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ABSTRACT

Aims. We study the buoyant rise of magnetic flux tubes in a stratified layer over a range of Reynolds numbers (25 < Re < 2600) by means of
numerical simulations. Special emphasis is placed on studying the fragmentation of the rising tube, its trailing wake and the formation of a
vortex street in the high-Reynolds number regime. Furthermore, we evaluate the relevance of the thin flux tube approximation with regard to
describing the evolution of magnetic flux tubes in the simulations.

Methods. We used the FLASH code, which has an adaptive mesh refinement (AMR) algorithm, thus allowing the simulations to be carried out
at high Reynolds numbers.

Results. The evolution of the magnetic flux tube and its wake depends on the Reynolds number. At Re up to a few hundred, the wake
consists of two counter-rotating vortex rolls. At higher Re, the vortex rolls break up and the shedding of flux into the wake occurs in a more
intermittent fashion. The amount of flux retained by the central portion of the tube increases with the field line twist (in agreement with
previous literature) and with Re. The time evolution of the twist is compatible with a homologous expansion of the tube. The motion of the
central portion of the tube in the simulations is very well described by the thin flux tube model whenever the effects of flux loss or vortex forces
can be neglected. If the flux tube has an initial net vorticity, it undergoes asymmetric vortex shedding. In this case, the lift force accelerates
the tube in such a way that an oscillatory horizontal motion is super-imposed on the vertical rise of the tube, which leaves behind a vor-
tex street. This last result is in accordance with previous simulations reported in the literature, which were carried out at lower Reynolds number.
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1. Introduction

In order to explain solar magnetism, we need to study how
magnetic fields originate in the solar interior, how they rise
to the solar surface and, further, how they emerge into the at-
mosphere. The photospheric magnetic flux of active regions
is generated in the solar interior, from where it rises in the
form of buoyant magnetic tubes or bunches thereof. At present,
the demand on computational resources is still far too great
to carry out realistic 3-dimensional magnetohydrodynamic
(MHD) simulations of a flux tube rising across the convec-
tion zone until it emerges at the photosphere, even more so if
one wants to include its further rise into the upper solar at-
mosphere. This is due to the extremely wide range of length
and time scales involved in the process and to the complicated
mixture of physical phenomena associated with the rise of the
tube in its different phases (e.g., turbulent convection, radiative
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transfer, magnetic reconnection). A possibility to make pro-
gress in spite of these limitations is to perform idealized simu-
lations to address different aspects of the problem separately.
A branch in this undertaking is devoted to the basic mag-
netohydrodynamics of buoyant flux tubes rising in stratified
and (otherwise) unmagnetized media studied by way of 2D or
3D numerical experiments (see review by Fan 2004). One ex-
ample is an initially horizontal magnetic flux tube embedded
in a stratified layer. The tube is endowed with a density deficit
with respect to the surroundings, so that it rises and, in doing
S0, it expands, displaces the surrounding medium and develops
a trailing wake. A number of results, obtained mostly for 2D
(more precisely, 2.5D) configurations, concern the conversion
of the rising magnetic tube into pairs of vortex tubes. These
experiments focus on the evolution in a vertical plane normal
to the axis of the tube and use the simplifying assumption of
independence of all quantities (scalars or vectors) with respect
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to the coordinate along that axis. When the magnetic field in
the horizontal tube is purely longitudinal (i.e., has no compo-
nents in the plane normal to the tube axis), an initially cylin-
drical tube, after rising a height equivalent to a few times the
tube diameter, splits into two roughly mirror-symmetric vor-
tex rolls. The rolls have vorticity of opposite signs pointing in
the direction of the tube axis and separate horizontally from
each other. This behavior had been noted in an early paper by
Schiissler (1979) and was analyzed by Longcope et al. (1996)
who showed that the motion of the resulting vortex tubes could
be explained as a result of the combined action of the buoyancy
and lift forces on them. On the other hand, Moreno-Insertis &
Emonet (1996) demonstrated that a sufficient amount of field
line twist around the tube axis can prevent the splitting of the
tube: the transverse component of the field (i.e., the compo-
nent in the normal plane to the tube axis) imparts rigidity to
the tube interior against the stresses in their periphery. They
could quantify this effect both by deriving approximate criteria
and by considering the results of numerical experiments of ris-
ing tubes with different levels of twist. Moving magnetic tubes
have a trailing wake with two vortex rolls in a wide range of
Reynolds numbers, including those relevant for these calcula-
tions. Moreno-Insertis & Emonet (1996) showed that the ris-
ing tube loses magnetic flux to the wake by an amount that is
higher the smaller the pitch angle of the field lines around the
tube axis. For an untwisted tube, the major part of the initial
magnetic flux is just lost to the wake, a phenomenon that was
described by the earlier authors as the conversion of the tube
into two vortex rolls. Further to that, the stresses exerted on the
periphery of the tube can be integrated to obtain global values
for the drag and lift forces on the tube and for the added iner-
tia of the tube caused by the co-acceleration of the surrounding
plasma. Those authors showed that the motion of the tube in
their experiments could be fitted reasonably using simple esti-
mates for the drag force and enhanced inertia of the tube. Later
on, Emonet & Moreno-Insertis (1998) studied the dynamics
within the vortex tube and in its surroundings and, in particular,
the central role played by the magnetic and viscous boundary
layers that serve as interface between them. The boundary layer
is the site of generation of the vorticity that accumulates in the
wake; by studying the vorticity equation it was shown that the
torque of the Lorentz force is a major source of vorticity in
the boundary layer. Emonet & Moreno-Insertis (1998) also
showed how the behavior of the rising tube concerning its de-
formation and its wake is intermediate between that of an air
bubble rising in water and that of a rigid cylinder in a flow,
with those two limits being reached for smaller (air bubbles)
and larger (rigid cylinders) levels of twist. Hughes et al. (1998)
studied in detail the effect of using different distributions of
transverse field within the tube and concluded that it is the
strength of the transverse field and not its distribution which
is the key factor determining the coherence of the rising tube.
In a wide range of Reynolds numbers, the wake trailing
rigid cylinders is unstable to vortex shedding. Shedding of ed-
dies from the wake was observed also in rising magnetic flux
tubes by Emonet & Moreno-Insertis (1998, see their Fig. 13
and Sect. 6), Hughes & Falle (1998) and, for a pair of rising
tubes in interaction, by Fan et al. (1998a). The latter authors
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noted that each time a vortex roll was emitted, the head of
the tube together with the remaining eddy of the wake got a
net non-zero integrated vorticity, say €2, of equal strength (but
opposite sign) to the total circulation around the eddy shed.
The tube therefore becomes subject to a lift force —p V X €,
with V the forward speed of the tube. Fan et al. (1998a) ex-
plained in that way the sideways deviation of the tube trajec-
tory away from a vertical line observed in their simulation after
shedding of the eddies from the wake. In fact, as vortices were
shed alternatively from the right and left side of the wake with
opposite signs of the vorticity, the result is an oscillatory mo-
tion superimposed on the vertical rising trajectory for the pairs
of magnetic tubes.

