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Abstract

Our intent is to provide a simple and quantitative understanding of the variability
of the axial dipole component of the geomagnetic field on both short and long time
scales. To this end we study the statistical properties of a prototype nonlinear mean
field model. An azimuthal average is employed, so that (1) we address only the ax-
isymmetric component of the field, and (2) the dynamo parameters have a random
component that fluctuates on the (fast) eddy turnover time scale. Numerical solu-
tions with a rapidly fluctuating a reproduce several features of the geomagnetic field:
(1) a variable, dominantly dipolar field with additional fine structure due to excited
overtones, and sudden reversals during which the field becomes almost quadrupolar,
(2) aborted reversals and excursions, (3) intervals between reversals having a Poisson
distribution. These properties are robust, and appear regardless of the type of nonlin-
earity and the model parameters. A technique is presented for analysing the statistical
properties of dynamo models of this type. The Fokker-Planck equation for the am-
plitude a of the fundamental dipole mode shows that a behaves as the position of a
heavily damped particle in a bistable potential o (1 —a?)?, subject to random forcing.
The dipole amplitude oscillates near the bottom of one well and makes occasional
jumps to the other. These reversals are induced solely by the overtones. Theoretical
expressions are derived for the statistical distribution of the dipole amplitude, the
variance of the dipole amplitude between reversals, and the mean reversal rate. The
model explains why the reversal rate increases with increasing secular variation, as ob-
served. Moreover, the present reversal rate of the geodynamo, once per (2 — 3) x 10°
year, is shown to imply a secular variation of the axial dipole moment of ~ 15% (about
the current value). The theoretical dipole amplitude distribution agrees well with the
Sint-800 data.

Keywords: geodynamno; reversals; secular variation; dynamo theory; helicity fluctuations;
stochastic processes; bistable oscillator.

1 Introduction

It is known on paleomagnetic evidence that the Earth has had a magnetic field for at
least 3.5 x 10° yr. There are indications that the field has always been largely dipolar.
The dipole axis is aligned with the rotation axis to within <10°. Otherwise, intensity
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and direction of the field vary on all time scales of a few 100 years and longer. The most
spectacular aspect of the variability are the sudden polarity reversals. During a reversal
the intensity of the dipole component becomes small and the dipole axis may make a few
rapid swings. The dipole then grows in the opposite direction, and in <10 kyr the whole
process is completed and the field has reversed its direction. The process may also be
interrupted and the dipole component may rebound to its original polarity state. This is
called an aborted reversal or a magnetic excursion. The mean period between subsequent
reversals is presently about (2—3) x 10° yr. These and other properties of the geomagnetic
field have been documented in great detail by Jacobs (1994) and Merrill et al. (1996).

The field is generally believed to originate from dynamo action in the liquid outer core of
the Earth. Several groups have reported 3D hydromagnetic simulations of the geodynamo,
demonstrating that self-sustained dynamo action is able to overcome the resistive decay
of the currents in the outer core (Glatzmaier and Roberts, 1995a,b, 1996; Kageyama and
Sato, 1997; Kuang and Bloxham, 1997; Olson et al., 1999). The solid inner core plays a
stabilising role and prevents the field from reversing too frequently (Hollerbach and Jones,
1993). In the 2.5D simulation of Sarson and Jones (1999) the stabilisation is achieved
through a convection-driven meridional circulation, and fluctuations in the latter cause
reversals. The simulations of Glatzmaier et al. (1999) demonstrate that frequency and
polar paths of reversals depend strongly on the assumed radial heat flux pattern at the
core-mantle boundary.

The idea that some kind of rapid variability may induce reversals has a long history,
and the fact that the distribution of the intervals between successive reversals is Poissonian
(Jacobs, 1994; Merrill et al., 1996) also points in this direction. Parker (1969) and Levy
(1972), and later Olson (1983), Olson and Hagee (1990), Le Mouél et al. (1997) and
Narteau et al. (2000) have proposed that fluctuations in the helicity distribution of the
convection may cause a reversal (see also Gibbons, 1998). These models were all based on
the mean field concept.

The aim of this paper is to extend these mean field models just mentioned in two
new directions. In the first place we present a theoretical framework with which the
statistical properties of mean-field dynamos of the geo-type can be analysed, and we
illustrate this technique by applying it to a specific model. In the second place we shall
compare the theoretical predictions of our model in detail with the observed properties of
the geomagnetic field.

In the mean field approximation the evolution of the large scale field (B) is given by
(Moffatt, 1978; Krause and Réadler, 1980):

J(B

%:Vx[vx +a - (B+n)Vx](B). (1)
The fluid motion v +u consists of the mean flow v, on which the turbulent convection u is
superposed. The quantity 7 is the molecular resistivity, and S the turbulent resistivity. The

parameters o and [ are determined by the mean properties of the turbulent convection:
~ L.V . ~ Ll 9
a~ —3{u X UTe ; ~ s{|u|) 7 . (2)

The convection has a correlation time 7, (= eddy turnover time), and a correlation length
Ac (= eddy size). The validity of the mean field approach requires that the eddy Reynolds
number uX./n be much larger than 1, or that n < f since ure ~ A.. Here we simply
assume that we may ignore 1 with respect to 8 in (1). The mean helicity (u -V x u) is
nonzero in a rotating convecting medium, such as the fluid outer core of the Earth and the
solar convection zone. The combined action of advection and shear (term « v x), diffusion



(term < n+ B) and the a-effect is able to sustain a mean field (B) (Moffatt, 1978; Krause
and Radler, 1980; Soward, 1991; Stix, 1991; Hoyng, 1992; Roberts and Soward, 1992).

Since we compare our model eventually to observations of the geomagnetic field, we
indirectly apply the mean field concept to the geodynamo. This requires further discussion,
which we postpone to Section 5.2.3 as we arrive to this topic. At this point the term
"mean-field model of the geo-type” which we coined above just means an af) model with
a non-periodic fundamental mode of the dipole type. We focus on an af) model because
there are now strong indications that the inner core rotates <1° yr~! faster than the
outer core (Song and Richards, 1996; Su et al., 1996; Vidale et al., 2000; Richards, 2000;
for a different opinion see Souriau et al., 1997; Laske and Masters, 1999). A similar effect
has been observed in the hydromagnetic simulations (Glatzmaier and Roberts, 1996).

The average (-) may be interpreted as an ensemble average or, as we shall do here,
as an azimuthal average (Braginskii, 1965a,b). The latter may be regarded as an average
over an incomplete ensemble, comprising only the system itself and all azimuthally rotated
states. The fluctuations in our equations emerge as a natural consequence of the azimuthal
average. There is only a finite number of convecting elements on a circle over which the
average is taken, and these elements are renewed after each correlation time 7.. Hence
parameters like «, 8 defined in (2) and also the mean flow v must have a fluctuating
component on the fast time scale 7.. Fluctuations in « are probably the most important
because u-V x u may have either sign, contrary to |u|? (Otmianowska-Mazur et al., 1997).
Such fluctuations in & have been shown to explain the observed correlation between phase
and amplitude of the solar dynamo (Ossendrijver et al., 1996; Hoyng, 1993, 1996).

Schmitt et al. (2000) have recently applied these ideas in the context of the geody-
namo. Their simulations reproduced important features of the geomagnetic field, and a
theoretical analysis delivered (1) the amplitude distribution of the dipole component, (2)
a simple physical picture of the reversal mechanism, and (3) a relation between the sec-
ular variation of the geomagnetic field and the mean time between reversals that agrees
with the observations. Here we present a detailed numerical and theoretical study of this
model that we define in Section 2. Numerical results are presented in Section 3, and an
analysis of the statistical properties of the model follows in Section 4. A comparison of the
theoretical predictions and the observed properties of the geodynamo is given in Section
5, and we discuss our results in Section 6.

2 Dynamo model

2.1 The linear system

We consider a simple axisymmetric dynamo in a spherical shell representing the outer core
of the Earth, very similar to the one studied by Schmitt and Schiissler (1989). We do so
because this model is adequate for our purpose, but as will become clear later, our method
allows us to handle more complex models without much extra difficulty. The mean field
(B) is written as

(B) =VxAe,+Be,, (3)

which splits (B) into its poloidal part 1 e, and toroidal part || e,, the unit vector in
the azimuthal direction (we employ spherical polar co-ordinates r, 8, ¢). As a further
simplification we make a local approximation to a radial spherical wave:

oo R? cos kr cos kr
P : B=T . 4
= P 0.1) <! @

A=



This allows a crude modeling of the effect of radial turbulent diffusion. The factor cgR?/8
ensures that P and T have the same dimension. The dynamo parameter 3 is considered to
be a constant, and the constants gy and R are reference values of o and the radial position.
The mean flow v in the outer core is written as v = @ x r = Qrsinfe,. Ansatz (3) and
(4) are substituted in the dynamo equation (1) and we make the af2-approximation to
obtain (Ossendrijver et al., 1996):

db . (P
E:Gb’ with b(0,7) = (T) , (5)

and
_ L afag
¢= (C%sine L ) ' (6)

The dimensionless time 7 is measured in units of 73. The dynamo number C, the diffusion
time 74, and the diffusion operator L are given by:

C = a0R4QI//B2 3 T= t/Td 3 Td = RQ/IB 5 (7)

1 0 . 0 1 9
L= sinf 66 smﬁﬁ " sin26 (kR)". (8)

Here d2/dr = € is the differential rotation which we take to be constant. The radial
co-ordinate r has become a free parameter and has been set equal to the radial reference
position R. The boundary conditions are P =T =0 at 8 = 0, 7. We adopt the customary
choice that o o cos@ (Moffatt, 1978; Soward, 1991; Schmitt and Schiissler, 1989):

ooy = cosb . (9)

Here o is the value of o at the North pole. Later, when we consider nonlinear effects,
relation (9) will contain a function of (B) on the right hand side.

