Astron. Nachr. / AN 328, No. 3/4, 319-322 (2007) / DOI 10.1002/asna.200610737
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It is important to understand the limits and accuracy of helioseismic techniques in their ability to probe the solar interior.
The availability of a method that is able to compute the solar acoustic wave field in the presence of thermal or flow
perturbations affords us a means to place bounds on detectability and accuracy of inferences of interior perturbations. We
describe the technique used to simulate wave propagation within a spherical shell that extends from a desired depth (not
including the center) into the solar atmosphere and which possesses a solar like stratification.

1 Introduction

With the advent of time-distance helioseismology (Duvall et
al. 1993), it has become possible to infer the subtle structure
and dynamics of the solar interior. However, while signifi-
cant effort has been channelled into performing inversions
to recover these interior properties, little has been done in
the direction of verifying the accuracy of these inferences
or systematically utilising the forward approach to under-
stand the interactions of waves with various perturbations.

It is important that the forward model be designed to
mimic the Sun as closely as possible because data produced
from such a model will likely easily lend themselves to in-
terpretation in the context of the solar case. On the other
hand, it is equally useful to leave the system simple enough
that we are able to understand the individual contributions
of various perturbations on helioseismic metrics such as
travel times, mode frequencies etc.

The utility of the forward approach cannot be under-
stated, for it paves the way for us to gauge the ability of
helio- and astero-seismology to infer the interior properties
of the Sun and other stars. In relation to the Sun, we are
already investigating the signal to noise properties of deep
active regions, holographic far-side signatures of active re-
gions (sunspots and the like), detection of convection and
line-of-sight projection anomalies.

2 Description of the code

2.1 Equations

To model the behaviour of the acoustic wavefield, we solve
the 3D unsteady linearized Euler equations in spherical ge-
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ometry to obtain a spatio-temporal description of the surface
wave-field. Equations (1), (2), and (3) are the equations of
continuity, momentum and energy respectively,
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The nomenclature is as follows: p is the density, p the
pressure, w the vorticity, I'y = T';(r) is the first adiabatic
exponent, g is gravity, and v is the vector velocity. All vari-
ables with a zero subscript are time-stationary background
counterparts of corresponding fluctuating quantities (terms
without a subscript). The derivative on the right-hand side
of Eq. (4) is evaluated along an adiabatic process curve (as
denoted by the subscript ‘ad’). The function I'(r) represents
absorbent sponges that are placed on either radial end of the
computational domain. S(r, 6, ¢, t) is the wave excitation
function, a description of which follows.

2.2 Sources

Granulation is thought to be the dominant source of acous-
tic wave generation with most of the wave excitation oc-
curring in an extremely narrow spherical shell (200 km
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thick) bounded by the surface, and we choose therefore,
S(r,0,6,t) = S(6,¢,t)f(r), where f(r) is a Gaussian
with a full width at half maximum of 100 km centered
around r = 0.9997 R,

As for determining the horizontal component of the ex-
citation function (S (8, ¢, t)), we note first that granules pos-
sess length scales of approximately 1000 km, much smaller
than the wavelengths of the acoustic waves we capture
with this calculation. Consequently, granules can be mod-
eled as uncorrelated spatial delta functions, resulting in a
uniform stochastic excitation in spherical-harmonic space.
Keeping this in mind, we compute uncorrelated, frequency
band-limited time series for each spherical harmonic coef-
ficient, ensuring that the excitation level in spherical har-
monic space is isotropic. In the frequency domain, it is
observed that the solar acoustic power spectrum possesses
maximum power in the range 2000-5500 pHz with a peak
in power around 32001 Hz. In order to mimic this excitation
behavior, we generate a Gaussian power spectrum with a
mean of 3200 ©Hz and a standard deviation of 1000 pHz
in frequency space, which we then Fourier transform to
produce a time series with the appropriate source spec-
trum. Figure 1 compares time-distance correlations for MDI
medium-/ data with simulation data. It can be seen that cor-
relations for a given time and distance are approximately
the same in both cases. We do not make direct comparisons
between the two datasets because we use an altered model
of the Sun in simulations. It is interesting to note that the
values of the correlation coefficients are comparable. This
indicates that the source excitation model we apply is repre-
sentative of the solar acoustic excitation mechanism in this
range of wave-numbers.

2.3 Numerical algorithm

Spherical harmonics form a rotation group and provide
equi-areal representation of the spherical surface, eliminat-
ing numerical problems associated with the poles. Using
this spectral description, horizontal derivatives of various
quantities are calculated in spherical harmonic space by
applying appropriate recursion relations. Radial derivatives
are obtained using sixth order accurate compact finite differ-
ences (Lele 1992). Variables are advanced in time through
the repeated application of a multi-stage optimized version
of the explicit fourth order Runge-Kutta scheme (Berland et
al. 2006).