A further step was undertaken by Emonet et al. (2001).
They studied the trajectory of a (single) flux tube initially en-
dowed with non-zero vorticity. The vortex-shedding instabil-
ity developed also in this case and led to the formation of a
von Kdrmén vortex street behind the tube. In the simplest case,
the upgoing trajectory of their tube was oscillatory, like for the
pairs of tubes of Fan et al. (1998a). They attempted to under-
stand the trajectory in a variety of cases by studying the equa-
tion of motion of a vortex filament with a time-varying value of
the integrated vorticity and subject to buoyancy force, drag and
lift. The solutions depend on the value of a dimensionless pa-
rameter, y, the ratio of the timescales for the drag and lift force,
respectively, to modify significantly the velocity of the tube. In
the drag-dominated asymptotic regime (y < 1), the trajectory
is a straight line which subtends a small angle § ~ 4/y to the
vertical and the tube moves with the terminal speed given by
the equilibrium between the drag and buoyancy forces. In the
drag-free (or lift- dominated) regime (i.e., y > 1), the trajec-
tory is a cycloid with horizontal drift speed given by the ra-
tio between buoyancy acceleration and total circulation around
the tube. The intermediate cases contain rising trajectories with
epicycles superimposed on them similar to features observed in
the 2D simulations of Hughes & Falle (1998).

From all the foregoing we deduce that the behavior of mov-
ing magnetic flux tubes is importantly influenced by the inter-
action with the surroundings via the stresses (gas pressure plus
viscous and Maxwell stresses) acting at the interface between
them. On the other hand, the Reynolds number in these ex-
periments, even if still far removed from the actual astrophys-
ical values, must be high, at least a few hundred, for the wake
formation and vortex shedding phenomena described above to
take place. This, in turn, makes the boundary layer thin (its
width varies typically like «Re~!/?). So, high resolution is nec-
essary, at least to resolve the important small-scale features
that develop in the calculation. An adaptive mesh refinement
(AMR) algorithm, as used by Hughes & Falle (1998), is well
suited to this end.

Calculations of that sort with adequate resolution are com-
putationally expensive, and, as just seen, necessarily so, even
though they are two-dimensional. To model the rise of mag-
netic tubes through the whole convection zone, typically with
a view to understanding the origin of active regions and some
of their global features, one has to resort to drastic simplifica-
tions. The approach commonly applied makes use of the slen-
der (or thin) flux tube approximation (Roberts & Webb 1978;



M. C. M. Cheung et al.: Moving magnetic tubes

Spruit 1981), which models a flux tube as a quasi-1D string of
mass elements under the assumption that its diameter is small
compared to any other relevant length scale of the problem.
The comparatively simple 1D equations derived through this
approximation allow to study the evolution of a flux tube in
a spherical shell with a stratification taken from the mixing-
length models of the solar convection zone. Using this kind of
approach, it has been possible to explain the emergence lati-
tudes of active regions, their tilt angles as well as the asym-
metry between leading and following polarities (D’Silva &
Choudhuri 1991; Fan et al. 1993, 1994; Moreno-Insertis et al.
1994; Caligari et al. 1995). For details and references, the
reader is referred to the reviews by Moreno-Insertis (1997) and
Fan (2004). The agreement with those observations provides
support for the use of the slender tube approximation in this
context. However, important aspects of the flux tube dynam-
ics, like those discussed in the previous paragraphs, are dis-
regarded by the approximation. Furthermore, the condition of
small radius compared to the local pressure scale height is not
fulfilled as soon as the tubes get close to the photosphere in
their rise, typically when they reach levels of about a few Mm
below the surface or move above them (as in the 2.5D simu-
lations of Magara 2001). So, it is important to check how the
thin tube approximation performs, compared to a more exact
solution, when using it close to (or even somewhat beyond) its
limits of applicability.

The objective of the present paper is to carry out 2.5D nu-
merical experiments of the rise of a buoyant horizontal mag-
netic flux tube in a stratified medium using a state-of-the-art
AMR code (the FLASH code) and profiting from the unprece-
dented computational power allowed by today’s massively par-
allel computers. The article is organized as follows. In Sect. 2,
we present details of the simulation setup, including the sys-
tem of equations solved, the numerical method used, initial
conditions of the simulation. Additionally, in Sect. 2.4, we
present the method used to track the flux tube. In Sect. 3, the
results from the 2.5D simulations are presented. The follow-
ing aspects of the simulations are discussed: dependence on
Reynolds number (Sect. 3.1), the dependence of the flux reten-
tion on twist (Sect. 3.2) and the evolution of the twist in the tube
(Sect. 3.3). In Sect. 4, we use a thin flux tube model to explain
the evolution of the flux tube as it rises through the stratified
layer. In Sect. 5, we explore the transition from the thin flux
tube regime to the thick flux tube regime. Finally, in Sect. 6 we
discuss possible implications for understanding real magnetic
flux tubes in the solar interior.

2. Equations, numerical method and initial
conditions

2.1. Equations

The medium is taken to be a compressible, electrically con-
ducting ideal gas with the equation of state:

» = RoT, (1)
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where R = R*/f is the individual gas constant and  the mean
molar mass. The time evolution of the system is governed by
the ideal magnetohydrodynamics equations:

dp
— + V. =0, 2
Ey (pv) (2)
d(pv 1
bv) +V-(pv®v——B®B)+thm=pg, 3)
ot Ho
dpe 1
(g ) + V-(v[pprt]——B[v~B])=pg-v, “4)
t Ho
B
(?3_t + V-@w®B-B®v)=0, (5)
where v ® v, B ® B etc. denote dyadic products and
BZ
Pot = Pt 5 ©)
Ho
1 1 B
e= v +e+ —— (7
2 P 2o

are total pressure and total specific energy. € is the specific in-
ternal energy. The solenoidal condition V - B = 0 applies as
an initial condition. These equations are valid in the absence of
thermal, viscous and Ohmic diffusion.