2.1.1 Eigenfunctions and parameters

The eigenfunctions b;(#) and eigenvalues \* of G obey

Gbi=XNb;; b= (;) . (10)
2

The operator G is not self-adjoint, and the eigenvalues Xt and eigenmodes b; are in general
complex. The eigenfunctions of the adjoint G satisfy

b= XB b= (P> | )

where * indicates complex conjugation. With proper normalisation {b;} and {I;Z} form a
bi-orthonormal set
(bi, bj) = bij (12)

with respect to the inner product

T
(b1, b2) = / d0sind (PrPy + T'Ts) . (13)
0



Table 1. First eigenvalues and eigenmode types of G for kR =
0.5 and /g = cos 6.

i Parity C =Co=579 C = Cp = 100

of T(6) RAIP gaic RAIP  Qaic
0 a 0 0 0.527 0
1 s —2.76 441 —2.16 5.88
2 a —8.67 497  -8.21 6.04
3 s ~15.9 6.13  —15.7 7.70

& ¢ = gymmetric, a = antisymmetric with respect to the equator # =

7/2; P(#) and T(6) have opposite symmetry, P(f) and P() the same
symmetry, as do T'(8) and T'(9).

b The eigenvalue problem being parabolic, the growth rate RA¢ is a
decreasing series, asymptotically ~ i(i + 1).

¢ All overtones are periodic, S\* # 0 for i > 0.

Details on the normal and adjoint eigenvalue problem may be found in Kleeorin and
Ruzmaikin (1984), Ossendrijver (1996) and Ossendrijver et al. (1996). An arbitrary field
b(0, 7) may be expanded into eigenfunctions:

b(0,7) = ar(r)bi(0) , (14)
%

with ~
a; = (bi,b) . (15)

This relation follows from (14) by using the bi-orthonormality property.

The behavior of the eigenvalues as a function of C is quite complicated (Schmitt and
Schiissler, 1989). The requirement that the fundamental mode be a non-periodic dipole
restricts the values of the parameters to 0 < kR < 1 and C > 0. For given kR there is
a critical dynamo number Cj below which all eigenmodes are damped. We need to be a
little more precise in our notation, and associate henceforth with Cy the reference value
ag. The dynamo number at which the model operates is denoted as Cp,, with which we
associate the reference value op:

Co = R /B%, Cn = anR'Q/B2. (16)

The model has three free parameters, kR, Cy and one associated with the strength of
the fluctuations to be introduced later. In our simulations we take kR = 0.5, and then
Co = 57.9, while 1/k = 2R measures the radial length scale of the field. Furthermore we
adopt Cy, = 100. More details are given in Table 1 and in Sections 5.2.3 and 5.2.4.

2.2 Nonlinear feedback and fluctuations
2.2.1 Nonlinearity

The model operates at Cp, > Cp and is supercritical, featuring an exponentially growing
field. Nonlinearities will prevent unlimited growth, but their role in the dynamo equation
(1) is poorly understood and simple models are frequently used in want of better. An
example is a-quenching, which in its simplest form amounts to replacing oy in a =
Oty €08 0 by o (1 — const - (B)?) (Riidiger, 1973). The idea is that an increasing magnetic
field reduces the helicity of the flow, and thereby ay,. In order to keep the theoretical



analysis manageable we shall adopt a simplified model (Brandenburg et al., 1989), and
replace local quenching by a global one: ay, — am(1 — const - [(B)2d3r):

a = ap(l—g)cosh, (17)

g ~ const’/ (RT)?sind 49 (18)
0

~ const”(Rao)? . (19)

In the second line we have used that the toroidal part of (B) is much stronger than the
poloidal part in the af) approximation, and R is added because the fields are in general
complex, but the quenching is done by the real field. Due to the fluctuations in a (to
be introduced below) overtones will be excited besides the fundamental mode, and in the
third line we keep only the contribution of the fundamental mode (expansion coefficient
ag), as that is usually the dominant mode.

2.2.2 Nonlinear equilibrium

The operator G in (6) has now h(g)cos@ as its upper right element, and C = Cp, in
its lower left element. The quenching function 1 — ¢ is written temporarily as h(q).
Since global quenching leaves the angular dependence of « intact, the dynamo possesses a
unique nonlinear equilibrium, independent of the shape of h(g). The evolution of b is gov-
erned by an effective b-dependent dynamo number C,h(g), and the nonlinear equilibrium
must coincide with the solution of the linear equation at the critical dynamo number Cy.
The equilibrium is stable if dh/dg < 0, and the equilibrium value of ¢ is determined by
Cmh(go) = Co, or amh(go) = . This shows that the constants in (18) and (19) are irrel-
evant, and that changing their value merely changes the unit in which (B) is measured.
It turns out to matter very little what we choose for ¢ in numerical simulations, as long
as it is a quadratic measure of the field strength. We shall adopt (17) and (19) because a
simple functional form of A(g) and ¢ is an asset in the theoretical analysis.

2.2.3 Fluctuations

As argued in Section 1, v, @ and S will exhibit rapid residual variability on the time
scale 7. of the turbulent flow. Following earlier work on the solar dynamo (Hoyng, 1993;
Ossendrijver et al., 1996) we focus on fluctuations in «, as these are expected to be the
most important, and (17) changes into:

a = an(l—gq)cosf+da(d,T), (20)
fF0,7)
oo ()] \/W . (21)

We reiterate that the fluctuations da in (20) are not added ad hoc. They are a necessary
consequence of the azimuthal average, but since little is known about their strength and
spatial distribution we resort to a model. Helicity fluctuations with a correlation length
(‘cell size’) A. and correlation time 7. are assumed to be homogeneously distributed in
the outer core, so that da, being an azimuthal average, is proportional to N~1/2, where
N = 2N_.sin @ is the number of cells on a circle of constant latitude. The total number of
cells on a sphere is 4N2/m. F is a random function of # for given 7, and of T for given
0, with zero mean and unit variance. In numerical experiments, F' is updated once every
correlation time, independently in every latitude interval . = 7/N,. The parameter f



measures the unknown relative strength of the fluctuations. In the nonlinear equilibrium,
when oy (1—¢qg) = oy, each cell has a mean contribution «y cos € to «, while the superposed
fluctuations have an r.m.s. magnitude of fag per cell. In the simulations reported here
we do not allow for magnetic quenching of the fluctuations, and Section 3.3 explains why.

Our stochastic turbulence model is much simpler than the hierarchical model of Narteau
et al. (2000) but it is adequate for our purposes. In fact most details of the model like cell
size and distribution are irrelevant. The only thing that matters is that the mean part of
« scales as cos § (which is standard) and the fluctuating part as (sin)~1/2, i.e. increasing
towards the poles. There is no problem near the poles as the field becomes zero there. In
our simulations we use 7. = 0.05 and N, = 10, see further Section 5.2.4. It will be shown
later that all statistical properties depend only on the combination f27./NZ2. This is the
third parameter of the model.

2.3 Model equations
Egs. (5) and (6) with (20) for « define our geodynamo model. It is useful to express the

value of ¢ in equilibrium, ¢¢, in terms of a new supercriticality parameter s:

Cm
Co

1= 2 (22)
1—gqo

w
Il

since Cp (1 — qo) = Cp. For kR = 0.5 and Cp, = 100 we have s = 0.728 and gy = 0.421.
Next, g from (19) is written as
g = qo(Rag)®, (23)

where ag is now measured in units of its value in nonlinear equilibrium. Since the amplitude
Rag of the fundamental mode occurs so frequently, we introduce

a=Rap. (24)

After some rearranging relation (20) becomes

4]
2 :cos0+s(1—a2)cos0+—a. (25)
a7y &)
In the numerical and theoretical analysis the field b will be expanded in eigenfunctions
belonging to Cy. This is an expansion around the nonlinear equilibrium and therefore
rather efficient. In conformity with (25), Eq. (5) for b is now replaced by

b 9

E—[G+s(1—a)E+V]b, (26)
where G pertains to the critical dynamo number Cy, and a = R (bo, b) according to (15),
where by is the adjoint of the fundamental mode belonging to Cy. Furthermore

[0 cosf)\ [0 da/a
E_<O 0)’ V_<O 00>' (27)

The first term on the r.h.s. of (26) describes the linear evolution, the second term the
nonlinearity and, for small a, the supercriticality, while the third represents the effect of
the fluctuations. Since the nonlinearity does not depend on the sign of the field there are
two nonlinear equilibria, a = 1 and ¢ = —1. This feature reflects the fact that the MHD
equations are invariant under the transformation B — —B.
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Figure 1: Numerical solution of Eq. (26) for our standard case with forcing parameter f =
6.4. Shown is a colour plot of the toroidal field RT, together with the normalised amplitude
a = Rag of the fundamental dipole mode. The spacing of the printed data is 100 time steps,
suppressing any variability at shorter time scales. Transient excitation of the overtones produces
a fine structure with the appearance of vertical stripes. Vertical bars mark the position of a
reversal. Aborted reversals are not well visible due to the reduced time resolution; they occur e.g.
at 7 = 825, 863, 1048, but also at 7 = 1475; the event at 7 = 648 is an excursion.

