationships between various derivative operators (they can also be seen in [3] for LRS
spacetimes).

2.3. Summary of paper I

The primary results from paper I involved using an eigenvector and eigenvalue analysis to
rewrite the 1+1+2 GEM system in a new complex form according to(
Ln +

3

2
φ

)
Cμ̄ + δμδα�α +

3

2
E
[
Yμ − φaμ − 2

(
� − 2

3
θ

)
εμ

α
α + i2δμ


]
= δμG, (5)

(
Lu − 3

2
� + θ

)
Cμ̄ + iδμ(εαβδα�β) − 3

2
E
[
Aμ

(
� − 2

3
θ

)

+ φ(�μ − εμ
α
α + αμ) + Wμ − i2δμξ

]
= δμF, (6)

(Ln + φ)�μ̄ + δα�μα − 1

2
Cμ − i

3

2
�εμ

α�α +
3

2
E�μ = Gμ, (7)

(
Lu − � +

2

3
θ

)
�μ̄ + iεμ

αδβ�αβ + i
1

2
εμ

α [Cα − (2A − φ)�α] +
3

2
Eϒμ = Fμ, (8)

(
Lu +

5

2
� +

1

3
θ

)
�μ̄ν̄ − iε(μ

α

(
Ln + 2A − 1

2
φ

)
�ν̄)α + iε{μαδ|α|�ν} +

3

2
E�μν = Fμν, (9)

where complex variables were defined

Cμ := Xμ + iδμH, �μ := Eμ + iHμ and �μν := Eμν + iHμν. (10)

Various other natural definitions also arose,

ϒμ := αμ + iεμ
αAα, �μ := aμ + iεμ

α
(
�α + εα

β
β

)
and �μν := �μν + iε(μ

αζν)α. (11)

Furthermore, the following quantities are all explicitly defined in paper I; εμν is the Levi-
Civita 2-tensor, Lu and Ln are Lie derivatives with respect to uμ and nμ respectively, and
the first-order complex energy–momentum sources are G,F,Gμ,Fμ and Fμν . Using (5)–(9),
along with the 1+1+2 Ricci identities and commutation relationships from paper I, a relatively
simple decoupled equation was achieved,

[(Lu + θ)Lu − (Ln + A + φ)Ln − V ]�μν

− i ε(μ
α [(4A − 2φ)Lu − 6�Ln + U ] �ν)α = Mμν, (12)

where the potentials V and U and source Mμν are also in paper I. This clearly indicated the
decoupling of the complex GEM 2-tensor, �μν , from the remaining 1+1+2 GEM 2-vectors
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and scalars. The GEM 2-tensors (and energy–momentum terms) were then expanded using
generic tensor harmonics,

Eμν = ETQμν + ĒTQ̄μν and Hμν = HTQμν + H̄TQ̄μν, (13)

where Qμν and Q̄μν are generic even and odd 2-tensor harmonics as defined in paper I.1

Furthermore, {ET, H̄T} and {HT, ĒT} are the corresponding polar and axial perturbation
amplitudes respectively. Ultimately, four specific combinations of these amplitudes were
shown to decouple, namely,

Decoupled polar perturbations: {ET + H̄T, ET − H̄T}, (14)

Decoupled axial perturbations: {HT + ĒT,HT − ĒT}. (15)

The remainder of the paper focuses on how to decouple an additional seven quantities.

3. Choosing new 1+1+2 GEM variables

In two recent papers, we successfully showed how to fully decouple EM perturbations to LRS
class II spacetimes in [9] and to LRS spacetimes in [10]. There were two primary reasons that
full decoupling could be achieved in these cases. First we expressed the 1+1+2 EM system
in a complex form that was conducive to decoupling. Second, the first-order EM fields were
the only first-order quantities in the system; other than first-order energy–momentum sources.
This is in contrast to the 1+1+2 complex GEM system (5)–(9) as it does not only depend on
the 1+1+2 GEM quantities. By inspection, it is clearly coupled to the 1+1+2 Ricci identities
(see paper I and [3]) through first-order terms such as 
, ξ,�μ,ϒμ,Wμ, Yμ and �μν . This
additional complication compared to the EM system did not hinder the process of decoupling
�μν in paper I, as the 1+1+2 Ricci identities and twice contracted Bianchi identities were used
to successfully remove these miscellaneous terms.