2.2. Initial conditions

2.2.1. Background stratification

A hydrostatic, adiabatically stratified polytropic layer of ideal
monatomic gas was chosen as the initial background stratifica-
tion. This initial polytropic layer is described by the following
temperature, density and pressure profiles:

. _

T(y) = To|l + Had -y, (8)
L PO |
r v J 11/Vaa—1

) = po[1+ (d =) : )
L o ]
r v J 11/Vaa

py) = po|l+ Ha (d-y) , (10)
L PO |

where y is the height coordinate, d the thickness of the layer,
and Ty, po, po and H) are the temperature, density, gas pres-
sure, and pressure scale height at the top boundary (y = d), re-
spectively. The logarithmic temperature gradientis V = V,q =
(dInT/dIn p)y = 1 — 1/y,. v» is Chandrasekhar’s second adia-
batic exponent (Chandrasekhar 1957). For the case of a com-
pletely ionized or completely neutral, monatomic gas, y, =
5/3. An adiabatic stratification was chosen because it is neu-
tral to motions induced by the rise of the flux tube. This is, of
course, an idealization of what happens in the solar convective
zone. However, here we are interested in studying the rise of
the tube purely by its own buoyancy. Furthermore, for B > B,
where B is the equipartition field strength with respect to the
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convective flows, we can safely neglect the effects of the exter-
nal convection on the rise of the tube.

We choose to use po, po and H,o as units for the density,
pressure and length respectively. RT is used as the temperature
variable. The units for the velocity and time are co = +/po/po
(the isothermal sound speed at the top of the layer) and #y =
H ,0/co respectively. The unit for specific energies is eg = po/po
and the unit for the magnetic field is By = +/2uopo. Expressed
in these units, the initial polytropic profiles (8) to (10) become

7@ = [1+@ -5V, (1)
~ 1/Vaa—1

P = [1+@=-Vau| ", (12)
- 1/V

PG = [1+@-§Va| ", (13)

where the tilde denotes a quantity expressed in these units. In
what follows, all quantities are expressed in terms of these units
and we drop the tilde from all the symbols. Quantities inside the
flux tube are denoted with a subscript i and quantities outside
the flux tube have no subscripts. For example, T and T; refer
to the temperature outside and inside the flux tube respectively.
From here on, the symbol H,, always refers to the local pressure
scale height.

In the simulations presented in Sect. 3, the polytropic layer
is enclosed in the region x € [-10,10] and y € [0, 35].
Therefore the density and pressure contrasts between the bot-
tom and top of the polytropic layer are 58 and 871 respec-
tively. The number of pressure scale heights spanned over the
height of the layer is N, = fdy/H,, = 6.77. This is compa-
rable to the number of pressure scale heights spanned between
the bottom of the solar convection zone (at depth of 200 Mm)
and a depth of about 20 Mm. Thin flux tube simulations of
flux tubes carrying magnetic flux comparable to active regions
(® = 10%°-10%2 Mx) are considered to yield reliable results up
to a depth of about 10 Mm. Above that depth, the radii of these
flux tubes become comparable to the local H,. The number of
pressure scale heights between a depth of 200 Mm to 10 Mm
is N, = 16.

2.2.2. Initial magnetic profile of the flux tube

The initial flux tube is taken to be axisymmetric. In cylindrical
coordinates, the longitudinal and azimuthal components of its
magnetic field have the form:

Bi(r) = Boexp(-r*/R}), (14)
A
By(r) = R—:Bl, (15)

where r € [0,2Ry] is the radial distance from the tube axis,
Ry is the characteristic radius of the flux tube and A is the di-
mensionless twist parameter. For » > 2R, the magnetic field is
zero. As such, a twisted magnetic flux tube of this form carries
no net current. We note that the parameter g used by Linton
et al. (1996) and Fan et al. (1998b) is equivalent to A/Ry. At
r = Ry, the pitch angle is given by tan ¥ = (By/B))|g,. The total
initial longitudinal flux of the tube is [ B,dA = 0.987R2B.
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For each simulation, a flux tube was inserted near the bot-
tom of the stratified layer at time t = 0. We have carried out a
number of simulations with different values of Ry and A.

2.3. Numerical method

We used the FLASH code to carry out the simulations.
This code implements a Riemann solver that is formally
second-order accurate in time and space. The advective
terms are discretized using a slope-limited Total Variation
Diminishing (TVD) scheme and time-stepping is performed
using an explicit, Hancock-type scheme (Toro 1997). The
system of equations is solved on a 2D grid with Cartesian
geometry.

As mentioned in Sect. 2.1, the MHD Eqgs. (2)—(5) do not
take into account the effects of thermal, viscous and Ohmic dif-
fusion. In practice, however, such non-ideal effects are always
present in simulations as a result of numerical diffusion. Of
course, if diffusive effects are actually important for the prob-
lem of interest, diffusive terms can be added to the MHD equa-
tions to capture the relevant physics. In astrophysical problems,
one often encounters situations with very large dynamic and
magnetic Reynolds numbers. This is also the case for the so-
lar interior. As such, we have chosen not to impose explicit
diffusive terms in the MHD equations. Diffusive effects in the
following simulations are purely numerical. The amount of nu-
merical diffusion present in the simulation is dependent on the
numerical resolution used. The higher the numerical resolution,
the smaller is the amount of numerical diffusion and the larger
are the effective Reynolds numbers. Since the initial state of
the background atmosphere in our problem is uniform (except
for small pressure perturbations) in the horizontal direction and
smoothly varying in the vertical direction, only relatively large
grid spacing is required to resolve regions far away from the
flux tube. On the other hand, high spatial resolution is needed
to resolve the small-scale features at the interface between the
tube and its surroundings (e.g., in regions where the flux tube
fragmented).