3 Simulations

3.1 Standard case

Numerical solution of Eq. (26) is straightforward. The model is relatively simple and
simulations extending over ~ 10° turbulent diffusion times 74 or more are quite feasible.
Figures 1 and 2 show our standard case.! It shares several characteristic features with the
geomagnetic record (Jacobs, 1994; Merrill et al., 1996):

(1). A dominantly dipolar field of rapidly varying amplitude, on which a fine structure
is superposed due to transient excitation of the overtones. The dipole mode amplitude a
fluctuates around its nonlinear equilibrium value.

(2). Occasional sudden polarity reversals. The forcing parameter f has been tuned so
that the mean time between reversals is about 10074 (from a long run).

(3). Aborted reversals, where a changes sign for a short moment, after which the field
returns to its previous polarity state, and magnetic excursions.

The agreement with the geomagnetic data is discussed in detail in Section 5.2. Note that
our definition? of (aborted) reversals and excursions is dictated by theoretical convenience
rather than by geophysical practice. The parity of the field displayed in Figure 2 is defined

as (Brandenburg et al., 1989):

Es—Ex
P =2 28
Es+E4 (28)

where £5 4 = [§(RT5s,4)? sinf df is a measure of the energy in the symmetric, antisymmet-

'The simulations shown in all figures have been generated on a 60 point equidistant §-grid on [0, 7],
time step A7 = 1072, kR = 0.5, Cmn = 100, 7. = 5 x 10”2 and N, = 10.

*We define a reversal as an odd number of zero crossings of a within a few diffusion times 4. An aborted
reversal refers to an even number of zero crossings in rapid succession. In an excursion a ‘approaches zero’
but does not change sign. This definition is subjective, but there is no obvious alternative. There remain
ambiguities, e.g. three ‘closely spaced’ zero crossings may also be an aborted event followed by a reversal.
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Figure 2: The section between 7 = 500 and 7 = 700 from Figure 1 at higher resolution (spacing
5 time steps). From top to bottom: normalised magnitude of the complex overtone amplitude |a; |
and |az|, both computed from (15), the parity P of the field and the ‘energy’ [ (RT)?sin 8 df.
Vertical bars mark the position of a reversal.

ric component of the toroidal field (Ts(8) = T(0)+T(r—0); Ta(0) = T(6)—T(n—0)). Ex-
cept during (aborted) reversals and excursions, the field is largely antisymmetric (P ~ —1),
and therefore dipolar as the fundamental dipole mode is much stronger than the antisym-
metric overtones.

3.2 Reversals and aborted reversals

Figures 3 and 4 show the evolution of the toroidal field during an (aborted) reversal in
detail. From inspection of a number of these events the following picture emerges:

(1). During an (aborted) reversal the field has a tendency to become symmetric (P 1 +1
in Figure 2) because the overtones dominate, and frequently mode # 1 (a quadrupole)
stands out. A quasi-periodic behavior is sometimes observed with a period of the order
of 74. This is due to the fact that all overtones are periodic. For example, if mode # 1
dominates, the period would be about 27/5.88 ~ 1.1 diffusion times, from Table 1.

(2). The onset of a reversal is characterised by a decrease in |a|, combined with a sudden
enhancement ( < 0.5 74) of the amplitude of mode # 1 and/or 2, or rather of the magnitude
of the toroidal field T, of the overtones, defined in (38). However, the realisation of dc (8, 7)
must be ‘favorable’; as not all jumps in Ty and/or the mode coefficients produce a reversal,
see Figure 2.

(3). Just after the zero crossing during an (aborted) reversal, the whole field b often
ends up being small, i.e. all expansion coeflficients are small. In that case the field enters
into a recovery phase to the nonlinear equilibrium. This happens because when |a| < 1 the
nonlinearity is switched off and then (26) says, very roughly, that b grows exponentially.

(4). Although there are fast events lasting ~ 0.5 74, the typical duration of a reversal
is ~ 37q. The observed duration of a reversal is <10 kyr (Merrill et al., 1996), and it
would follow that 7q ~ 3 kyr. The mean time between reversals is then 10074 ~ 3 x 10°
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Figure 3: Two reversals of Figure 1 at full resolution. The black line indicates where the toroidal
field is zero. The top panel shows a very fast event. In the bottom panel the field becomes quasi-
periodic. This is due to the first overtone, a quadrupole, with a period of 1.1 (see text). The
recovery phase after 7 = 1135 is roughly an exponential growth with a time scale of the order of
A1 see (34). The grey scale in this and the next figure has a steep gradient near zero, to enhance
the contrast between the two polarities.
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Figure 4: An aborted reversal (top) and an excursion at 7 ~ 1282 (bottom), both from Figure
1. The black line indicates where the toroidal field is zero. Aborted reversals and excursions are
formally different in that the dipole mode does or does not change sign, but have often a similar
appearance.
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Figure 5: Amplitude a of the fundamental dipole mode for f = 5.4 (top) and f = 7.4 (bottom).
The case f = 6.4 is shown in Figure 1. The other parameters are as in Figure 1, and in all three
cases the same random series has been used. Vertical bars mark the position of reversals.

yr, which is about the observed value of the geodynamo in recent times.

3.3 Other cases and scaling

Figure 5 shows a for two different values of the forcing parameter f. It is evident that the
reversal rate is extremely sensitive to the strength of the forcing. We have verified that
the dominant scaling of mean properties (such as the mean time between reversals and
the r.m.s. variability between reversals) with the strength of the forcing is through the
combination f27./N2. We demonstrate later that the reversal rate depends exponentially
on f2r./NZ2.

We have tried other types of nonlinearity, such as (1) « as in (17) and ¢ from (18),
(2) @ = amcos8/(1 + ¢) and ¢ from (19), and (3) local instead of global quenching, cf.
Section 2.2.1. We have also investigated the effect of changing C}, and &R, and we have
allowed for magnetic quenching of the fluctuations do. The conclusion from all these
tests is that the statistical properties of the dipole mode are not materially affected. For
example, we found that magnetic quenching of the fluctuations reduces the mean reversal
rate and the r.m.s. variability between reversals of the dipole amplitude, because the
effective strength f of the forcing diminishes. However, the quenching may be offset by
increasing the free parameter f. Such a simulation has very similar statistical properties
as a run with a smaller f and no quenching. Similar observations hold when we change
the model parameters or the type of nonlinearity. For that reason there is no magnetic
quenching of the fluctuations in the simulations reported here, and we concentrate our
efforts on the standard case defined by Eq. (26).

4 Statistical analysis

Let us recapitulate where we stand. We employ a well-known equation (1) for the axisym-
metric component of the magnetic field, and add fluctuations in the dynamo parameter
o« as a new element. These fluctuations must be present on general grounds, and they
are seen in the hydromagnetic simulations, but their impact has never been analysed in
the context of the geodynamo. Apart from the model parameters Cy, and kR, the only
free parameter is f, or rather f27./N2. This defines the physics in our model, which is

11



by all means simple. The multiplicative noise term excites all eigenmodes of (1). The
fundamental mode has a rapidly varying amplitude and occasional random reversals, and
we shall show in Sections 5.2 and 6 that it reproduces the behavior of the geomagnetic
dipole field on short as well as long time scales.

It is straightforward to infer the statistical properties of the model from simulations
of the type presented above. The advantage of a simple model is that these properties
may also be determined theoretically, by applying techniques from the theory of stochastic
processes. This is the second new element of our work. It requires a considerable amount
of analysis, but the reward is a clear insight in the physics of the model. The dipole
amplitude turns out to behave as a randomly forced particle in a bistable potential, and
the mean reversal rate is given by the equivalent of the Kramers escape rate of a thermally
activated strongly damped particle. The technique that we introduce below does not rely
on the details of the model. It is assumed that the fundamental mode is non-periodic, but
otherwise our analysis can be readily applied to more complicated dynamo models.

4.1 Coupled mode equations

The starting point is the equation for the mode amplitudes a;, which follows by taking
d/dr of (15) and using (26) and (14):
da;
dr
with ¢ = Rag. In these coupled mode equations all az are in units of the value of ap in

nonlinear equilibrium. We adopt henceforth the summation convention for double lower
indices as in Ejpar and Vjgpag, but not in A'a;. The matrix elements are defined as

= MNa; + s(1 — a®) Eqpay, + Vigar, (29)

- (0 ~
Eyp = (b;,Eby) = / d6 sin 6 cos 6 P} Ty, (30)
0

Vie(r) = (Bi, V) = /0 " 46 sin 6 (5 /ag) PITy . (31)

A special role will be played by Egy = [J d6 sin8 cos PyTy = 1.048. The first term on the
right hand side in (29) describes the linear evolution, and the A\ are the eigenvalues at C =
() listed in Table 1. The second term is due to the supercriticality and the nonlinearity
that drive the system to the nonlinear equilibrium (a9 = +1; a; = 0, 4 > 1). The third
term is a multiplicative noise term, representing the perturbations by the fluctuations.

