
Astron. Nachr. / AN 326, No. 3/4, 245–249 (2005) / DOI 10.1002/asna.200410384

Mean-field view on rotating magnetoconvection and a geodynamo
model
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Abstract. A comparison is made between direct numerical simulations of magnetohydrodynamic processes in a rotating
spherical shell and their mean–field description. The mean fields are defined by azimuthal averaging. The coefficients that
occur in the traditional representation of the mean electromotive force considering derivatives of the mean magnetic field up
to the first order are calculated with the fluid velocity taken from the direct numerical simulations by two different methods.
While the first one does not use specific approximations, the second one is based on the first–order smoothing approximation.
There is satisfying agreement of the results of both methods for sufficiently slow fluid motions. For the investigated example
of rotating magnetoconvection the mean magnetic field derived from the direct numerical simulation is well reproduced on
the mean–field level. For the simple geodynamo model a discrepancy occurs, which is probably a consequence of the neglect
of higher–order derivatives of the mean magnetic field in the mean electromotive force.
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1. Introduction

The mean–field concept has proved to be a useful tool for the
investigation of magnetohydrodynamic, in particular dynamo
processes with complex fluid motions. Within this concept
mean fields are defined by a proper averaging of the origi-
nal fields. As usual we denote mean fields by overbars, e.g.,
the mean magnetic field and the mean fluid velocity by B
and U , and the deviations of the original fields B and U
from these mean fields by b and u. The mean electromag-
netic fields are governed by equations which differ formally
from Maxwell’s and the completing constitutive equations for
the original fields, or from the corresponding induction equa-
tion, only in one point. In the mean–field versions of Ohm’s
law and of the induction equation an additional electromotive
force, E , occurs which is defined by E = u × b. It may be
considered as a functional of u, U and B. If some simplify-
ing assumptions are adopted, the representation

Ei = aijBj + bijk∇kBj (1)

can be justified. We refer here to Cartesian coordinates and
use the summation convention. The coefficients aij and bijk
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are determined by u and U and can depend on B only via
these quantities. A crucial condition for the validity of rela-
tion (1) is a sufficiently small variation of B in space and
time.

Although by far not generally justified the simple rela-
tion (1) for E has been used in almost all mean–field models
of magnetohydrodynamic phenomena, in particular in mean–
field dynamo models. In a few cases of such phenomena now
direct numerical simulations are available. So the possibility
opens up to calculate the tensors aij and bijk with the field
u taken from these simulations. In this paper we deal with an
example of magnetoconvection as investigated by Olsen et al.
(1999) and a geodynamo model by Christensen et al. (2001).
In both cases we compare, with a view to the applicability
of relation (1), the mean magnetic field resulting from mean–
field models using the so determined aij and bijk with that
derived immediately from the numerical simulations.

2. The examples considered

In both cases, magnetoconvection and geodynamo, a rotating
spherical shell of electrically conducting fluid is considered
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in which the fluid velocity U , the magnetic field B and the
deviation θ of the temperature from the temperature T0 in a
reference state is governed by

∂t U + (U ·∇)U = −(1/�)∇P + ν∇2U − 2Ω× U

+(1/µ�) (∇ × B) × B − αT g θ

∂t B − ∇ × (U × B) − η∇2B = 0 (2)

∂t θ + U ·∇θ − κ∆θ = −U · ∇T0

∇·U = ∇·B = 0 .

The fluiddynamic equations have to be understood as Boussi-
nesq approximation. As usual, � is the mass density of the
fluid, µ its magnetic permeability, assumed to be equal to that
of free space; ν, η and κ are kinematic viscosity, magnetic
diffusivity and thermal conductivity, Ω is the angular veloc-
ity responsible for the Coriolis force, αT the thermal volume
expansion coefficient and g the gravitational acceleration.

For the fluid velocity U , no–slip conditions are posed at
the boundaries, which are in this respect considered as rigid
bodies. All surroundings of the spherical shell are consid-
ered as electrically non-conducting so that the magnetic field
B continues as a potential field in both parts of the outer
space. In the magnetoconvection case an imposed toroidal
magnetic field is assumed resulting from electric currents due
to sources or sinks on the boundaries. The temperature T0 is
assumed to be constant on each of the boundaries, and θ to
vanish there.