The numerical resolution we can use is limited by the com-
putational resources available. To get the highest numerical
resolution where we need it, we made use of the Adaptive
Mesh Refinement (AMR) feature in FLASH. The Cartesian do-
main is comprised of adjacent square blocks, each consisting of
8 x 8 grid cells. At each time-step, all the blocks are checked
to determine if the block should be refined. If the normalized
second-order spatial derivative of the absolute field strength,
|B|, exceeds some fixed threshold in any grid cell, the reso-
lution of the corresponding block is doubled by interpolation
and the original block is split into four sub-blocks, increasing
the “refinement level” of the original block by one. The re-
verse process (coarsening) occurs when the normalized second-
order spatial derivative of | B| is smaller than some threshold for
all four sub-blocks. Then the resolution of each sub-block is
halved and the sub-blocks are merged.

For further details on the FLASH code, the reader is re-
ferred to the FLASH user manual (ASCI/ Alliance Center for
Thermonuclear Flashes 2003).
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2.4. Tracking the flux tube

In the simulations discussed here, the initial flux tube does not
remain a single, monolithic structure as it rises to the top. From
the results of the literature (Emonet & Moreno-Insertis 1998;
Fan et al. 1998a; Hughes & Falle 1998), we expect the tube to
fragment and lose flux by means of vortex shedding. However,
for a sufficiently high level of field line twist, a central portion
of the tube retains its identity throughout the simulation. We
refer to this central flux filament as the “main tube”. To track
the main tube, we make use of the flux function:

X y
Y(xy) = fo By(x', y)dx" - fo By(x,y")dy’. (16)
Field lines traced out by the transverse field (B, B,), when
projected onto the x — y plane, correspond to contours of ¢. For
the initial axisymmetric flux tube, the contours are a family of
concentric circles corresponding to the planar projection of the
twisted field lines that wind around the tube axis. Let us call one
of these circles C. The initial magnetic flux inside this structure
is given by @y = fc B.dA. To identify this structure at a later
time, we calculate  for that time and find the contour(s) 0C’
satisfying the flux conservation criterion @, = fc B.dA = @,.
If the structure has broken up, then the contours will be a set
of closed curves and the sum of the fluxes enclosed in these
curves is @y.

If we arbitrarily chose a value of @ to define the main tube,
we have no guarantee that at a later time, the structure we track
remains coherent. In order to define a coherent main tube, we
reverse the aforementioned procedure. At the end of a simu-
lation (i.e. when the main flux structure has reached the top
of the domain), ¢ = #;, we calculate y(x, y)|,;. We test different
contour levels ¥y = ¢/,;. If the contours corresponding to a par-
ticular value of ¢ consists of more than one closed loop, we
dismiss them. For the remaining values of ¢ (each of which
has only one corresponding closed curve), we pick the one that
encloses the maximum amount of flux (®yr). This is defined
as the main tube for this particular simulation. To back-track
the main tube at an earlier time, we simply calculate y for that
time. Then the contour which encloses a flux equal to @y rep-
resents the main tube at that time.

The centre of the main tube is located at the extremum
of ¢ (maximum or minimum depending on whether the tube
has right or left-handed twist). Although the main tube is, in
general, not circular, we can define an effective radius,

Teff = \}fdA/ﬂ,
C

which gives a useful measure of its size.

A7)

3. Simulation results

We have carried out a number of simulations in order to study
different aspects of the problem of the buoyant rise of magnetic
flux tubes. Various aspects of the results are discussed in the
following sections.
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Table 1. Simulation runs carried out to study the dependence of
the simulation result on numerical resolution (and hence Reynolds
number).

Run  Effective resolution Re
Al 256 x 448 25
A2 512 x 896 140
A3 1024 x 1792 630
A4 2048 x 3584 2600

3.1. Dependence on Reynolds number

From the same initial setup, we have carried out simulations
with different levels of grid refinement in order to study how the
numerical resolution influences the outcome of the simulation.
The initial condition is as follows: a flux tube was inserted near
the bottom of the polytropic atmosphere at (xo, yo) = (0.0,2.5)
at t = 0. The flux tube has Ry = 0.5 (corresponding to 4% of
the local pressure scale height), B = 15 and 4 = 0.25. The
material inside the tube has the same entropy as the external
atmosphere, so that it is buoyant. We carried out four runs from
this initial condition. Run A1l has the lowest effective resolu-
tion. If the simulation domain was fully refined, the domain
would be spanned by 256 x 448 grid cells in the x and y direc-
tions. Runs A2, A3 and A4 have 2, 4 and 8 times the effective
resolution of A1 respectively. Table 1 gives the effective resolu-
tion and effective Reynolds numbers (Re) for each of the runs.
The latter is defined as

)
Re=|—|,
Ly

where D is the flux tube diameter and Ly, is the width of the
boundary layer between flux tube and its surroundings.

Figure 1 shows the distribution of the longitudinal field (B;)
over the entire domain at ¢+ = 200 for all four runs. Figure 2
shows the z component of the vorticity (w,) at the same time.
To emphasize the difference in resolution between the runs, the
axes are labelled in terms of grid-points. To calculate Re, we
examined the profiles of B, and w, near the vertical x = 0 for
each of the runs at ¢ = 200. From the B, profile we can find the
tube diameter D. From the corresponding w, profile, we iden-
tify a thin boundary layer near the apex of the tube. The left and
right halves (about x = 0) of this boundary layer have opposite
sign. The thickness of this boundary layer — which is the site of
vorticity generation — corresponds to Ly,. Inspection of the ver-
tical profile of the magnetic field along x = 0 gives the distance
over which the magnetic field goes to zero above the tube apex.
This gives the thickness of the magnetic boundary layer. For the
simulations in this study, we found that the magnetic and vis-
cous boundary layers have similar thickness, about 6 grid cells,
indicating that the magnetic Reynolds number Re,, ~ Re. This
is not a coincidence, since the viscous and magnetic diffusion
stem from diffusion inherent in the numerical scheme.

(18)
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Fig. 1. The structure of the wake below the rising flux tube depends on the Reynolds number of the flow. The four panels show the distribution
of the longitudinal magnetic field at Reynolds numbers ranging from 25 to 2600.