However, immediate difficulties arise when attempting to construct a decoupled equation
for �μ by taking the Lie derivative with respect to uμ of (8). It follows that one must have
an equation to eliminate LuAμ, but no such equation arises naturally from the 1+1+2 Ricci
identities. Therefore, new dependent variables are chosen and higher-order derivatives are
constructed to incorporate these miscellaneous terms thereby alleviating this complication.

A new operator is defined to be (δ2 + K), where δ2 := δαδα is the 2-Laplacian and K is
the Gaussian curvature as in [1, 7],

K = 1
4φ2 − 1

4

(
� − 2

3θ
)2 − E + 1

3�, (16)

(Ln + φ)K = 0 and
(
Lu − � + 2

3θ
)
K = 0. (17)

Furthermore, for textual simplicity we introduce new notation according to

(δ2 + K)�μ···ν := �̌μ···ν, (18)

where �μ···ν represents any quantity that has been entirely projected onto the 2-sheets. It is
also important to specify the commutation relationships for this operator,

(δ2 + K)Lu�μ̄···ν̄ = (
Lu − � + 2

3θ
)
�̌μ̄···ν̄ , (19)

(δ2 + K)Ln�μ̄···ν̄ = (Ln + φ)�̌μ̄···ν̄ . (20)

1 The definition of harmonic functions used here and in paper I follows from those defined by [2, 7].
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It is also required to know how the Lie derivatives commute with the 2-divergence,

δαLu�α···μ̄ = (
Lu − � + 2

3θ
)
δα�α···μ̄, (21)

δαLn�α···μ̄ = (Ln + φ)δα�α···μ̄. (22)

In paper I, we specified the evolution and propagation equations for �μν and here we take the
2-divergence of those results to yield

(Ln + φ)(εμ̄
αδβ�αβ) − iδα�μα − 1

2φεμ
αδβ�αβ − 3

2�εμ
αδβζαβ

+ i
(
� + 1

3θ
)
δα�μα + i 1

2 �̌μ = i 1
2δα�μα, (23)

(
Lu − � + 2

3θ
)
δα�μ̄α + δα�μα − iAεμ

αδβ�αβ + i 1
2φεμ

αδβ�αβ

+ i 1
2

(
� − 2

3θ
)
εμ

αδβζαβ − i 1
2εμ

αϒ̌α = 1
2δα�μα. (24)

Now operate on the propagation and evolution equations for Cμ, i.e. (5) and (6) respectively,
with the new operator and make use of the commutation relationships (19) and (20). In
order to remove miscellaneous terms, it was then necessary to combine the results into a
single transportation equation (25). Then by operating on (7), (8) and using (23), (24) yields
(26), (27) respectively. Finally, by taking the 2-divergence of (9) and using the commutation
relationships (21), (22) results in (28),

(
Lu − 5

2� + 5
3θ

)
�μ + iεμ

α
(
Ln + 5

2φ
)
�α + iεμ

α(δ2 − K − 3E)�α

− 3E
[(

� − 2
3θ

)
�μ + iφεμ

α�α

] = Tμ, (25)

(Ln + 2φ)�μ̄ − i 3
2�εμ

α�α − 1
2�μ + (δ2 + K + 3E)�μ = Ǧμ, (26)(

Lu − 2� + 4
3θ

)
�μ − iεμ

α
(
A − 1

2φ
)
�α + i 1

2εμ
α�α + i(δ2 + K + 3E)εμ

α�α = F̌μ, (27)(
Lu + 3

2� + θ
)
�μ̄ − iεμ

α
(
Ln + 2A + 1

2φ
)
�α + i 1

2εμ
α�α = δαFμα. (28)