4.2 Fokker-Planck Equation

The behavior of the mode amplitudes is illustrated in Figure 6. The proper tool for
analysing the statistical properties of the fundamental mode is the probability distribution
p(a, ) of its amplitude a = Ragy, which obeys the following Fokker-Planck equation:
2

o _ 05, 12, -
The derivation of this equation is rather complex and relegated to Appendices A and B.
Here we simply summarize the result of these computations, and much of the physical
interpretation follows later. The Fokker-Planck equation describes how the probability
density p evolves under the influence of systematic effects (drift coefficient S) and random
effects (diffusion coefficient D), see Risken (1984), Gardiner (1990) or Van Kampen (1992).
The drift coefficient S is given by

S=u(l—a*a + gi1(a) ~A(l —a)a, (33)
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Re qq
Figure 6: The overtone amplitude $a, is plotted against the amplitude of the fundamental mode
a = Rag for f = 5.4 (taken from the run shown in Figure 5, top, near 7 = 680). The amplitude
of the overtone fluctuates rapidly, while the fundamental mode is tied to the equilibrium positions
a = £1, making occasional jumps from one side to the other.

with
= sFEyy = 0.763 , A = Xc—c, =0.527 (34)
The second expression in (33) is an approximation for small a which is adequate for our

purposes. Details may be found in Appendix B.1. The diffusion coefficient D is equal to
(see Appendix B.2):

D = D’ +Di(a), (35)
_ 7Tf27'c T . D 2

Dy = G /0 d6 sin 6 (ByTy)? , (36)
7Tf27'c T . 52 2

D= /0 d6 sin§ P2 (T2)], . (37)

The integral [ d6 sinf (PyTp)? in (36) equals 3.529. The symbol T is defined as the
toroidal field of the overtones,

T_|_ = %Zaka = §R(T—a0T0) . (38)
k>1

The fluctuations have a direct effect on a through the term Vjoag in (29). The correspond-
ing diffusion coefficient is Dga?. There is also an indirect effect (the term Vygay, k > 1)
that produces a fluctuating contribution to a through stochastic forcing of overtones, rep-
resented by D1(a). For later use we expand D to order a?:

D~ A0a2 + Al s (39)

with
Ag = Dy + 3 DY(0) ; Ay = D1(0) . (40)

Here we have used that D{(0) = 0 since it is clear from (37) that D;(—a) = D;1(a). The
approximations in (33) and (39) will be justified in Section 5.1.

4.3 Particle-in-well analogy

Readers not familiar with stochastic methods should retain just one thing from the pre-
vious section: the fluctuations da render the dipole amplitude a a stochastic variable

13
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Figure 7: The amplitude of the fundamental dipole mode behaves as the position of a heavily

damped particle subject to random forcing, in a bistable potential U(a) = iA(l—a2)2. As shown in

the text, the fluctuations act directly on a (diffusion coefficient Dya?), but this causes no reversals,
and through the overtones (diffusion coefficient D (a)). The effect of the overtones is not restricted
to a small region near a = 0. For the standard run D; is larger than Dga? for |a| <1 (Section 5.1).

The dashed curve is the stationary amplitude distribution p(a) from (43) for v = 3 and ¢? = 0.2.

with a probability distribution p evolving according to a kind of diffusion equation (32).
This should be intuitively clear by itself, regardless of any mathematical detail. The
only remarkable thing is that the diffusion coefficient D depends on the total non-dipole
toroidal field, see (35) — (37). This means that all dependence on individual overtones
has disappeared from (32), although we set out from eq. (29) in terms of individual mode
amplitudes. Appendix E explains how this comes about.

The Fokker-Planck equation (32) admits a simple interpretation, since it also determines
the probability distribution of the position a of a heavily damped, randomly forced particle
in a bistable potential U given by —9U/da = S:

U~ iA(l-a%)?2. (41)

This particle-in-well paradigm will be used extensively below. The particle (i.e. the dipole
amplitude) resides in one of the wells and performs a random motion near the bottom at
a = %1 due to fluctuations, with occasional jumps to the other side, see Figure 7. These
correspond to the irregular magnetic field variations during intervals of one polarity and
to a reversal, respectively. The geodynamo is thus pictured as a bistable oscillator. The
central hill of U at a = 0 is due to the supercriticality, and the walls beyond ¢ = 41 are
due to the nonlinearity. The fluctuations da determine the variability of the dynamo. It
is straightforward to obtain the stationary solution of (32):

1 “28
pla) D &XP ( . D da) (42)
a2 'yc2+'y—1
x (1 + c_2) exp(—va?) . (43)

This is the theoretical distribution of the amplitude a of the dipole mode. The parameters
v and ¢? and are defined as dimensionless measures of U(0) and D(0), respectively:

’Y:A/Ao; C2:A1/A0. (44)
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They determine p(a) and therefore many statistical properties of the dipole amplitude.
The combination of a steeply rising power-law and a sharply decreasing exponential makes
that p(a) has two peaks near a = +1 where most of the probability is concentrated, see
Figure 7. We shall show in Section 5.2 that the observed dipole amplitude distribution
follows the theoretical expression (43) rather well.

We note that ¢ ~ D;(0)/Dy, or in view of (36) and (37):

9 ( r.m.s. toroidal field at a reversal )2 (45)
c
r.m.s. toroidal field between reversals
Hence ¢® may also be interpreted as a dimensionless measure of the r.m.s. toroidal field

at a reversal. The scaling of ¢ and v with the model parameters is discussed in Appendix
E.

4.4 The reversal mechanism

It is straightforward to show that reversals must be fast events, caused by interaction with
the overtones. The argument consists of three steps:
(1). If there are no overtones then (29) reduces to (ay = 0 for k > 1; A% = 0):

dao

E = 8(1 - a2)E00a0 + ‘/00(7')0,0 . (46)
The noise term is multiplicative, and the noise amplitude becomes arbitrarily small for
small ag. This prevents reversals, as can be seen by rewriting (46) in terms of a = Ray,
using that Fyy and Vyo are real:

dlna

e s(1 — a®)Ego + Voo(T) , (47)

i.e. Ina performs a restricted random walk and a cannot change sign: no reversals.

(2). For most of the time the dipole amplitude a resides near one of the minima of
U(a) at a = +1. Now consider what happens if a goes rapidly to zero, through a series of
favorable fluctuations. The overtones, although damped, do not follow suit immediately.
According to (29) the evolution of a is then governed by these overtones:

da

— =R (sEo + Vor)ag - (48)
dr i>1

Hence a is temporarily driven by additive noise, and if the realisation of the fluctuations
is right, a reversal may ensue.

(3). We may now conclude that a reversal cannot be a slow event, because if the
evolution toward a reversal is slow, the overtones have the opportunity to decay. The
system then enters into the state described by Eq. (47) and the result is an excursion.
The flip becomes a flop, so to speak.

Let’s rephrase the argument from the point of view of the Fokker-Planck equation. We
begin with a dipole amplitude a = 1, i.e. we consider Eq. (32) with initial condition
p(a,0) = §(a — 1). For 7 > 0 the probability distribution p(a,7) broadens and a quasi-
equilibrium distribution is quickly established in the well at a = 1, on a time scale A~L.
On a much longer time scale, the probability starts to creep diffusively over the hill at
a = 0 (i.e. reversals set in) and the well at a = —1 gets slowly filled in, leading to the
final distribution (43). Writing (32) as dp/0r = —0F/da, then F = Sp — £9(Dp)/da is
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the probability current. Since S and dD/da vanish at a = 0, the probability current at
a = 0 is, according to (35), equal to:

p

0
DO) 2| =400 50|
a=0

F = =
80 a=0

: (49)
There is no contribution from Dga?. Reversals are caused by a small but finite diffusion
coefficient D1(0) solely due to the overtones, cf. (37) and (38): D;(0) is determined by
<T-|2->|a:0; the mean square non-dipole toroidal field during reversals. Since this does not
favor any overtone, it also follows that it will, in the long run, be impossible to attribute
a reversal to any overtone in particular.

4.5 The statistics of field reversals

A variety of statistical properties of ¢ may be inferred from (43), and here we consider
three that are directly linked to observable features. For analytical work a ‘parabolic
approximation’ to p(a) is often useful (Van Kampen, 1992), valid for sufficiently large ~:

p(a) oc expip(a)] = exp [vm + Febin(a — am)?| | (50)
with
P(a) = —ya® + (v +7—1)In(l +d*/&) , (51)
from which we infer that
1 1/2
am = + (1 - —) : 52
~ (52)
2
vyt +y—1
Pm = 1—7+(vc2+7—1)ln<T> ; (53)
" . 4v(y - 1)
Ym poe S (54)

The value of «y is restricted to v > 1, otherwise p(a) consists of a single peak at a = 0.

4.5.1 Variability of the field between reversals

The average amplitude (a) between reversals follows by integrating over a single peak of
pla):

v

[ pla)da

where p(a) is taken from (50), assuming that the field (the particle) resides in the well
at @ = 1. The mean value of g is smaller than 1. In Figures 1 and 5, a fluctuates
asymmetrically around +1 or —1, so that the mean of |a| between reversals is indeed
smaller than 1. The physical origin is the asymmetry of the well around |a| = 1 in Figure
7, and the fact that D(a) increases with a. The amplitude stays longer in the region
la| < 1 because the random motion is slower there than in |a| > 1.

In a similar manner we may compute the variance around the mean. The result may
be written as:

(a) = MN am = (1 1)1/2. (55)

(@a—(a))*) _ r?+v-1
(@? — 4y-1)?
This is independent of the units in which g is expressed, and may thus be directly connected
to the measured relative variability of the dipole field between reversals.