3.1.1. Structure of the wake

The structure of the wake depends on the Reynolds number.
At Re = 25 (top left panel of Figs. 1 and 2), we identify
two coherent counter-rotating vortex rolls in the wake. These
types of wake structures have been reported in past studies of
rising magnetic flux tubes (Schiissler 1979; Longcope et al.
1996; Moreno-Insertis & Emonet 1996; Emonet & Moreno-
Insertis 1998). A similar pair of vortex rolls is also found in the
wake of the flux tube for the run with Re = 140. In this case,
however, the rolls have more internal structure. Figure 9 of
Emonet & Moreno-Insertis (1998) shows similar plots of

vorticity for a rising twisted flux tube. We note that the vor-
ticity distribution shown in the rightmost panel of their figure
very much resembles our case for Re = 140. However, the vor-
tex rolls in their figure also show signs of breakup into smaller
vortex rolls. At higher Re (Re = 630 and Re = 2600 in runs A3
and A4 respectively), the breakup of the vortex rolls is even
more obvious. In these two cases, each roll is replaced by a
group of secondary rolls with the same sign in vorticity. This
indicates that the shedding of material at high Reynolds num-
ber occurs in a much more intermittent fashion than in cases
with low Re.
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Fig. 2. Same as Fig. 1 but for the z component of the vorticity. At low Reynolds numbers — see cases with Re = 25 and Re = 140 — the wake
consists of two vortex rolls with vorticity of opposite sign. At sufficiently high Reynolds numbers — see cases with Re = 630 and Re = 2600 —
the vortex rolls break up and the shedding of vorticity into the wake occurs in a more intermittent fashion.

3.1.2. Flux retention and field diffusion

The fraction of magnetic flux retained by the head of the flux
tube (i.e. the main tube) also depends on the Reynolds number.
Figure 3 shows the flux retained in the main tube at r = 280
for the four different runs (diamonds). Clearly, with increas-
ing Re, the percentage of flux retained by the main tube in-
creases. At Re = 2600, the main tube retains 84% of the origi-
nal flux of the initial tube. Although we cannot conclude from
these simulations that the flux retained converges to some value

in the limit Re — oo, Fig. 3 does seems to suggest that the curve
levels off for increasing Re.

Emonet & Moreno-Insertis (1998) demonstrated that in a
rising, twisted flux tube, vorticity is generated in the magnetic
boundary layer between the tube and the surrounding flow. The
material in this boundary is then advected towards the wake,
leading to a loss of magnetic flux from the tube. We can esti-
mate the flux loss per unit time as

dod
mrr Utabe Lt Bol, (19)
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Fig. 3. Magnetic flux retained in the main tube as a function of the
effective Reynolds number. The diamonds plot the values from sim-
ulations Al to A4. If the amount of flux lost scaled as O(Re™"?), it
would follow the solid curve.

where vy 18 the relative velocity between the tube and the sur-
roundings and By, is the characteristic value of the longitudinal
field in the boundary layer. Making use of Eq. (18), and using
the approximation that Re ~ Re,, we find that

do B D
o _ g L.
" VRe

If one makes the additional assumptions that, vype, D and By,
do not change much with Re, then we find that the amount of
flux lost from the tube scales as O(Re™/?). The amount of flux
retained by the main tube, as predicted by this scaling relation,
is plotted as a solid line in Fig. 3. The value at Re = 25 was
used as a reference point for the curve.

In ideal MHD, the ratio of mass and longitudinal magnetic
flux enclosed in the main tube, M/®, should remain constant.
In numerical simulations, however, the ratio always increases
with time because of some mass diffusion across field lines.
The size of this change tells us how well the simulation ap-
proximates the ideal MHD case. Figure 4 shows the percentage
change of this quantity for the main tube between r = 0 and
t = 280, as a function of Re. At Re = 25, the ratio M/®
increased by 44%. This increase in the ratio diminishes for
higher resolution. At Re = 2600, the change is only on the or-
der of 1%. Consequently, in order to compare the results from
numerical simulations with predictions in the approximation of
thin flux tubes (which assumes ideal MHD), we should take the
results from runs with the highest values of Re.

(20)

3.2. Dependence of flux retention on twist

We carried out a number of simulations to study the depen-
dence of the flux retained in the main tube as a function of
the twist parameter A. These runs have the same resolution as
run A4. We find that a flux tube with no initial twist (1 = 0),
after rising a distance a few times its radius, splits into two
counter-rotating vortex rolls, which separate horizontally from
each other. This behaviour has already been reported in an early
paper by Schiissler (1979). Longcope et al. (1996) showed that
this is a result of the combination of the buoyancy and lift
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Fig. 4. The change of M/® (ratio of enclosed mass and enclosed mag-
netic flux in the main tube) as a function of the Reynolds number.
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Fig. 5. The dependence of the fraction of flux retained in the main tube
as a function of the twist parameter A.

forces acting on the flux tube. Our results show that even at
the relatively high Reynolds number (Re ~ 10°), the same be-
haviour is observed.

For magnetic flux tubes with non-zero twist, we were able
to track a main tube. Figure 5 shows the amount of flux re-
tained in the main tube at + = 280. It is a monotonically in-
creasing function of A, a result consistent with the previous
work of Moreno-Insertis & Emonet (1996). Thus, given that a
main tube can be tracked, the amount of flux it retains increases
with Re.

3.3. Evolution of twist in the flux tube

As Parker (1974, 1979) pointed out, the radial expansion (com-
pression) of a twisted flux tube leads to an increase (decrease)
of the pitch angle of the field lines. This is a consequence of
magnetic flux conservation (Fan et al. 1998b).

The radial profiles of the longitudinal and transverse field
we have chosen for the initial flux tube yield a pitch angle of the
field lines that depends on radial distance from the axis. A more
appropriate measure for the amount of twist in the tube is A,
which is dimensionless and constant over the initial tube. If the
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Diamonds denote the evolution of the mean twist (1) of the main tube
in run A4. This good match indicates that the main tube expands ho-
mologously over most of the tube rise.

flux tube undergoes a homologous expansion (or compression),
A evolves according to

4 - 5 1)
Ao Ro
where the A and R are the twist and characteristic radius of
the tube, respectively. The subscript 0 denotes their initial val-
ues. Equation (21) states that ¢ = A/R remains constant as the
tube rises (Linton et al. 1996). The second-order thin flux tube
approximation also predicts the same result (Ferriz-Mas et al.
1989). In this approximation, an axisymmetric tube has a trans-
verse field By(r) oc r. By virtue of the conservation of the trans-
verse magnetic flux, Eq. (21) can be obtained.

In Fig. 6, the relationship given by this equation is shown as
a solid line. Overplotted (as diamonds) are values of the mean
twist (1) of the main tube in run A4 against its effective ra-
dius reg. Following (15), we define the mean twist as

B,
) = rﬁ<£>

where r’ is the distance of a point in the main tube from the tube
centre. The match between the simulation results and the linear
law is very good up to R = 3.6Ry, indicating good compatibil-
ity with the assumption of homologous expansion. Beyond this
size, the flux tube radius is larger than the local pressure scale
height and there is a clear deviation between the linear law and
the simulation results.