The new dependent variables have been defined

�μ := Čμ − 3E
[
φδαζμα +

(
� − 2

3θ
)
δα�μα + δα�μα

]
, (29)

�μ := �̌μ + i3Eεμ
αδβ�αβ, (30)

�μ := δα�μα, (31)

and the new energy–momentum source term is

Tμ := (
δμF + iεμ

αδαG
)̌

+ 6EδαFμα. (32)

Thus, the new 1+1+2 GEM system (25)–(28) now involves only three first-order quantities
�μ,�μ and �μ (and energy–momentum sources). The first paper (paper I) has already
demonstrated how to decouple �μν and thus decoupling �μ is not of primary interest here, as
this result may be readily obtained. The purpose of the remainder of this paper is to illustrate
how to decouple �μ and �μ.

The process used here of constructing higher-order derivatives to simplify the GEM system
in order to decouple particular quantities is traditionally standard practice. It is a ‘textbook’
example in Minkowski spacetime to decouple the electric and magnetic fields by constructing
decoupled second-order differential equations from the first-order differential coupled system.
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Furthermore, as already pointed out, the EM decoupling problem has now been solved for the
generalized cases of LRS class II spacetimes in [7, 9] and for LRS spacetimes in [10]. Since
the original 1+1+2 GEM system (25)–(28) is substantially more complicated here, we have
had to construct even higher-order derivatives by operating with the 2-Laplacian. Moreover,
the properties of the 2-Laplacian are very well known and is comfortably manipulated using
harmonic expansions in the following sections.

As a final note, the 2-divergence of anisotropic stress 2-tensor (δα�μα) is combined with
the new definition of �μ in (29). We consider �μν to be an energy–momentum source and
thus would usually place this term on the right-hand side of the equations to indicate this.
However, the way in which it arises in the definition for �μ is very natural and so as an
exception we choose to leave it on the left-hand side.

4. Decoupling Ψμ and its vector harmonic amplitudes

It is now possible to use the new GEM system (25)–(28) to derive a decoupled equation
governing �μ. Take the Lie derivative with respect to uμ of (27) and follow a similar process
to that described in paper I for decoupling the complex GEM 2-tensor. However, one additional
step is required to achieve full decoupling by operating one final time with (δ2 + K + 3E) to
obtain,

{δ2 + K + 3E}{[(Lu − 3� + 3θ)Lu − (Ln + A + 4φ)Ln − A]�μ̄

+ iεμ
α[−(2A − φ)Lu + 3�Ln − B]�α

} − 3
2E

[
φNμ

α + i
(
� − 2

3θ
)
εμ

α
]

× [
iεα

β
(
Lu − 7

2� + 4
3θ

)
�β +

(
Ln − A + 5

2φ
)
�α

] = Sμ, (33)

where the terms related to the potentials are

A := δ2 − A2 + 11
4 φ2 + Aφ − 4E − 3

4�2 + 4�θ − 4
3θ2 − �, (34)

B := Ȧ − 3
2 �̂ − 4A

(
� − 2

3θ
) − φ

(
19
4 � + 4

3θ
)
, (35)

the energy–momentum source is

Sμ := {δ2 + K + 3E}{−i2εμ
α(δ2 + K + 3E)δβFαβ

+
[
Nμ

α
(
Lu + 1

2� + 5
3θ

) − iεμ
α
(
Ln + 2A + 3

2φ
)][

Ǧα + iεα
γ F̌γ

]}
− 3

2E
[
φNμ

α + i
(
� − 2

3θ
)
εμ

α
][
Ǧα + iεα

βF̌β

]
, (36)

and Nμν is the projection tensor for the 2-sheets.
Whilst (33) appears rather complicated in its present state, it does clearly demonstrate

the decoupling of �μ from the remaining quantities. It is also important to observe that this
is both gauge-invariant and covariant, and includes a full description of energy–momentum
sources. Furthermore, (33) will become more manageable once 2-vector harmonic expansions
have been made in the following section resulting in four real decoupled equations.