(56)
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4.5.2 Mean reversal rate

A classic problem in the theory of stochastic processes is the mean escape time of a
stochastically driven particle from an interval [a1,ag]. Presently we may relate the mean
reversal time to the mean escape time (T,) of the particle from the region 0 < a < oo,
starting from an initial position a’ > 0, which according to standard theory is equal to
(Gardiner, 1990; Van Kampen, 1992):

oo

= ¢ 7dy zZ VA
(Te) = 2/0 D(y)p(y)/y plz)dz (57)

This expression is almost independent of the initial position a’ as long as it is near the
bottom of the well (o’ = 1). As the particle escapes from [0, co] it is located at the top of
U at a = 0. It may then make one or more additional rapid zero crossings, but irrespective
of that, one would think it has a chance of % to fall in the well at ¢ = —1, and of % to fall
back to a = 1 where it came from. According to our terminology? the former event is a
reversal, the latter an aborted reversal. It would follow that the mean waiting time for a
reversal is 2(T), and this is then also the mean time (T}) between successive reversals (see
Van Kampen, 1992, exercise on p. 47). But the two probabilities are not equal, and (T})
is only approximately equal to 2(T), see Appendix F, where we show that:

INL/2 [ 2 _ 1\ /2
T~z = 1 (5) (%) XD (i) 58)
9 1\ 1/2
~ ﬂAﬂ <—1-C|—02> exp(K7) , (59)
with )
K:—1+(1+c2)ln<11—2c ) . (60)

Relation (59) is an asymptotic expansion of (58) for large 7. It shows that (T;) scales
approximately as exp[const - U(0)/(f%7./NZ2)], see Appendix E, which explains the very
strong dependence on f. There is a close analogy with the escape rate of a strongly
damped thermal particle from a potential well, a problem first considered by Kramers in
1940 (Van Kampen, 1992). A thermal particle has an energy ~ kT (k = Boltzmann’s
constant, T = temperature), but must acquire an energy U(0) — U(1) = U(0) to be able
to escape to the other well in Figure 7. The chance for this to happen (i.e. the inverse
mean escape time) is oc exp[—U(0)/kT]. The parameter f27./N2 thus serves as a kind of
effective temperature. We demonstrate in Section 5 that relation (56) and (58) agree well
with our simulations and with the observed properties of the geomagnetic dipole moment.

4.5.3 Distribution of polarity intervals

According to standard theory (Risken, 1984; Gardiner, 1990; Van Kampen, 1992) the
distribution of the lengths T; of polarity intervals between successive reversals can be
proven to be Poissonian, o< exp(—T;/{T}}) for T, > A~! and from a number of long
runs we have verified this Poissonian character. We shall not enter into any details, as
this result is intuitively evident, given the stochastic nature of the model and the short
memory of the fluctuations.
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Figure 8: The dots, 5 x 10* in total, are the numerically computed values of D,/F (F =
nf21./2N?2) for the standard case, as explained in the text. The histogram is constructed by
determining the average in the corresponding bin. The continuous curve (1.36 + 2.00a?) is the
result of a least-square-fit of a quadratic function to the histogram levels, weighted by the number
of points in the bin, for @ < 1.1. For larger a the contribution of a* becomes appreciable.

5 Model validation

We wish to raise two issues here. The first is how reliable are the analytical results derived
in the previous section, and the second how do the properties of the model compare to
those of the geodynamo.

5.1 Internal consistency

In order to verify the results of the previous sections, we must be able to express ¢ and
in terms of the model parameters, but this is unfortunately not yet possible, cf. Appendix
E. As next best option we have determined D; numerically from a long run, as follows.
During the simulations 77y is known at all times, which permits computing a value of D,
at the current value of a with the help of (37) — omitting the averaging there. We do
so with a spacing of 1 diffusion time to ensure statistically independent draws, and the
result is plotted in Figure 8. The data are then fitted to a quadratic function of a. For
the standard case the result is

2
Dy ~ ”21;[? (1.36 + 2.00a2) , (61)
C
or, upon adding Dya?:
Tf27. 9
D~ TOE (136 +5.524%) (62)
C

from which Ag and A; follow. Since 7f%7./2N2 = 3.22 x 1072, we obtain

¢ ~0.246;  y~2.96. (63)
It follows from (56) and (58) that {(a — {a))?)/{a)? ~ 0.17 and (T;) ~ 94. The simulation
had 468 reversals in 5 x 10* diffusion times, whence (T;) = 107+ 5, while {(a — (a))2)/{a)?
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Table 2. Comparison of numerical and analytic results.

a 2 {(a — (a))*)
run f c y RO (Ty)
# (56) from run (58) from run
1 4.4 0.318 9.04 0.04 0.03 12000 10700 % 5300
2 5.4 0.299 5.15 0.08 0.07 480 519 £ 53
3 6.4 0.246 2.96 0.17 0.16 94 107 £5
4 7.4 0.240 1.82 0.47 0.30 35 376 +1
5P 8.4 0.228 1.09 1.0 0.50 35 18.7+0.4

2 All runs have N, = 10, 7, = 5 x 1072, and comprise 5 x 10* diffusion times. Run # 3 is
the standard case.

b Run # 5 is outside the validity range of the asympotic analysis of Section 4.5 because 7 is
so close to 1.

probability distribution

ool . . . .

0.0 0.5 1.0 1.5
lal

Figure 9: Numerically determined amplitude distribution p(a), constructed by binning subsequent
values of a during the simulation, and the theoretical distribution (43) (drawn curve). Both curves
have been normalised to unit area. The discrepancy is explained in the text.

was measured to be 0.16. These results are summarised in Table 2, together with those of
a few more simulations for different values of the forcing parameter f. The agreement be-
tween the values predicted by (56) and (58), and the values measured from the simulations
is satisfactory, certainly in view of the fact that (58) holds only approximately.

Figure 9 compares the numerically determined amplitude distribution p(a) with the
theoretical result (43). Here the agreement seems less good. The origin of the discrepancy
lies in the approximate expression (33) for S. We have computed g;(a) numerically, in
the same way as we did for D;, and found that expression (33) is correct for |a|<0.4,
but for larger |a| deviations occur. In view of the dependence of (42) on S deviations in
p(a) should be expected. The discrepancy virtually disappears if we use a more accurate
expression for S by evaluating the next term in g; (a) as indicated in Appendix B.1 (Hoyng
et al., 2001). This correction can be shown to have little effect on the mean reversal time

(Ty).
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5.2 Comparison with the geodynamo

The observed properties of geomagnetic field reversals may be summarised as follows
(Jacobs, 1994; Merrill et al., 1996). The mean time (T;) between successive polarity
reversals has decreased over the last 160 Myr, and is now (2—3) x 10° yr. A reversal takes
< 10 kyr. There is no correlation between the lengths of subsequent polarity intervals, nor
between polarity and length of polarity intervals. The distribution of the interval lengths
T; between reversals is well described by a nonstationary Poisson process (because the
mean reversal rate is changing).

These features are all reproduced by our model, where a typical reversal lasts 379 and
(T3) is about 100 diffusion times for f = 6.4 It follows that 74 ~ 3 kyr and (T;) ~ 3x 10 yr.
And the statistics of the reversals is, by construction, independent of the field direction.
A reversal is necessarily a fast event in our model. The quasi-periodic behavior that we
sometimes observe during a reversal due to the temporary dominance of periodic overtones
may be related to the rapid variability the geomagnetic field is sometimes reported to have
during a reversal (Coe et al., 1995).

5.2.1 Secular variation and mean reversal rate

Our model cannot predict the mean reversal rate of the geodynamo as the effective forcing
parameter f2r./NZ? is free. However, it does predict the correct relation between the
variance of the dipole amplitude between reversals (the secular variation of the dipole
mode, in geophysical parlance) and the mean reversal rate. From the particle-in-well
analogy it is obvious that such a relation must exist. As the particle is subjected to larger
random perturbations it will oscillate in the well with larger amplitude, but it will also
jump more frequently from one side to the other, as is evident from Table 2 and Figure
5. Such a trend between secular variation and mean reversal rate is indeed suggested in
the geomagnetic record (McFadden and Merrill, 1995), and in hydromagnetic simulations
(Glatzmaier et al., 1999). We thus offer a very simple theoretical explanation for this
phenomenon.

The agreement is more than qualitative, as the numbers work out quite well. The
current mean reversal rate of once per ~ 100 diffusion times, implies {(a — {a))?)/{a)? ~
0.16, cf. Table 2. In order to compare this with the geodynamo we have determined
the relative variance of the dipole component from three Virtual Axial Dipole Moment
(VADM) records: (1) the last 130 kyr (Figure 4.9 of Merrill et al. (1996)), (2) between
2 and 2.5 Myr ago in the Matuyama chron and (3) between 2.5 and 3 Myr ago in the
Gauss chron, both from Valet and Meynadier (1993). We may take a to be proportional
to the ordinate in the figures, because the amplitude of the poloidal dipole field, which
determines the VADM, is proportional to a. The result is that {(a — {(a})?)/{a)? equals
0.1, 0.15 and 0.2, respectively, in reasonable agreement with the prediction of our model.