The equations (2) can be written in a non–dimensional
form which contains only four non–dimensional parameters,
that is, the Ekman number E, a modified Rayleigh number
Ra, the Prandtl number Pr and the magnetic Prandtl number
Pm,

E = ν/ΩD2 , Ra = αT g∆TD/νΩ
Pr = ν/κ , Pm = ν/η . (3)

Here D means the thickness of the spherical shell and ∆T the
difference of temperatures at the inner and the outer bound-
ary. The typical magnitude B0 of the imposed toroidal mag-
netic field can be expressed by the Elsasser number Λ,

Λ = B2
0/�µηΩ . (4)

In all simulations considered in the following, D = 0.65r0

is assumed, where r0 is the radius of the outer boundary. In
order to characterize the results of the simulations we use in
particular the magnetic Reynolds number Rm = uD/η with
u interpreted as r.m.s. value of u.

For the numerical solution of the above equations a code
is used which was originally designed by Glatzmaier (1984)
and later modified by Christensen et al. (1999).

3. The mean–field concept

When applying the mean–field concept we focus attention
on the induction equation only. We refer here to a spheri-
cal coordinate system (r, ϑ, ϕ) the polar axis of which co-
incides with the rotation axis occurring in the above ex-
amples. In order to define a mean vector field, we aver-
age its components with respect to the spherical coordinate

system over all values of the azimuthal coordinate ϕ. For
example, B = Br(r, ϑ)er + Bϑ(r, ϑ)eϑ + Bϕ(r, ϑ)eϕ,
where Br(r, ϑ), Bϑ(r, ϑ) and Bϕ(r, ϑ) are the averages of
Br(r, ϑ, ϕ), Bϑ(r, ϑ, ϕ) and Bϕ(r, ϑ, ϕ). With this definition
of mean fields the Reynolds averaging rules apply exactly. Of
course, all mean fields are axisymmetric about the polar axis
of the coordinate system chosen.

Subjecting the induction equation given in (2) to averag-
ing, we obtain

∂tB − ∇ × (U × B + E) − η∇2B = 0 , ∇ · B = 0 , (5)

with the crucial electromotive force

E = u × b (6)

mentioned above.
If u is given, the calculation of E further requires the

knowledge of b. From the above equations we may derive

∂t b − ∇ × (U × b + G) − η∇2b = ∇ × (u × B)
G = u × b − u × b , ∇ · b = 0 . (7)

On this basis we may conclude that E is a functional of u, U
and B, which is linear in B. Cancelling G in the first line of
(7) leads to the often used “first–order smoothing” approxi-
mation.

In view of the examples envisaged we introduce some
simplifications. Firstly we assume that b vanishes if B does
so. Then E must be not only linear but also homogeneous in
B. Secondly we use the fact that in both these examples the
configurations of U , B and θ rotate like a rigid body. This
allows us to change to a rotating frame of reference in which
they are steady. Then B and E are steady, too. The result for
E obtained in this rotating frame applies also in the origi-
nal frame. In addition to these two simplifications, which are
well justified for the examples under discussion, we intro-
duce a third one, which must be considered as an assumption
to be checked. The determination of E in a given point of the
(r, ϑ) plane requires the knowledge of the components of B
in some surroundings of this point. It is assumed that their
variation in this surroundings is sufficiently weak so that they
can be represented there by their values and their first deriva-
tives in this point. These three simplifications enable us to
write

Eκ = ãκλBλ + b̃κλr
∂Bλ

∂r
+ b̃κλϑ

1
r

∂Bλ

∂ϑ
. (8)

We refer here again to the spherical coordinate system intro-
duced above. The coefficients ãκλ, b̃κλr and b̃κλϑ are deter-
mined by u and U and can depend only via these quantities
on B. They depend, of course, on r and ϑ. The indices κ and
λ stand for r, ϑ or ϕ, and again the summation convention
is adopted. Note that E is here, with B being axisymmetric,
determined by 27 independent coefficients.

Two methods have been used for the calculation of the
coefficients ãκλ, b̃κλr and b̃κλϑ on the basis of the numerical
simulations addressed in Sect. 2.