(22)

4. Comparison with a thin flux tube model

One of the main aims of this paper is to evaluate the relevance
of the thin flux tube approximation with regards to describing
the behavior of flux tubes in 2.5D simulations. In the following,
we consider how a rising magnetic flux tube behaves in the
context of this approximation (Roberts & Webb 1978; Spruit
1981).
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4.1. Thin flux tube model

The basic assumption of the thin flux tube approximation is that
the radius of the flux tube is much smaller than any other char-
acteristic length scale in the system (e.g., local pressure scale
height and the radius of curvature of the tube axis). We assume
that the quantities are uniform over the tube cross-section, so
that their values at the tube axis are representative of their off-
axis values. This assumption corresponds to retaining only the
zeroth-order term in the axis-centered Taylor-expansion of the
quantities in the tube. Higher-order treatments can also be de-
rived (Roberts & Webb 1978; Ferriz-Mas et al. 1989). In the
following, we develop a model based on the zeroth-order ap-
proximation, which is already sufficient for modelling how the
physical properties near the tube centre evolve. To model the
evolution of the twist in the main tube, it is necessary to extend
to a second-order approach.

Instantaneous pressure balance (pex = pin + B2/2u0) be-
tween the tube and its surroundings is assumed. For this as-
sumption to hold, we require that the sound-crossing time over
the tube diameter be much smaller than the time required for
the tube to transverse a distance comparable to its diameter.
This means the adiabatic sound speed ¢ is much larger than the
speed of the tube. Taking the terminal velocity (Parker 1975;
Moreno-Insertis & Emonet 1996):

A
T M

23
o 7 (23)

Uterm =

as the characteristic speed of the tube, and taking |Ap/p| = 1/8,
we arrive at the criterion:

1/2 1/2
(R‘“be) (l) < o).
H, B

We make the additional assumption that the horizontal thin
flux tube evolves adiabatically, subject to instantaneous pres-
sure balance with its surrounding. This means that the state of
the tube at any time is only a function of its initial state and the
height it has risen. A convenient measure for the height of the
flux tube is the external pressure contrast,

(24)

Xp = p1/Pos (25)

where pg is the ambient pressure at the initial height of the tube
and p; is the ambient pressure at a different height. Thus, the
physical quantities within the flux tube (e.g. B, p; etc.) at any
time are functions of their initial values and .

For a uniform horizontal flux tube, conservation of longitu-
dinal magnetic flux leads to

pii B
o~ B 2o

where B here is the longitudinal field strength of the thin flux
tube. Combining this with the condition of instantaneous pres-
sure balance, we have

(et

(27)
Pio PApi+1
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From the adiabatic evolution of the flux tube,

pi _ (@)”’ 08)
Pio Poi ’
and Eq. (27), we obtain
i+l (/31 )2/‘2‘”

== . (29)
B+l \B)

Given an initial value 3y, we can solve for 3, after the tube has
risen through a pressure contrast of y,. For § > 1, we have
Bi/Bo = any_z)/ Y. The physical properties of the flux tube can
be expressed as functions of 3; in the following way

51 1/(y=2)

B(x,) = BO(—) , (30)
Bo

1/-2)

i) = pio (@) , 31)
Bo
,81 y=-D/(y-2)

Ti(xp) = Tio (—) , (32)
Bo
|42

R(xp) = RO(—) . (33)
Bo

where R is the radius of the flux tube and the expressions on
the r.h.s. can be expressed in terms of y, by virtue of Eq. (29).

Of the four simulation runs Al to A4, we chose to com-
pare the thin flux tube model with results from Run A4 be-
cause the effect of magnetic diffusion is smallest for this case.
Figure 7 shows the dependence of |B|, T, 8 and the tube radius
as functions of y,. The values of |B|, T and 8 in the simula-
tion were taken at the centre of the main tube, and are plot-
ted as diamonds. The effective radius reg of the main tube is
defined by Eq. (17). The solid lines show these quantities as
calculated with Egs. (29) to (33). Since y,, is the pressure con-
trast, y, < 1 corresponds heights above the original position
of the tube. For this simulation, we have tracked the main tube
until y, = 5.4 X 1073, corresponding to over 5 pressure scale
heights. The thin tube predictions agree well with the simula-
tion results over this wide range of heights, even at the lowest
values of y,, where the radius becomes comparable to or larger
than the local pressure scale height. The thin flux tube predic-
tions of temperature, density and |B| deviate from their actual
values in the main tube centre by less than 2%. The values of 8
calculated with the thin tube model deviate from the actual val-
ues by 3% at most and the effective radius of the main tube
differs from the theoretical value by less than 4%.

The comparison we have made here shows that Egs. (29)
to (33) accurately describe the height dependence of the phys-
ical properties in the tube centre. In order for our thin tube
model to be a dynamical model, we must also solve the equa-
tion of motion for a thin flux tube. This will then allow us
to model the motion of the main tube as well as the time-
dependence of its physical properties in the thin flux tube
framework. This comparison is carried out in the following
section.
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Fig.7. Comparison between the simulation (run A4) and the thin flux
tube model. Diamonds indicate values of the physical quantities at the
tube centre in the simulation and the solid lines show the predictions
from the thin tube model (Egs. (29)—(33)).

4.2. Modelling the motion of the main tube

As explained in the introduction, the motion of a twisted mag-
netic flux tube in an unmagnetized environment shares a num-
ber of features with the motion of a rigid cylinder in a flow
(Emonet & Moreno-Insertis 1998; Emonet et al. 2001). Under
anumber of simplifying assumptions, the equation of motion of
the magnetic tube can be written in a simple way; among them
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we count: (1) zero circulation and small Mach number of the
surrounding flow; (2) not too low Reynolds numbers (Re 2 50);
(3) small length-scales and long timescales of change for the
flux tube compared to the intrinsic length and time scales, re-
spectively, of the flow. Under those assumptions, the integrated
effect of the fluid stresses on the periphery of the tube can be
simply described by a drag force given by the classical aero-
dynamic formula and an enhancement of the inertia of the tube
because of the co-acceleration of the external medium in the
vicinity of the tube (Batchelor 1967). For a cylinder or flux tube
driven by its own buoyancy in rectilinear motion this would
yield:

B _ ool

Iy, =
% gp n R

(34
where v, is the vertical velocity of the tube, Ap/p the relative
density difference between the tube and its environment and g
the gravitational acceleration. The second term on the right is
the drag acceleration, with Cp being the aerodynamic drag co-
efficient (of order unity for Re > 1) and I the enhanced inertia
factor (which is 2 for 8 > 1).