5.2.2 The Sint-800 data

After completion of the simulations reported here, detailed VADM measurements have
become available (Guyodo and Valet, 1999). These data allowed us to construct the
observed dipole amplitude distribution. A preliminary comparison with the theoretical
distribution p(a) of (43) is shown in Figure 10. The parameters correspond closely to
run #2 (Table 2), except that ¢ = 0.25 instead of 0.3. The agreement is surprisingly
good in view of the fact that we have made no attempt to improve the fit by changing
the model parameters kR and C},. A parameter study is now in progress, and the results
will be reported elsewhere (Hoyng et al., 2001). We anticipate that a modest change of
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Figure 10: The Sint-800 data is a 800 kyr record of the Virtual Axial Dipole Moment (VADM)
of the geomagnetic field comprising 800 data points with a spacing of 1000 yr (Guyodo and Valet,
1999). The histogram is the amplitude distribution of these data sampled in 35 bins. The drawn
curve is a fit to the theoretical amplitude distribution p(a) from (43) for v = 5.15 and ¢? = 0.25.
The x? of the fit corresponds to 1o. A fit to the parameters of run #2 (y = 5.15 and ¢? = 0.3)
has a x2 of 20. Data for ¢ > 780 kyr (the time of the last reversal) are treated as positive because
of the p(—a) = p(a) symmetry.

the parameters will suffice to bring our model into agreement with the data. It appears
therefore that over the past 800 kyr the geodynamo behaved rather closely conform run
#2. The mean reversal time (T;) ~ 5007y ~ 1.5 Myr of that run would be consistent
with the fact that the last reversal took place 780 kyr ago, but this requires more careful
statistics.

5.2.3 Mean field approximation

Last but not least, we discuss the applicability of the mean field approximation with which
all our results have been obtained. From 74 = R?/8 ~ 3 kyr and R ~ 3500 km we infer
B ~ 105 cm?s~!. Since the conductivity of the core is 6 x 10> Sm~! (Merrill et al., 1996, p.
274) the resistivity is n ~ 1.3 x 10 cm?s™!'. Hence the eddy magnetic Reynolds number
would be 3/n ~ 80. We conclude that application of mean field theory seems reasonable,
although estimates of this kind may always be stretched one way or the other.

To verify the consistency of the af2 approximation we consider the Reynolds numbers
Co = amR/B and Cq = R3€)V'/B. A value for (' follows from claims that the inner core
rotates < 1° yr~! faster than the outer core (references quoted in Section 1). This suggests
that there is a negative gradient Q' ~ —1° yr~!/AR. Taking AR = 2300 km (difference
of outer and inner core radii) and R = 3500 km we obtain Cq ~ —100 and C, ~ —1,
since Cpy = CpCq. Hence |Cy| < |Cq|. We are not claiming to prove that mean field
theory and the of) approximation actually hold in the geodynamo, but merely that their
application here is self-consistent.

5.2.4 Characteristic numbers

The of2 approximation would in fact apply for any Cy, larger than Cy = 57.9, and Cy, =
100 is chosen for two reasons. (1) It leads to a reasonable time scale for oscillations around
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the nonlinear equilibrium of (2A)~! ~ 1 diffusion time or about 3 kyr. The fine structure
of vertical spikes in Fig. 1, due to variable excitation of the first few overtones, would thus
have a typical time scale of (RA)~! <1 kyr, according to Table 1. This is in fair agreement
with the geomagnetic data (Merrill et al., 1996). (2). It follows that oy ~ —3 x 1073
cms~!. This is a reasonable value in the sense that || is everywhere smaller than the
typical convective speed u ~ 1072 cms~! in the outer core.?

The specific values of 7., A\. and N, are not very important as only f27./N2 mat-
ters. But an eddy turnover time of 7. = 0.05 corresponds to 150 yr and implies an
eddy size of A\; ~ ur. ~ 500 km. And N, = 10 would mean 20 convective cells on
a great circle, or 4N2/m ~ 130 on a sphere. The fluctuations in o are large. In the
nonlinear equilibrium the ratio of the fluctuating and the systematic term in (20) is

d0rms./cpcosl = (oo f /2N, sinb ) /o cosBh_for the standard run.

6 Discussion and summary

We have presented a technique to analyse the statistical properties of the axisymimetric
component of the geomagnetic field in the mean field approximation. Key elements are
(1) nonlinear restriction of the magnitude of the field, and linear supercritical operation
for small fields, (2) a non-periodic fundamental dipole mode and periodic overtones, (3)
fluctuations in the dynamo parameter o. Application to a geodynamo model shows a
variable, dominantly dipolar magnetic field, with sudden reversals during which the field
tends to be quadrupolar. These features are generic, and appear irrespective of the type
of nonlinearity and the model parameters, which allowed us to work with a simple nonlin-
earity (global a-quenching). The amplitude of the fundamental mode turns out to behave
as the position of a stochastically driven particle in a bistable potential. This simple phys-
ical picture provides a conceptual framework for understanding the variability of the axial
dipole component of the geomagnetic field on short as well as long time scales. Our main
results are

(1). A theoretical prediction for the amplitude distribution of the dipole mode that is
confirmed by the observed distribution (the Sint-800 record).

(2). A relation between the secular variation of the dipole mode and the mean reversal
rate. The current mean time between reversals of (2 —3) x 10° yr was shown to imply the
observed relative variability of the axial dipole moment of about 15%. More generally, the
model predicts that during epochs of smaller secular variability the reversal rate is also
smaller, and the available observations indicate that this is actually the case (McFadden
and Merrill, 1995).

(3). Reversals are sudden events, lasting <10 kyr, during which the field structure
becomes almost symmetric (quadrupolar). Sometimes a rapid variability is visible during
a reversal with a period of the order of a diffusion time (~ 3 kyr), due to the periodic
overtones.

Our work is a generalisation of that of Parker (1969), and is also related to the
interacting-dipoles model of Mazaud and Laj (1989) and the multiple-scale turbulence
model of Narteau et al. (2000). Instead of the reaction of the dynamo to a single jump
in « as Parker did, the effect of a stationary level of fluctuations in « is studied over long
times. The model permitted a detailed theoretical analysis and long simulations (here up
to ~ 150 Myr), both far beyond what 3D hydromagnetic simulations can afford. Other
statistical features not considered here, for example the autocorrelation function of the

3The maximum possible value of || is the r.m.s. convective flow speed and is attained for maximally
helical convection.
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dipole amplitude, the relative frequency of excursions of a given magnitude, etc., may also
be computed.

We stress that our results are not contingent on the simplicity of the dynamo model,
as they depend only on the eigenvalues and certain overlap integrals of the eigenfunctions.
In particular, they do not rely on our model being one-dimensional. Any model having
a nonperiodic fundamental mode and periodic first overtones would exhibit qualitatively
similar properties, and the technique developed here can be directly applied to these more
complicated models. The most desirable generalisation would be a 2D model, with radial
distance as an independent co-ordinate. That would permit us to allow for the effect of the
inner core, and to verify, for example, the suggestion of Gubbins (1999) that the duration
of a reversal is gauged by the resistive decay time of the inner core, since the field must
penetrate the inner core for a full reversal.

The statistical properties of the dipole amplitude turned out to depend only on <T42—>’
the mean square toroidal field of the overtones. For that reason we have refrained from
analysing the cause of a reversal. Such a cause, e.g. a particularly strong overtone, may
always be found in individual cases, but it will be impossible to discern a general pattern.
In our model reversals can, in the mean, not be pinpointed to any overtone in particular.
The situation is however not completely satisfactory because it remains unclear why we
did not find reversals in a comparable study of an o? dynamo (Hoyng and Van Geffen,
1993). And our analysis is not complete as we have not been able to express (T2)|,—9
and hence the parameters c? and v in terms of f27./NZ2. Solution of this problem would
enable us to bypass the elaborate fitting procedure of Section 5.1.

The origin of the fluctuations lies in the turbulent convection and the azimuthal average.
This is an average over an incomplete ensemble, and therefore all averages (a, 3, etc.) will
have a random component, fluctuating on the correlation time scale 7. (the eddy turnover
time). ‘Normal’ ensemble averages are constant because the ensemble contains all possible
states of the system. Motivated by our work on the phase-amplitude correlation in the
solar dynamo (Ossendrijver et al., 1996; Hoyng, 1993, 1996), we have concentrated on
fluctuations in . However, the effect of fluctuations in 8 and v has never been studied
yet.

Technically, the fluctuations appear as multiplicative noise. Some authors have studied
the effect of additive noise (Crossley et al., 1986; Meinel and Brandenburg, 1990; Farrell
and Ioannou, 1999a,b). While this is interesting in itself, care is needed to ascertain a
physical basis for the extra term. For example, an additive noise term in the dynamo equa-
tion (1) renders it inhomogeneous, leading to the unphysical feature that the magnitude
of the field would be fixed, even when nonlinearities are ignored.

Predictions of the magnitude of the fluctuations, the parameter f in our model, are not
available, neither from theory nor from hydromagnetic simulations. A model of randomly
renovating ‘cells’, homogeneously distributed in the outer core, has so far proven to be
adequate. The required fluctuations are large. In the nonlinear equilibrium the ratio of the
fluctuating and the systematic term in (20) is doy.m.s. /g c@sBH for the standard run.

Roughly the same number is required to explain the observed phase-amplitude correlation
in the solar cycle (Ossendrijver et al., 1996), but this is probably a coincidence. Mean field
dynamos are apparently very insensitive to rapid variations of «. But it remains unknown
if such high fluctuation levels can actually be attained. This, together with the scaling of
(T%)|a=0 with f27./NZ2, are the two main unresolved issues.