Method (i) is based on eq. (7) for b, specified to the
steady case. This equation is solved numerically with u and
U taken from the numerical simulations mentioned in Sect. 2,

but employing nine properly chosen “test fields” B = B
(ν)

,
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ν = 1, . . . , 9. Note, that the velocities are treated as inde-
pendent of the test fields and are therefore the same in all 9
cases. One criterion for the choice of the test fields is that
higher than first–order derivatives of their components with
respect to r and ϑ are equal to zero or at least as small as pos-
sible. With the results for b obtained in this way, E = E(ν)

is calculated for each ν. Writing then down the eqs. (8) with

Eκ = E(ν)
κ and Bλ = B

(ν)

λ for ν = 1, . . . , 9, with any given
r and ϑ, we arrive at three sets of nine linear algebraic equa-
tions for the coefficients ãκλ, b̃κλr and b̃κλϑ. Solving these
equations we can determine all 27 of these coefficients for
the chosen r and ϑ.

Method (ii) ignores any mean fluid motion and uses the
first–order smoothing approximation. The steady version of
eq. (7) for b with U = 0 and G = 0 can be solved ana-
lytically for arbitrary u and B. On this basis, E and so the
coefficients ãκλ, b̃κλr and b̃κλϑ can be determined for arbi-
trary u in the usual way, and later be specified by choosing u
according to the numerical simulations mentioned.

We note that the u needed for the determination of the
coefficients ãκλ, b̃κλr and b̃κλϑ were taken in both methods
from simulations with non–zero B. That is, the resulting co-
efficients are already subject to a quenching corresponding to
this B. In a further study they should be compared with those
for the limit of vanishing B.

4. A more general representation of the mean
electromotive force

Relation (1) for E can be understood as establishing a
coordinate–independent connection between the vectors E
and B and the tensor ∇B by this representation in a Carte-
sian coordinate system. In that sense aij and bijk have to be
understood as tensors, too. By contrast, relation (8) is from
the very beginning a specific one, which applies only in the
chosen spherical coordinate system, and the coefficients ãκλ,
b̃κλr and b̃κλϑ should not be interpreted as tensor compo-
nents.

The coordinate–independent connection between E , B
and its derivatives ∇B expressed above in the form (1) is
equivalent to

E = −α · B − γ × B

−β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(s) ; (9)

see, e.g., Rädler (1980). Here α and β are symmetric second–
rank tensors, γ and δ vectors, κ is a third–rank tensor with
some symmetries, all determined by u and U only, and
(∇B)(s) is the symmetric part of the gradient tensor of B,
that is, when referring again to a Cartesian coordinate system,
(∇B)(s)ij = 1

2 (∇jBi + ∇iBj). The α term in (9) describes
in general an anisotropic α–effect, the γ term an advection
of the mean magnetic field like that by a mean motion of the
fluid. The β and δ terms can be interpreted in the sense of an
anisotropic electrical mean–field conductivity and the κ term
covers various other influences on the mean fields.

Like the number of the components of aij and bijk in (1)
also that of the components of α, β, γ, δ and κ in (9) is

Fig. 1. The radial velocity in the magnetoconvection case at
r = 0.59 r0, normalized with its maximum given by Ur =
16.98 ν/D. In the grey scale coding, white and black corre-
spond to −1 and +1, respectively, and the contour lines to
±0.1, ±0.3, ±0.5, ±0.7, ±0.9.

36. If we however specify (9) to our spherical coordinate sys-
tem and consider the axisymmetry of B this number reduces
to 27, just in agreement with the number of the coefficients
ãκλ, b̃κλr and b̃κλϑ. We may therefore, without changing E ,
choose nine coefficients of α, β, γ, δ and κ arbitrarily, e.g.,
put them equal to zero. The remaining 27 components of α,
β, γ, δ and κ are then uniquely determined by the 27 coef-
ficients ãκλ, b̃κλr and b̃κλϑ. In that sense we express in the
following all results originally obtained for the ãκλ, b̃κλr and
b̃κλϑ in terms of α, β, γ, δ and κ. We stress that these last
quantities are chosen with some arbitrariness, which is, how-
ever, without any influence on E .

5. Magnetoconvection

We consider here a simulation by Olsen et al. (1999) with
E = 10−3, Ra = 94, Pr = Pm = 1 and an imposed
toroidal magnetic field corresponding to Λ = 1. In this case
the intensity of the fluid motion is characterized by Rm ≈ 12.
A flow pattern is shown in Fig. 1.