Figure 8 shows the rise velocity of the main tube (up-
per panel) and its height (lower panel), both as functions of
time. Values from the simulation are indicated as diamonds.
The solid lines indicates the theoretical profiles found by in-
tegrating Eq. (34). The mean density deficit of the main tube,
(Ap/p)y = 0.013, and its initial radius, R = 0.64, were used
as initial conditions for the path integration. The values of the
drag coefficient and enhanced inertia factor used are Cp = 2.0
and I = 2.0 respectively. To take into account the effect of tube
expansion on the buoyancy and drag forces, Egs. (31) and (33)
were used to update the tube radius and density at each time
step of the path integration.

The velocity and height profiles from the thin tube approx-
imation are in general agreement with the motion of the main
tube between ¢t = 0 and t+ = 200. Between t = 0 and ¢t = 20,
the main tube approximately undergoes a free-fall acceleration
in accordance with its own buoyancy. The motion of the main
tube during this time interval is well matched by the solid lines.
The time taken for the main tube to rise a height difference
of Ay = 30 (corresponding to 4.1 pressure scale heights) is
At = 273. The corresponding rise time predicted by the thin
flux tube mode is Ar = 256, which is within 10% of the actual
value.

One feature of the motion of the main tube which is not
predicted by the thin tube calculations is the temporary decel-
eration of the tube between r = 20 and r = 30. As reported
by Moreno-Insertis & Emonet (1996), this is a result of the dif-
ferential acceleration experienced by the different parts of the
flux tube. Since, initially, the core of the tube has the largest
density deficit, it undergoes a stronger acceleration than the
parts of the tube above it. This differential acceleration leads
to a compression at the apex of the tube, which enhances the
transverse magnetic field there. The enhanced magnetic tension
near the apex of the tube eventually decelerates the core of the
flux tube (our main tube) and induces an internal oscillation.

This effect, which is not described by Eq. (34) for the mo-
tion of a thin flux tube, is a source of discrepancy between the
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Fig.8. Rise velocity (upper panel) of the main tube and its height
(lower panel), both as functions of time. Diamonds indicate values
from the MHD simulation (run A4). The solid line shows the veloc-
ity profile calculated with the thin flux tube model, with Cp = 2.0
and 1 = 2.0.

simulation results and the thin flux tube calculations. Another
discrepancy is the deceleration of the main tube after t = 200,
which is not predicted by the thin flux tube result. This de-
celeration is due to the closed top boundary condition used.
Equation (34) does not take this into account.

Near the top of the simulation domain, the main tube is
so large that it can no longer be considered a thin flux tube.
At t = 253, the main tube has an effective radius equal to H,,.
In Sect. 5, we examine in more detail how the limit of the thin
flux tube model is reached as the flux tube increases in size.

4.3. The asymmetric rise of magnetic flux tubes
and their trailing vortex streets

In the simulations discussed thus far, the background atmo-
sphere was initially plane-parallel and the flux tube initially
axisymmetric and stationary. This confines the flux tube to a
purely vertical trajectory. To study the asymmetric rise of flux
tubes, we carried out an additional simulation run. Run B has
essentially the same initial condition as Run A4 (5 = 15,
A = 0.25, Ry = 0.5), with the exception that the flux tube
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is initially rotating solidly about its axis with angular veloc-
ity w = 0.03. The vorticity integrated over the initial flux tube
(r e [0,2Ro]) is Qo = [V xv,dS = §v-dl =0.2.

As already mentioned in the introduction, a flux tube with
a net vorticity Q travelling with forward velocity V with re-
spect to the external medium experiences a lift force equal to
—pQ x V. The lift force causes a sideways acceleration of the
flux tube so that its motion deviates from the vertical. In simu-
lation runs A1 to A4, we have seen that a flux tube rising purely
vertically sheds equal but opposite amounts of vorticity to the
left and right halves of its wake. When the tube motion is no
longer purely vertical, the two sides of the tube shed unequal
amounts of vorticity. Each time a vortex roll is emitted from the
flux tube, the remaining tube and wake structure is left with a
net vorticity.

Emonet et al. (2001) found that the quasi-periodic shedding
of vorticity of alternating sign by a rising flux tube leaves this
tube and wake structure with a net circulation that reverses its
sign periodically in time. Thus the horizontal component of the
lift acceleration also alternates periodically. This results in an
oscillatory, horizontal motion of the flux tube super-imposed
on the general vertical rise of the tube, so that it traces out
a zigzag path. By adding the lift acceleration —Q X v to the
equation of motion of the thin flux tube and assuming a si-
nusoidal time-varying vorticity for the tube and wake, they
could model the zigzag motion of the tube. We found that
Q.(1) = 0.04sin(271/80 + 5.2) gives a good agreement be-
tween the integrated path from the thin flux tube model (plot-
ted as a dashed line in Fig. 9) and the actual path of the main
tube. The sequence of circles indicate the positions and effec-
tive radii of the main tube as it rises and expands.

Figure 10 shows the vorticity distribution at ¢+ = 280. The
three vortex rolls of alternating sign constitute a pattern remi-
niscent of a von Kdrméan vortex street. The first vortex roll shed
by the flux tube is centered at (x, y) = (-3, 12) and has negative
sign. This means that, as this roll was being shed, the remaining
tube and wake system was gaining a net positive vorticity. The
lift force then acts to steer the tube and wake system towards
the right. During this time, vortex rolls with positive vorticity
are preferentially shed off the tube. This continues until the tube
and wake system has a net negative vorticity. At this point, the
lift force pushes the tube back towards the left.