4.1. Decoupling harmonic amplitudes of �μ

In order to decouple (33) further, we use the arbitrary 2-vector harmonic expansion as given
in paper I,

�μ = �vQμ + �̄vQ̄μ and Sμ = SvQμ + S̄vQ̄μ, (37)
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where Qμ and Q̄μ are the even and odd 2-vector harmonics initially described in [2, 7], and
�v and �̄v are the corresponding harmonic amplitudes. Using this expansion, (33) yields two
complex equations,

f

{[
Lu − 4� +

11

3
θ − 3

2f
E
(

� − 2

3
θ

)]
Lu −

[
Ln + 5φ + A +

3

2f
Eφ

]
Ln − Ã

}
�v

+ if

{[
2A − φ +

3

2f
Eφ

]
Lu −

[
3� − 3

2f
E
(

� − 2

3
θ

)]
Ln + B̃

}
�̄v = Sv,

(38)

f

{[
Lu − 4� +

11

3
θ − 3

2f
E
(

� − 2

3
θ

)]
Lu −

[
Ln + 5φ + A +

3

2f
Eφ

]
Ln − Ã

}
�̄v

− if

{[
2A − φ +

3

2f
Eφ

]
Lu −

[
3� − 3

2f
E
(

� − 2

3
θ

)]
Ln + B̃

}
�v = S̄v

(39)

where

f := −k2

r2
+ 5K + 3E, (40)

Ã := f − A2 +
19

4
φ2 + Aφ − 5E − 7

4
�2 +

19

3
θ� − 22

9
θ2,

+
3

2f
E
[
φ(3φ − A) −

(
� − 2

3
θ

)(
4� − 5

3
θ

)]
− 5

3
�, (41)

B̃ := LuA − 3

2
Ln� − 5A

(
� − 2

3
θ

)
− φ

(
27

4
� + θ

)

− 3

2f
E
[
A

(
� − 2

3
θ

)
+ φ

(
� +

1

3
θ

)]
. (42)

The scalar function r, and k, both arise from the harmonic expansions of the 2-Laplacian as
defined [1, 7],(
Ln − 1

2φ
)
r = 0,

(
Lu + 1

2� − 1
3θ

)
r = 0 and δμr = 0. (43)

These two complex equations (38), (39) are much more manageable as the 2-Laplacians in
(33) have been resolved into harmonics leaving a scalar function, f , in its place. However,
they still form a coupled system. Thus, similar to the analysis of the 2-tensor harmonics in
paper I, (38), (39) are invariant under the simultaneous transformation of the form �v → �̄v

and �̄v → −�v (when the energy–momentum sources vanish or transform accordingly).
Therefore, the eigenvector/eigenvalue analysis we presented in [9] also applies here and this
shows that in order to decouple this system one needs to construct the complex combinations

�± := �v ± i�̄v and S± := Sv ± iS̄v. (44)

Thus, (38), (39) result in decoupled complex equations of the form

f

{[
Lu − 4� +

11

3
θ + (2A − φ) − 3E

2f

(
� − 2

3
θ − φ

)]
Lu

−
[
Ln + 5φ + A + 3� − 3E

2f

(
� − 2

3
θ − φ

)]
Ln − Ã + B̃

}
�+ = S+, (45)
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f

{[
Lu − 4� +

11

3
θ − (2A − φ) − 3E

2f

(
� − 2

3
θ + φ

)]
Lu

−
[
Ln + 5φ + A − 3� +

3E
2f

(
� − 2

3
θ + φ

)]
Ln − Ã − B̃

}
�− = S−. (46)

Since the differential operator in (45)–(46) is completely real and the dependent variables,
�±, are complex, there are in fact four real decoupled equations which can be readily found
by taking the real and imaginary parts of (45), (46) separately.