As for the grid, we use Gaussian collocation points in
latitude and equally spaced points in longitude. The radial
gridpoint distribution is based on the nature of the under-
lying stratification; the interior grid-spacing is chosen so
that the acoustic travel-time between adjacent gridpoints is
constant while the near-surface grid spacing is such that the
variation in the logarithm of density between adjacent grid-
points is constant. The grid is made to undergo a smooth
transition between these two regions via the application of
third order splines.
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Fig.1 Displayed are correlations obtained from MDI Medium-{
data on the left panel and simulation data on the right panel. The
x-axis is distance in Mm, the y-axis time in minutes and the scale
corresponds to the correlation coefficient.

The calculation is computationally intensive requiring
the use of parallel architectures. The code has been written
according to two parallel standards, OpenMP and Message
Passing Interface (MPI). The MPI version of the compu-
tation is significantly faster over 341 > [, > 127, where
Imax 18 the maximum spherical harmonic degree used in the
simulation. We have performed most of our computation on
the supercomputer Columbia, located at NASA Ames and
locally, on machines located at the Solar group at Stanford
University. A more detailed description of the parallel im-
plementation algorithm and numerical methods utilised in
the calculation may be found in Hanasoge et al. (2006) and
Hanasoge & Duvall (2006).

2.4 Background models

The solar stratification in our simulations, described in
Hanasoge et al. (2006), is given by an altered form of model
S of Christensen-Dalsgaard et al. (1996). The altered strat-
ification is for the most part like model S; it possesses so-
lar like acoustic cutoff frequencies, thermodynamic proper-
ties and is hydrostatically balanced. However, in contrast
to realistic solar models, it is convectively stable in the
near-surface layers. This reconfiguration of the stratifica-
tion is essential because the time scales of linear convective
growth in the near-surface layers coincide with the acous-
tic timescales of interest and not only corrupt the acoustic
signal but renders the calculation highly unstable.

We use time stationary descriptions of both the so-
lar stratification and the perturbations in question (such as
sunspots, flows, large scale thermal asphericities in the inte-
rior) in the computation. For a more detailed description of
the methods used in this simulation and the means of vali-
dation, please refer to Hanasoge et al. (2006) and references
therein.

3 Spectral blocking and radial de-aliasing

Spectral blocking is an aliasing phenomenon that com-
monly occurs in non-linear calculations, wherein the lack of
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Fig.2  Logarithmic power spectrum from for a model that ex-
tends from 0.26-1.0033 R. The excitation spectrum is a band
that approximately encompasses 2000-5500 pHz in frequency
and 20-255 in the spherical harmonic degree, [. Modes with in-
ner turning points deeper than the lower simulation boundary are
absent from this spectrum. Note that because the short time-scale
convective instabilities have been removed we see no power at fre-
quencies below 2000 pHz. This spectrum was extracted from a
8-hour-long simulation.

resolution results in a super-linear accumulation of energy
near the Nyquist frequency. It poses a serious numerical
challenge, since the energy growth is very rapid, leaving the
computation unstable and inaccurate. We discuss its appear-
ance in our /inear calculations and how we deal with this is-
sue. Standard Fourier transforms are defined on grids where
the travel-time for waves between adjacent grid points is a
constant over the grid. In the solar case, the sound-speed is
a strong function of radius and consequently, it makes little
sense to speak of a Fourier transform on a uniformly spaced
radial grid. The Fourier transform in this situation is only
made meaningful on a grid stretched such that the travel-
time between adjacent grid-points is constant over the grid.
The rest of the discussion in this section follows as a conse-
quence of this grid stretching and the consequent interpre-
tation of the Fourier transform on this grid.

As described above, the source function is highly lim-
ited in the radial direction resulting in the excitation of
waves with a wide spectrum of radial orders. The resolu-
tion in the radial direction is restricted by the finiteness of
computational resources at our disposal and the scientific in-
terest in investigating these high radial orders. For the appli-
cations that we are interested in, both these criteria indicate
that these high radial orders are best done away with. Asso-
ciated with the inability of the radial grid to capture modes
containing rapid variations is the phenomenon of aliasing
which causes waves beyond the resolvable limit of the grid
to fold back across the Nyquist onto the resolvable waves
near the Nyquist. This by itself is not a serious problem

www.an-journal.org

since we are only interested in a small number of ridges
that are situated well away from the radial Nyquist. Typi-
cally, aliasing in linear problems is relatively harmless and
usually only results in a slight increase in power near the
Nyquist.