The mean reversal rate is extremely sensitive to the forcing due to the exponential
scaling with f27./N2. If f2r./N? changes by a factor 2 (f from 6.4 to 4.4 in Table 2)
the mean time between reversals increases by a factor 100 to about 20 Myr. This might
explain the long polarity bias in the Cretaceous, some 100 Myr ago (Jacobs, 1994; Merrill
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et al., 1996). Our model illustrates that a relatively small change of the mean properties of
the convection in the outer core may appear observationally as if the geodynamo switches
to a different, non-reversing physical state, as suggested by McFadden and Merrill (1995),
while in reality the reversal mechanism remains operative all the time, but the reversal
rate becomes very small.

The slow increase of the reversal rate and the secular variation since the Cretaceous
(Jacobs, 1994; Merrill et al., 1996; McFadden and Merrill, 1995) could likewise be due to
a slow increase of the parameter f27./N2 by a factor 2. This idea has been elaborated by
Schmitt et al. (2000). It is tempting to speculate that such a change in the parameters
of the convection is related to the gradual evolution of the inner core with time, or to
changes in the heat flux pattern at the core-mantle boundary (Glatzmaier et al., 1999).

A final remark on the role of nonlinearities. The nonlinearity in our model restricts
the dipole amplitude a to a finite range, while the supercriticality forces it away from
zero. In this ‘backbone structure’, linear multiplicative noise causes the dipole amplitude
to perform a random walk of restricted amplitude. During a reversal the model dynamo
evolves as a linear system, since 1 — a? ~ 1 in (26) and (29). That may hold for the
geodynamo as well, because the field decreases by a factor 4 or more, and the Lorentz force
is then a factor 10 — 20 smaller than normal, at least globally. Under those circumstances
a linear evolution is not unreasonable. The fluctuations, however, are a manifestation of
nonlinear turbulence, and the question whether nonlinear interactions or fluctuations cause
variability and reversals is therefore semantic. They are ultimately caused by nonlinear
effects. The point of our work is that on the fast timescale of the eddy-turnover time the
effect of these nonlinearities is practically indistinguishable from that of a multiplicative
noise term. For the longer timescales this is no longer true and nonlinearities remain
essential. The added advantage is that many properties of the nonlinear system are now
open to analytic evaluation, as we have shown. This is in fact a well-known and very
successful approach in many areas of physics.
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A Derivation of the Fokker-Planck equation

A.1 Notation

The first step is to rewrite Eq. (29) in terms of real numbers only. This is just a matter
of book-keeping. Consider a complex equation of the type (" = d/d7):

Its real and imaginary parts may be grouped together in a real supervector a and a real
supermatrix B with twice as many components:

§Ra0
RB | —SB Ra

_ _ A2

B e g (a2
SB | ®B Say

Eq. (A.1) can now be written in terms of real numbers only:
a,=Bya,, (A.3)

Supervectors with 200 elements and 200 X 200 supermatrices are indicated by boldface
symbols, and as a further distinction Greek indices are employed. The mode equations
(29) now read

ay = [Lw + (1-ad) B + Viu| 2y, (A.4)
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where a,, E,, and V, are the ‘superpartners’ of a;, Ej; and Vj in (29), and

RN 0 [ =\ 0
0 R 0 —gl

L=l5v 0o o0 o0 ’ (A.5)
0 Sl 0 RAL

with #2% = A? = 0.

A.2 Probability distribution of {a,}

The second step is to derive the joint probability distribution Il(a,7) of {a,}. Eq. (A.4)
defines an orbit in a-space (Figure 6) Consider many copy systems (A.4) each with a
different realisation da. The density f(a, 7) of these systems obeys the continuity equation
in a-space:

of o . .
ar = 7a, a,f = [A+V(Q@]Sf, (A.6)
The operators A and V are defined as
_ 9 2
A= — P, L + s(1-2a3) B a,, (A7)
d
V = — E VWa,, . (AS)

Eq. (A.6) is a stochastic differential equation for f with a multiplicative noise term V.
To get the probability distribution II(a,7) = (f), an average must be performed over the
fluctuations. According to standard theory (Van Kampen, 1976, 1992):

o1l oo
5 = [.A +/ ds (V(7) exp(sA) V(T — s)) exp(—sA) | 1T, (A.9)
0
provided the correlation time 7. is sufficiently small:

Ve <1, (A.10)

where |V| is the order of magnitude of V. The validity of (A.10) is verified in Appendix
C. The exponential operators can be elaborated with the help of Lagrangian co-ordinates
(Van Kampen, 1992), but this is rather complicated. Since (V(7)V(r — s)) vanishes for
|s| 2 7c, we make the approximation exp(+sA) ~ 1 (‘no appreciable evolution during a
correlation time 7.’). This seems reasonable for the lower order eigenmodes in A with their
long time scales. But the higher order modes with shorter time scales are also present,
and hence there are time scales in A compared to which 7. is not small. We are thus
effectively assuming that high-order modes contribute little. Inserting the operators A
and V in (A.9) we obtain:

oIl 0

0
_:_—Nuu_Muau—aHa Al
ar Bau< w8 urprd aa,,a> (A.11)
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with

N =L +s1-a))E, (A.12)

M, = /0 " ds (Vo (1) Vo (7 — 5)) - (A.13)

The fluctuations are taken to be stationary so that M does not depend on 7. The operator
identity
a o _ ia -9 (A.14)
" da, Oa, = ve o )
is inserted, together with the fact that M., = 0. This identity is a consequence of the
specific form of V' in (27) and the completeness of the eigenfunctions, see Appendix D.

Then we find a Fokker-Planck equation for II:

oIl 0 0
a_ - T A Nuu_Mucr ucrH- A.15
ar Bau<”a “”aa,,aa> (4.15)

The matrix elements M, ,, are constants, but N, is a function of ag.

A.3 Probability distribution of a,

Since we are only interested in the behavior of the fundamental mode, the third step is to
eliminate the higher modes by integrating (A.15) over all a,, except ay. The probability
distribution of ay is defined as

p(ag,7) = H/dak IT. (A.16)

The bar on & indicates that the value k = 0 is excluded. We integrate Eq. (A.15) as in
(A.16), using (1) that terms of the type O(---)/0ag vanish since they can be integrated
and II — 0 when any a; approaches oo, and (2) that []; [dag commutes with ay and
hence with d/day and the matrices N and M. The integrations are straightforward and
the result is Eq. (32). The drift coefficient S and diffusion coefficient D are given by

S = Ngoa + Nyg (a,;)|a , (A17)
D = 2(Moooo a? + Mozos (a585)|q
+ Mooz a{az)|a + Moaooa(aa>|a) . (A.18)

The overbars indicate that the fundamental mode 0 is excluded from the summation, and
we have reverted to the simpler notation ¢ = ay. The conditional averages are to be
evaluated at a fixed value of a:

zJdaz apaz Il
(apaz)e = Ll dar a2 : (A.19)
kada,gH

and similarly for (ag)|,. In principle, these averages may be computed from the stationary
solution IT of Eq. (A.15), or by taking appropriate moments of that equation. This would
in turn permit evaluation of (A.19), and hence of (A.17) and (A.18), but we have not
obtained any useful results.
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B Drift and diffusion coefficients

B.1 Drift coefficient

The first part of (33) follows from (A.17) and Ngg = Lgo + s(1 — a3) Egp = u(1 —a?), since
A0 = 0; 4 = sEgg. Then we compute

N0,7 a; = [Lo,j + S(]. — ag) E(),j] ap
= (1 —a}) (REo Ray + REg Ray + -
- %Eoo %ao - %E()l %al — - )

= s(l—ag) R Egay , (B.1)
k>1

because Loy = 0 (due to SA® = 0), and SEgy = 0. To get g1(a) = Ny (ap)|s, We insert
(B.1) and then (30), and define

Ty = RY apTy = R(T —aoTy) , (B.2)
k>1

which is the physical toroidal field minus the contribution of the fundamental mode. Fi-
nally the averaging is applied, and we obtain:

gi(a) = s(1 —a?) /07T d6 sin 6 cos @ Py (T,)|, - (B.3)

On symmetry grounds, (T'.)|, is zero for a = 0, so that (T} )|, o a for small a. This
leads to a series expansion of the type gi(a)/(1 — a?) = Aa(1 + Ba? + ---). For our
purposes the lowest order approximation g1(a) = A(1 — a?)a is sufficient. In that case the
drift coefficient S as a whole will behave as S = const-(1 — a?)a. Since S describes the
systematic evolution of a, the constant must be equal to the exponential growth rate A% at
C = Cy, which proves expression (33) for small a. Numerical experiments have confirmed
(33) to be accurate for |a| < 0.4 (Section 5.1).