It is now of interest to see how these relate to the original GEM 2-vectors and other 1+1+2
quantities. We expand the 2-tensors describing the shear of the 2/3-sheets using the arbitrary
2-tensor harmonics,

�μν = �T Qμν + �̄T Q̄μν and ζμν = ζT Qμν + ζ̄T Q̄μν.

Then, by using the definitions (10), (11), (30) and (44), the four quantities that each decouple
are

�[�+] = f̃
[(
Ev + 3

2ErζT
) − (H̄v + 3

2Er�T
)]

, (47)

�[�−] = f̃
[(
Ev + 3

2ErζT
)

+ (H̄v + 3
2Er�T

)]
, (48)

�[�+] = f̃
[(
Hv + 3

2Er�̄T
)

+
(
Ēv − 3

2Erζ̄T
)]

, (49)

�[�−] = f̃
[(
Hv + 3

2Er�̄T
) − (

Ēv − 3
2Erζ̄T

)]
, (50)

where f̃ := f − 3K − 3E . Moreover, the four specific combinations may be separated into
their polar and axial parts according to

polar: f̃
{(
Ev + 3

2ErζT
) − (

H̄v + 3
2Er�T

)
,
(
Ev + 3

2ErζT
)

+
(
H̄v + 3

2Er�T
)}

, (51)

axial: f̃
{(
Hv + 3

2Er�̄T
)

+
(
Ēv − 3

2Erζ̄T
)
,
(
Hv + 3

2Er�̄T
) − (

Ēv − 3
2Erζ̄T

)}
. (52)

Finally, it is also clear that if one were to integrate the four decoupled equations (a non-trivial
task) then linear combinations of the solutions would reveal each of

(
Ev + 3

2ErζT
)
,
(
H̄v +

3
2Er�T

)
,
(
Hv + 3

2Er�̄T
)

and
(
Ēv − 3

2Erζ̄T
)
.

As a final comment, we note that one of these latter terms is also found in the application
presented by [2]. Therein, they analyzed a Schwarzschild spacetime for which the background
consists of only three non-vanishing scalars (A, φ, E) and were able to demonstrate that the
Zerilli variable, Z = 1

3φE−1[(� − 1)(� + 2) − 3Er2]−1
(
H̄v + 3

2Er�T
)

where � is the spherical
harmonic degree, satisfies a decoupled Zerilli [21] equation. It is currently an open problem to
generalize this for arbitrary LRS class II spacetimes, and if possible, it would be an excellent
supplement to the results demonstrated here.

5. Decoupling Ξμ and its harmonic amplitudes

In order to decouple �μ, we take the Lie derivative of (25) with respect to uμ and after much
manipulation, we find[(

Lu − 4� + 11
3 θ

)
Lu − (Ln + A + 5φ)Ln − W

]
�μ̄ = Mμ, (53)

where the potential and energy–momentum source are

W := δ2 + 19K + 12E − 10�, (54)

9
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Mμ := (
Lu − 3

2� + 2θ
)
Tμ − iεμ

α
(
Ln + A + 5

2φ
)
Tα + 3E

(
� − 2

3θ
)
δαFμα

+ i3Eφεμ
αδβFαβ + (δ2 − K − 3E)(Ǧμ − iεμ

αF̌α). (55)

This clearly demonstrates the decoupling of �μ from the remaining first-order quantities. In
addition, we are able to push the decoupling even further as the differential operator in (53) is
real and thus it is also possible to consider the real and imaginary parts of �μ separately,

�[�μ] := (δ2 + K)Xμ − 3Eδα
[
φζμα +

(
� − 2

3θ
)
�μα + �μα

]
, (56)

�[�μ] := (δ2 + K)δμH, (57)

which demonstrates the decoupling between the 1+1+2 GEM scalars. The gravito-magnetic
scalar is entirely contained in the decoupled quantity (57). The gravito-electric scalar is
contained entirely in (56) and also requires an additional 2-divergence term involving the
2/3-sheet shears and the anisotropic stress.