Interestingly however, in our calculations, Fourier trans-
forms in the radial direction display spectral blocking
(shown in Fig. 3), an effect that occurs in numerical solu-
tions of non-linear equations, commonly seen in simula-
tions of turbulence and other non-linear phenomena. It is
seen in our computations because of the highly non-constant
terms (in the solar case) of the Euler equations, density,
pressure and sound speed, that pre-multiply the linear fluc-
tuation terms, like the first term on the right-hand-side of
Eq. (1). These non-constant terms act as conveyor belts
across the radial spectrum, transferring energy between dis-
parate wavenumbers, and eventually cause this aphysical
energy build-up at the Nyquist. The energy accumulation
occurs at a non-linear rate, rapidly posing a threat to the ac-
curacy and stability of the calculation.

In order to de-alias the variables, we apply the 11 point
de-aliasing filter (Vichnevetsky & Bowles 1982) given by

~ ay aq
Up = GoUp + ?(unfl + UnJrl) + ?(Un72 + un+2)

2 as
?(Un72 + un+2) + ?(unfd + Un+3)
aq a
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+
+
with

ap = 0.753906, a; = 0.410155, as = —0.234375,
az = 0.087890, ay4 = —0.019531, a5 = 0.001953 ,

where ,, and u,, are the filtered and unfiltered variables at
grid point n, every few time-steps so that any growth near
the Nyquist is suppressed. Because of the high order of the
filter, the portion of radial spectrum of interest is left largely
unaffected. Note that because of the varying sound-speed,
we can only apply the filter on the stretched grid over which
the acoustic travel-time between adjacent grid points is con-
stant.

4 Line asymmetry

Power spectra of the Sun are obtained either through mea-
surements of fluctuations in velocity or in intensity. Mode
shapes and line asymmetries in the [-v power spectrum
are a strong function of source depth (e.g. Rast & Bogdan
1998), with velocity and intensity lines displaying phase dif-
ferences in the asymmetries. By choosing to place sources
very close to the surface, we obtain velocity line asymme-
tries similar to those seen in the Sun, higher on the low
frequency side of the mode. By assuming a direct correla-
tion between temperature and intensity fluctuations, Rast &
Bogdan (1998) have demonstrated that purely adiabatic os-
cillations (as in our simulations) result in identical intensity
and velocity line asymmetries. An artefact of the simplic-
ity of our adiabatic model and in direct contrast to the Sun,
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Spectral blocking
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Fig.3  Spectral blocking in a linear simulation. This is a clas-  Fig.5 Local decrease in the time averaged RMS velocity due to

sic malaise affecting non-linear calculations, resulting in aphysical
energy accumulation near and at the Nyquist.
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Fig.4 Line asymmetry for wave modes with spherical harmonic
degree | = 30. The mode amplitude is expressed in arbitrary
units. The solid line shows modes captured in the velocity spec-
trum and the dashed line shows modes in intensity (essentially
temperature fluctuations). These lines are asymmetric at low fre-
quencies (< 4000 pHz) and become more symmetric as frequency
increases (/ ~ 4200 pHz).

we also observe no phase difference between velocity and
intensity asymmetries (Fig. 4).

5 Farside seismology

We are involved in supplementing efforts towards the cal-
ibration of farside sunspot detection methods. We place a
sunspot, modeled as a local near-surface thermal distur-
bance, on one hemi-sphere (representing the farside) and an-
alyze the wave-field on the other hemi-sphere (representing
the near-side). The thermal disturbance extends 15 Mm into
the solar interior and is approximately 8° wide. As seen in
Fig. 5, the presence of this disturbance creates anisotropies
in the time averaged root mean square (RMS) velocities ob-
served at the photosphere. This property may prove to be
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a near surface sound speed increase, located at a latitude of —15°
and longitude of 280°.

useful in the detection of emerging active regions, which
are thought to create wave-speed anisotropies.

6 Summary and conclusions

We have designed a means to perform differential studies of
the effects of flows and asphericities on the acoustic wave-
field in full spherical geometry. From a practical standpoint,
this technique is useful in understanding signatures of large
scale phenomena such as meridional flows or the tachocline,
and important in calibrating techniques that depend inher-
ently on the geometry being spherical. Moreover, various
systematics such as center to limb travel-time variations and
fore-shortening can be investigated, given the availability
of vector velocities and a 360° view of the sphere. Indeed,
while helioseismology has made great strides is peering into
the solar interior, we have yet to clearly understand the abil-
ity of these methods, and most importantly, the accuracy of
the inferences.
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