B.2 Diffusion coefficient

We begin with Dy = 2Mgggg- According to (A.13):
oC
Mogoo = /0 ds (Voo(T)Voo(T — 3))

= /Ooods (Voo(T)Voo(T — 8)) (B.4)

since Vyo is real. Insert (31):

oC T iy
Moo = /0 ds /0 /0 dBdep sin O sin

a0, 7) da(p, T — 3)> , (B.5)

1211} 1211}

x Py (6)To(6) o) To o)
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The autocorrelation function of da(8,7)/ay = fF(6,7)/v/2N,sinf follows from that of
F. According to the definition of F' in Section 2.2.3:

<6a(0,7’) 5a(0—§,7—0)> B f2AFO,T)F(0 -, 7 —0))
Qg (87)) QNC\/W

_ 20-161/8) (1= Jol/7) (B.6)
2N\/sin0sin(d — ¢) '

f27'c0c
W 6(¢)é(o) - (B.7)

In (B.6) the correlation function is understood to be zero for |{| > 6. or |o| > 7. The last
expression (B.7) is a good approximation when 7. is much smaller than the relevant time
scales and 6, = m/N. is much smaller that the relevant spatial scales. This applies here
as we are dealing with the fundamental mode which has a large-scale structure. It follows
that Moggo is equal to

2 oo T P
Mooy = /0 ds 6(s) /0 /0 d6dy sin o)

2N?
x Py(0)To(0) Po () To (1) (6 — ) , (B.8)
which leads directly to (36), since [5° d(s)ds = % and Dy = 2Mygge- Next in line is
oC
M(),j()a- (a,;a(—,)|a = /0 ds <V0,7(T)V05-(T - S)> (a,;a(—,)|a . (Bg)

First, Vgp ap is evaluated with the help of (A.2):
Vozaz = RV Rar + RVpa Rag + ---
— SVoo Sag — SVp1 Sag — -+
= R Voray , (B.10)
k>1
since $Vpo = 0. Insert (31) and use (B.2):
da(0,T)

1211}

Tr o~
Voo(7) ap — / d6 sin By T (B.11)
0

Substitution in (B.9) and replacing the averaging brackets at the right places, and use of
(B.7) yields:

2
Mosos (a585)|a = ”2’;[? / ds &(s / / d6dyp sin
< Bo0)Bolet) (T4 (VT (0))]a 66— ), (B12)

which leads to (37), allowing for a factor 2. Relation (B.12) assumes that the low or-
der modes are the dominant contributors to 77, so that the assumption of a J-peaked
correlation function in 8 is justified.

The last contribution to D is ga2(a) = 2a(Moooz{as)|a + Mozoo {(@5)|a), the evaluation of
which has no novel surprises. It turns out that both terms are equal, and the computation
is quite analogous to those above:

7Tf27'c
— 2
92(a) 9N2

Numerical experiments have shown that go(a) is always small with respect to D as given
by (35), and therefore go2(a) is not mentioned in the main text.

/ d6 sin6 B2Ty (T})), - (B.13)
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C Short correlation time

To be able to verify condition (A.10), the order of magnitude |V| of V is needed. According
to (A.8), V ~ V,, so that we may estimate |V| as the r.m.s. of a typical matrix element
Vik:

vis iy ~ ~
|W~mm%=AAdwmwmwwmwwm

y <6a(9,7) 5a(¢a7)> . (C.1)

1211} 1211}

(no summation over %, k.) Inspection of (B.6) and (B.7), shows that the appropriate value
of the correlation function in (C.1) is (f2/2N,sin8)8.6(6 — 1), and it follows that:

7 f?

2

Tr ~
/ d6 sind |BrTy|? . (C.2)
0

The eigenfunctions become more structured for increasing k.4, resulting in destructive
interference, and we expect that the integral will be largest for ¢ = &£ = 0, in which case
(C.2) equals Dgy/7.. Accordingly, an appropriate condition for the correlation time to be
short is:

Vire ~ (Dore) /2 < 1. (C.3)

This appears to be satisfied, since for our standard run 7 f272/2N2 ~ 1.6 x 1073, and the
integral in (36) equals 3.529, so that (Dg7c)'/2 ~ 7.5 x 102

D Proof of M, =0

We infer from (A.13) that My,ue = f3° ds(V(7)- V(7 —3)) 4o, and by using the definition
(A.2) for V we obtain, writing time arguments temporarily as upper indices:

§R{V’T . V’T—S} _%{V’T . V’T—S}
VTV = , (D.1)
%{V’T . V’T—S} §R{V’T . V’T—S}

where V7 is the matrix defined in (31). We shall show that V7 - V7% = 0, using the
efficient bra and ket notation b = |b), b = (b| from quantum mechanics (Merzbacher,
1970). Specifically for eigenfunctions b; = |i), b; = (j|. The inner product (13) is written
as (b1|b2), while (12) now reads (i|j) = d;;. The expansion (14) may be written as |b) =
(k|b)|k) = |k)(K|b). Since this must hold for any |b) it follows that |£)(k| = 1 (summation
convention), the unit operator in function space. Explicitly:

{|k)(k|}nm = 5nm5(0 - '9[’) . (D-Q)

n, m enumerate the poloidal and toroidal components of |k)(k| as a 2 x 2 matrix, and the
continuous indices 6,1 are the arguments of |k) and (k|, respectively. Relation (D.2) is
a consequence of the supposed completeness of the eigenfunctions and is known as the
completeness relation (Merzbacher, 1970). For example, the n,m = 1,2 element of (D.2)
reads explicitly: >, T,;‘ ()P (0) = 0.
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After these preliminaries the proof is simple. Since V given by (27) obeys V(1)V(2) = 0,
where 1 and 2 stand for two different sets of arguments 8, 7 of da, all matrix elements
must also vanish. With (D.2) we get:

= @VOVQ)5) = GIVQ)IR)EIVE)G) = Vik(m)Ve;(72) , (D.3)
where Vj; is the matrix element (31). In the notation of relation (D.1) it follows that

V™ . V™ = (. The bottom line is that since V(1)V (2) = 0 in the representation of (27),
it is zero in any equivalent representation.

E The scaling of ¢? and ~v

The parameters c? and +y are defined as combinations of the constants A, Ay and A; that
occur in the drift coefficient S and diffusion coefficient D, and these are in turn fixed by the
dynamo model. The Fokker-Planck equation (32) and therefore ¢? and +y derive ultimately
from (A.15). This equation depends on the model parameters kR and Cp, and on the
overall factor f27./N2 in M, as may be gleaned e.g. from relation (B.8) for Myggp. This
proves that ¢? and v depend on the parameters f, 7. and N, only through the combination
f21./N2, but the exact functional dependence remains unknown. The big challenge is to
find the dependence of (T )|4—o on f27./NZ. If we ignore this and take (T2)|,—¢ constant,
we get, for fixed kR and Cyy,:

2\ -1

v o~ (J;VZC) , ¢ ~ constant (E.1)
C

which is not too bad as a first approximation, see Table 2.

The fact that ¢ and v depend only on (T?) near a = 0 is remarkable. It suggests that
there should be a simpler way to arrive at Eq. (32) than through Appendices A and B,
where b is first expanded in overtones, which then magically recombine into (T'}) upon
integration. Accordingly, the Ansatz

b=aby + by (E.2)

is made, where b, is the field of the overtones, and inserted in (26) which we write
symbolically as b = Ob. The result is aby + b+ = Oby + Ob,.. Taking the inner product
with by we get & = (bg, Obg) + (bg, Ob.), which is then used to eliminate aby from the
previous equation. The result is two coupled equations for ¢ and b, alone. These are
not reproduced here because we have not been able to extract a credible derivation of Eq.
(32) from them. But the fact that they exist proves that the statistical properties of the
dipole mode will only depend on the collective effect of all overtones together.

F Evaluation of (T;)

To evaluate the integrals in (57) write p(a) = exp[y(a)] as in (50) and [D(y)p(y)]~*
= A7 exp[o(y)], with é(y) = yy* — v(c® + 1) In(1 + y?/c?). Since ¢$(0) = ¢'(0) = 0 and
" (0 ) = —2y/c? = ¢} we may write:

@) = 2 [ ayenlpw) | 4= exply(a)] (P.1)

1R

/ dy exp(3dy?) [ dz explpu+ oz —an)]  (F2)
o 1 \Y2
_ E(—¢g m) exp(tm) (F3)
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Figure 11: The functions exp[¢(y)] = Ai[D(y)p(y)]~" and [;°p(z)dz that occur in (57) and
(F.1), for v = 3 and ¢® = 0.2.

The approximation exp[@(y)] ~ exp(34y?) is adequate when the integration limit o’
in (F.1) is about 1, see Figure 11. Subsequently, ' may be replaced by oo because
exp(5¢4y?) = exp(—yy?/c?) — 0. Likewise, the integration limit y in (F.1) may be re-
placed by zero because [;° p(z) dz = [§° p(z) dz in the interval [0, c¢/,/7 | where exp[#(y)] =
exp(—yy?/c?) contributes most, Figure 11, and after 1(2) has been expanded it may be
replaced by —oo. The remaining integrals in (F.2) are simple.

As the particle escapes from [0, oo] it is located at a = 0 and has two options: to fall in
the well at @ = 1, or in the well at @ = —1. The probabilities for these two events would
be equal if the subspace a = ag = 0 is the separatrix of the two basins of attraction. That
is, when ag = 0, it should remain zero in the absence of fluctuations. But this is not the
case since for agp = 0 and Vi = 0, Eq. (29) says that dao/dT = 53 )20 Eorar, # 0. It
follows that there is a residual pulling on the dipole mode by the overtones that destroys
the equal probability for escape to the left and to the right. Consequently, the relation
(Ty) = 2(T) is only approximate.

After substitution of ¢, of (54) and use of (44) we obtain (58). Subsequent substitution
of (53) produces a complicated expression, whose asymptotic expansion is straightforward.
The only nontrivial hurdle on the road to (59) is that

v 4y =1\ 1+ e (1 _ 1 )7(1+02)
2 - c2 v(1 + ¢2?)

1+CQ ¥(1+¢?)
~ ( 2 > e,

for  large.
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