5.1. Decoupling harmonic amplitudes of �μ

The dependent variable �μ and the energy–momentum source Mμ are expanded into 2-vector
harmonics according to

�μ = �vQμ + �̄vQ̄μ and Mμ = MvQμ + M̄vQ̄μ. (58)

Therefore, (53) naturally decouples into

[(
Lu − 5� + 13

3 θ
)
Lu − (Ln + 6φ + A)Ln − W̃

]
�v = Mv, (59)[(

Lu − 5� + 13
3 θ

)
Lu − (Ln + 6φ + A)Ln − W̃

]
�̄v = M̄v, (60)

and the new potential has been defined

W̃ := −k2

r2
+ 30K + 21E − 42

3
�. (61)

Now since the differential operators in (59), (60) are purely real (they are also identical), the
real and imaginary parts may again be considered separately. It is of interest to see how the
amplitudes of �μ are related back to the amplitudes of the GEM scalars and other 1+1+2
quantities. The 2-gradient of the gravito-electric scalar is expanded in terms of 2-vector
harmonics and the gravito-magnetic scalar in terms of scalar harmonics according to

Xμ := XvQμ + X̄vQ̄μ and H := HsQ. (62)

Here, Q is the scalar harmonic function defined in paper I (this definition was initially given
in [2, 7]). Then, by using the definitions (56) and (57), it follows that

�[�V ] = f̃

{
XV − 3

2
Er

[
φζT +

(
� − 2

3
θ

)
�T + �T

]}
, (63)

�[�̄V ] = f̃

{
X̄V +

3

2
Er

[
φζ̄T +

(
� − 2

3
θ

)
�̄T + �̄T

]}
, (64)

�[�v] = f̃

r
Hs, (65)

�[�̄v] = 0, (66)

10
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where the anisotropic stress 2-tensor has also been expanded according to �μν = �TQμν +
�̄TQ̄μν . Therefore, there are actually only three non-trivial equations here. One of them
governs the gravito-magnetic scalar harmonic amplitude, Hs, whereas the remaining two
govern the 2-gradient of the gravito-electric scalar combined with the 2-divergence of the
2-tensors for the shear of the 2/3-sheets and the anisotropic stress.

The factors, f̃ and r, that arise from the harmonic expansions can be differentiated and
factorized if desired. For example, the decoupled equation governing Hs (i.e. taking the
imaginary part of (59)) becomes

f̃

r

[(
Lu − 2� +

7

3
θ

)
Lu − (Ln + A + 3φ)Ln − VH

]
Hs = �[MV ], (67)

where

VH := −k2

r2
+

3

2
φ2 − 6E − 3

2

(
� − 2

3
θ

)2

− 10

3
�. (68)

By inspecting the first-order constraints from paper I, the first-order gravito-magnetic scalar
is directly related to first-order twisting effects of the 2-sheets and first-order vorticity effects
of the 3-sheets.

Summarily, the three quantities which each decouple are categorized into polar and axial
perturbations according to

decoupled polar perturbations:
{
XV − 3

2Er
[
φζT +

(
� − 2

3θ
)
�T + �T

]}
, (69)

decoupled axial perturbations:
{
X̄V + 3

2Er
[
φζ̄T +

(
� − 2

3θ
)
�̄T + �̄T

]
,Hs

}
. (70)

Finally, we comment on how these results are related to previous work throughout the
literature. In the particular Schwarzschild spacetime example, a RW-type equation that governs
what is referred to as a RW 2-tensor, Wμν , was derived by [2]. Thus in this case, the
real part of �μ simplifies and is related to the 2-divergence of the RW tensor according
to �[�μ] = −6E/r2δαWμα . Furthermore, by once again reducing to a Schwarzschild
background, equation (67) corresponds precisely to that presented in [28] using the Newman–
Penrose (NP) formalism [29].2 This is achieved by expressing the 1+1+2 frame vectors in
terms of the NP null vectors as indicated in [10], and consequently, the 1+1+2 gravito-
magnetic harmonic scalar can be written in terms of the zero spin-weighted NP scalar. Finally,
after transforming to the famous tortoise coordinate and introducing a scaling factor of r3, a
precise correspondence is achieved.