5. Exploring the limits of the thin flux tube
approximation

In this section, we address the question: How relevant are the
predictions of the thin flux tube model in describing the quasi-
static structure of a rising flux tube as its radius approaches
and exceeds the local pressure scale height? To explore the
transition from the thin flux tube regime to the “thick” flux
tube regime, we performed a simulation (Run C) of a rising
tube, starting with a flux tube with an initial flux 100 times
larger than in the previous cases. Here, the domain spans x €
[-40,40] and y € [0,70]. The flux tube is initially centered
at (xo,yo) = (0,20) with By = 12.3, Ry = 5 (corresponding
to 1/4 of the local pressure scale height) and 4 = 0.1.
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Fig. 9. The trajectory of the main tube in run B. The circles indicate
the position of the main tube at different times during the simulation.
The effective radius of the main tube at different instances is given by
the size of the circles in the plot. The dashed line shows the trajectory
from a thin flux tube calculation, taking into account the aerodynamic
lift force.

Figure 11 shows the flux tube at # = 0 and 7 = 220. The five
concentric green contours in the left panel are the planar pro-
jection of different field lines. Each of these contours defines a
Sflux roll. By tracking these contours, we follow the evolution of
these flux rolls. The longitudinal flux and initial radius of each
of these rolls is given in Table 2.

In order to evaluate the validity of the thin flux tube ap-
proximation, we compare its predictions with the simulation
results for all five flux rolls. For the thin flux tube predictions,
Egs. (30)—(33) are used to calculate how the physical quanti-
ties evolve. The initial values (B, po, etc.) are taken as averages
inside the rolls. The values from the thin flux tube calculations
are then compared with the average values measured in the flux
rolls at later times in the simulation.

Figure 12 shows the relative discrepancies between the
model predictions and the average values from the simulation
as a function of the effective radius of largest flux roll (flux
roll 5). The size of this flux roll is representative of the “true”
size of the rising flux tube. As expected, the discrepancy grows
as the effective radius of the flux tube becomes comparable to
the local pressure scale height. In this regime, the flux tube in-
terior is sufficiently stratified that average values of its physical
properties do not match with the corresponding thin flux tube
values, so the thin flux tube approximation is no longer appro-
priate for describing the state of the flux tube. The discrepan-
cies in temperature and density do not grow as much as the dis-
crepancies in field strength and 8 for the following reason: for
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Fig. 10. The distribution of the vorticity at + = 280 for run B. In this
simulation, the flux tube had an initial net vorticity. Aerodynamic lift
causes the flux tube to rise in a zigzag fashion, leaving behind a vortex
street in its wake.

Table 2. The initial radius and flux of the flux rolls as shown
in Fig. 11a.

Fluxroll R (H,) @ (®;) SymbolinFig.12
1 0.02 0.01 +
2 0.08 0.1 S
3 0.1 0.2 A
4 0.2 0.5 O
5 0.3 0.8 X

an ideal thin flux tube in pressure balance with its surroundings,
the relative difference of 7' and p between the tube and its sur-
roundings is always of order O(8~"). Thus relative differences
in T and p decrease with increasing 3 (the case of an expanding
tube). Consequently, discrepancies in 7 and p between the thin
tube predictions and the simulation results do not tell whether
the thin flux tube approximation is good at describing the av-
erage properties of the flux tube. In contrast, discrepancies in 8
and |B| show clearly the transition between the thin flux tube
regime to the “fat” flux tube regime, when the radius of the
tube is comparable to the pressure scale height.

We have also examined how the average twist, (1), of each
flux roll evolves as they expand. Figure 13 shows (1) as a func-
tion of the effective radii of the flux rolls. Again, there is good
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Fig. 11. Evolution of a large flux tube (Run C). Shown in color is the
longitudinal field. Each of the five circular green contours represent a
magnetic field line projected onto the plane. Every contour encloses a
certain amount of flux, which defines a flux roll. Table 2 gives the flux
and initial radius of each flux roll.

agreement between the data points and the solid curve, which
plots the relation given by Eq. (21).

6. Conclusions

We have carried out idealized 2.5D MHD simulations of buoy-
ant magnetic flux tubes rising in a stratified layer over a range
of Reynolds numbers (25 2 Re = 2600). Our simulations
confirm previous results in the literature. Additionally, we
have analyzed the dependence of the results on the Reynolds
number. We found that the detailed structure of the wake,
as well as the amount of flux retained in the main tube,
varies with the Reynolds number. At sufficiently high Reynolds
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Fig. 12. Comparison between thin flux tube calculations with average
quantities inside the flux rolls (Run C). The different symbols cor-
respond to quantities in the different flux rolls (see Table 2). As the
effective radius of the flux tube approaches the local pressure scale
height H,, the discrepancy between the simulation results and the thin
flux tube predictions grows.

number (Re 2 600), the vortex pair in the wake breaks into
secondary rolls. The amount of flux retained in the tube also
increases with Re.

We have studied how the twist in a flux tube varies as it
expands. In particular, the dimensionless twist (1), averaged
over the main tube, scales approximately linearly with the tube
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Fig. 13. Variation of the average twist of the flux rolls as a function
of their effective radii. The different symbols show the average twist
of the five flux rolls (Run C). The solid line shows the relation given
by Eq. (21). The good match between the simulation results and rela-
tion (21) indicates that the flux rolls expand homologously.

radius. If flux tubes originating from the bottom of the solar
convection zone have any amount of initial twist, this twist will
be amplified upon the rise of the tube. The twist will be max-
imum at the apex of the rising loop, where the cross-sectional
radius is largest.

We derived thin flux tube equations (Eqs. (30)—(33)) to
model the evolution of the properties of a horizontal flux tube
rising adiabatically through the atmosphere. Using these equa-
tions to model the expansion of the tube, and using Eq. (34),
the motion of the main tube can be reproduced. For a tube
that undergoes asymmetric vortex shedding, the lift force can
be included into the equation of motion to explain the zigzag
motion of the tube. The vortex shedding associated with this
zigzag motion leaves behind a vorticity distribution resembling
a von Karman vortex street.

Furthermore, we studied the transition from the regime of
thin flux tubes to the regime of fat flux tubes (Run C). We
found that the discrepancy between the thin tube calculations
and the average quantities of flux rolls increases as the flux tube
expands. When its radius is comparable to one pressure scale
height, the discrepancy between the thin tube calculations and
the simulation results can be at least of order O(1), meaning the
thin flux tube approximation is no longer valid. This result is in
accordance with previous expectations. In the solar convection
zone, rising toroidal flux tubes approach this limit at a depth of
about 10 Mm, so it is no longer appropriate to continue thin flux
tube simulations above those depths. On the other hand, our re-
sults point in the direction that below such depths, the thin flux
tube approximation is useful for studying the evolution of flux
tubes.
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