6. Summary

We have provided a comprehensive decoupling analysis of the first-order 1+1+2 complex
GEM system. The first paper decoupled the first four quantities and set the foundation for
future work. This paper delivered the final seven decoupled quantities. Summarily, the 11
decoupled quantities are categorized according to

decoupled polar perturbations:

{
(ET + H̄T), (ET − H̄T),

f̃

[(
Ev +

3

2
ErζT

)
−

(
H̄v +

3

2
Er�T

)]
, f̃

[(
Ev +

3

2
ErζT

)
+

(
H̄v +

3

2
Er�T

)]
,

f̃

[
Xv − 3

2
Er

[
φζT +

(
� − 2

3
θ

)
�T + �T

]]}
(71)

2 In the Schwarzschild case, (67) from this paper may be transformed and scaled to achieve equation (56a) from
[28].
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decoupled axial perturbations:

{
(HT + ĒT), (HT − ĒT),

f̃

[(
Hv +

3

2
Er�̄T

)
+

(
Ēv − 3

2
Erζ̄T

)]
, f̃

[(
Hv +

3

2
Er�̄T

)
−

(
Ēv − 3

2
Erζ̄T

)]
,

f̃

[
X̄v +

3

2
Er

[
φζ̄T +

(
� − 2

3
θ

)
�̄T + �̄T

]]
,
f̃

r
Hs

}
. (72)

From the three 1+1+2 tensors decoupled in this series, the RW equation governing �μ is the
most straightforward to solve. This is primarily because of its simple form (as also noted by
[2]) and also because it is a well-studied equation from a numerical point of view, especially in
the case of vacuum perturbations. Once the RW equations have been solved, those results may
then be used to calculate the remaining perturbation quantities. From a more astrophysical
point of view, in the case of energy momentum perturbations, it is possible for the complexity
of the first-order energy–momentum sources to have a strong influence on how the equations
are solved. One should consider the RW equation first, but if this proves too difficult then it
is possible for one of the other equations to take primary focus.

Thus far we have established a direct connection between the RW 2-vector, �μ, and the
2-divergence of the RW 2-tensor, δαWμα , from [2]. In a forthcoming paper we will choose
new variables yet again, and consequently, demonstrate how to avoid the ‘2-divergence’
part thereby revealing a relationship between the full RW 2-tensor and some newly defined
quantities.

There are two remaining primary areas of research to be undertaken in this series. One
is to present the various options that arise for solving the decoupled 1+1+2 GEM system and
it will be shown that there are only two dynamical quantities. Furthermore, it will also be
demonstrated how the solution of the 1+1+2 GEM system aides in subsequently solving the
1+1+2 Ricci identities. The other area of research will embark on astrophysical applications
that demonstrate all the features presented. The complexity of the equations will most likely
require numerical analysis, and since the background spacetime is LRS class II, the applications
may be posed as an initial-value problem.

Acknowledgments

Thanks are due to Dr Paul Lasky for proofreading this manuscript and also to Maple for
providing the means to accurately crosscheck the results presented here with the literature.

References

[1] Burston R B 2008 Class. Quantum Grav. 25 075004
[2] Clarkson C and Barrett R 2003 Class. Quantum Grav. 20 3855–84
[3] Clarkson C 2007 Phys. Rev. D 76 104034
[4] Ellis G F R 1967 J. Math. Phys. 8 1171
[5] Stewart J M and Ellis G F R 1968 J. Math. Phys. 9 1072
[6] Elst H and Ellis G F R 1996 Class. Quantum Grav. 13 1099–127
[7] Betschart G and Clarkson C 2004 Class. Quantum Grav. 21 5587–607
[8] Clarkson C, Marklund M, Betschart G and Dunsby P 2004 Astrophys. J. 613 492–505
[9] Burston R B 2008 Class. Quantum Grav. 25 075002

[10] Burston R B and Lun A W C 2008 Class. Quantum Grav. 25 075003
[11] Burston R B and Lun A W C 2006 arXiv:gr-qc/0611052v1
[12] Bel L 1958 C. R. Acad. Sci. 247 1094
[13] Maartens R and Bassett B 1998 Class. Quantum Grav. 15 705–17

12

http://dx.doi.org/10.1088/0264-9381/25/7/075004
http://dx.doi.org/10.1088/0264-9381/20/18/301
http://dx.doi.org/10.1103/PhysRevD.76.104034
http://dx.doi.org/10.1063/1.1705331
http://dx.doi.org/10.1063/1.1664679
http://dx.doi.org/10.1088/0264-9381/13/5/023
http://dx.doi.org/10.1088/0264-9381/21/23/018
http://dx.doi.org/10.1086/422497
http://dx.doi.org/10.1088/0264-9381/25/7/075002
http://dx.doi.org/10.1088/0264-9381/25/7/075003
http://www.arxiv.org/abs/gr-qc/0611052
http://dx.doi.org/10.1088/0264-9381/15/3/018


Class. Quantum Grav. 25 (2008) 235004 R B Burston

[14] Regge T and Wheeler J 1957 Phys. Rev. 108 1063
[15] Thorne K 1980 Rev. Mod. Phys. 52 299–339
[16] Kodama H and Ishibashi A 2003 Prog. Theor. Phys. 110 701–22
[17] Kodama H and Ishibashi A 2004 Prog. Theor. Phys. 111 29–73
[18] Kodama H and Sasaki M 1984 Prog. Theor. Phys. Supp. 78 1–166
[19] Mukohyama S 2000 Phys. Rev. D 62 084015
[20] Kodama H, Ishibashi A and Seto O 2000 Phys. Rev. D 62 064022
[21] Zerilli F 1974 Phys. Rev. D 9 860–68
[22] Moncrief V 1974 Phys. Rev. D 9 2707–9
[23] Lasky P D, Lun A W C and Burston R B 2007 ANZIAM J. 49 53–73
[24] d’Inverno R A 1992 Introducing Einstein’s Relativity (Oxford: Oxford University Press) pp 312–14
[25] Cherubini C et al 2004 Class. Quantum Grav. 24 4833–43
[26] Sachs R 1964 Relativity, Groups and Topology ed B DeWitt and C DeWitt (New York: Gordon and Breach)
[27] Stewart J M and Walker M 1974 Proc. R. Soc. 341 49–74
[28] Price R H 1972 Phys. Rev. D 5 2439–54
[29] Newman E and Penrose R 1962 J. Math. Phys. 3 566–78

13

http://dx.doi.org/10.1103/PhysRev.108.1063
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1143/PTP.110.701
http://dx.doi.org/10.1143/PTP.111.29
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1103/PhysRevD.62.084015
http://dx.doi.org/10.1103/PhysRevD.62.064022
http://dx.doi.org/10.1103/PhysRevD.9.860
http://dx.doi.org/10.1103/PhysRevD.9.2707
http://www.austms.org.au/Publ/ANZIAM/V49PI/491-2496-LaLuuBu/index.html
http://dx.doi.org/10.1088/0264-9381/21/21/006
http://dx.doi.org/10.1098/rspa.1974.0172
http://dx.doi.org/10.1103/PhysRevD.5.2439
http://dx.doi.org/10.1063/1.1724257

	1. Introduction
	2. Preliminaries
	2.1. Background LRS class II spacetimes
	2.2. First-order gravitational and energy--momentum perturbations
	2.3. Summary of paper I

	3. Choosing new 1+1+2 GEM variables
	4. Decoupling Psi mu
	4.1. Decoupling harmonic amplitudes

	5. Decoupling Xi mu
	5.1. Decoupling harmonic amplitudes

	6. Summary
	Acknowledgments
	References