The results for the α, β, γ, δ and κ obtained by the two
methods explained above, (i) and (ii), do not completely co-
incide. This was to be expected since method (ii) is based on
first–order smoothing. In the steady case considered here it is
surely justified for Rm′ � 1 (a sufficient condition), where
Rm′ = ul/η, with u being again the r.m.s. value of u and l
a characteristic length of the u–field. It seems reasonable to
assume that l is not much smaller than D, that is, Rm′ not
much smaller than Rm. We consider the results for α, β, γ,
δ and κ obtained with method (i) as most reliable. Those ob-
tained with method (ii) fairly agree with them as far as the
profiles of these quantities are concerned, but overestimate
their magnitudes typically by a few per cent; see also Fig. 4
below. When calculating the α, β, γ, δ and κ for the given
u we may scale down Rm by a proper reduction of Pm. For
Rm ≤ 1 the results of the two methods come to a satisfying
agreement. Fig. 2 shows results of method (i) for α and γ,
again with Rm ≈ 12.

A mean–field model of magnetoconvection using (9) and
our results for α, β, γ, δ and κ reproduces very well the
B–field obtained from the direct numerical simulations.

We have also investigated the quantity δE defined by

δE = (EDNS − EMF1)/
√
〈(EDNS)2〉 , (10)
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Fig. 2. Components of the symmetric α-tensor and the γ-vector in
a meridional plane in the magnetoconvection case, determined by
method (i), in units of ν/D. For each component the grey scale
(white – negative, black – positive values) is separately adjusted to
its maximum or, if having a larger modulus, to its minimum. Note
the negative sign in the definition of α in equation (9).

where EDNS corresponds to the quantity E immediately ex-
tracted from the direct numerical simulation and EMF1 to this
quantity determined according to (9) (considering no higher
than first–order derivatives of B) with α, β, γ, δ and κ as
obtained by the above–described calculations and B corre-
sponding to the direct numerical simulations (or, what is here
the same, to the mean-field model). 〈· · ·〉 means averaging
over all r and ϑ of interest in the meridional plane. As Fig. 3
shows, |δE | is, with the exception of a few small areas in the
(r, ϑ) plane, much smaller than unity. This indicates that the
representation (9) is indeed sufficient for the purposes of the
example considered.

6. Geodynamo model

We consider now the case E = 10−3, Ra = 100, Pr = 1,
Pm = 5 and Λ = 0, in which the numerical simulations by
Christensen et al. (2001) indeed show a dynamo. The inten-
sity of the fluid motions can be characterized by Rm ≈ 40.

Fig. 3. The components of δE , defined by (10), in the magnetocon-
vection case. As in Fig. 2 the grey scale for each component is sep-
arately adjusted.

Fig. 4. The quantity (αϕϕ)rms in the dynamo case, in units of ν/D,
with αϕϕ determined by the methods (i) and (ii) (solid and dashed
lines, respectively) in dependence on Rm.

In this case there is a clear difference in the results for
α, β, γ, δ and κ obtained by the two methods. To give an
example for that, we consider the quantity (αϕϕ)rms, where
the r.m.s. value is defined by averaging over all r and ϑ of
interest in a meridional plane. Fig. 4 shows the dependence
of this quantity on Rm, which is again varied by varying Pm.

Several attempts have been made to reproduce the quasi–
steady dynamo observed in the direct numerical simulations
by a mean–field model using the representation (9) of E with
the calculated α, β, γ, δ and κ. The results were not com-
pletely satisfying. The mean–field model with the most reli-
able choice of these quantities, that is, according to method
(i), proved to be slightly subcritical. As Fig. 5 shows, how-
ever, the steady mean magnetic field extracted from the di-
rect numerical simulations is geometrically rather similar to
the slowly decaying one of the mean–field model.

The quantity δE turns out to be larger than in the case
of magnetoconvection by a factor in the order of 10. This
seems to indicate that the representation (9) no longer de-
scribes the real E reasonably. The neglect of higher than first–
order derivatives of B is no longer justified. This statement
is in some agreement with findings by Avalos et al. (2005).
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Fig. 5. The mean magnetic field components in the direct numerical
dynamo simulation (upper panel) and in the corresponding mean–
field model (lower panel).

7. Summary

The two examples considered in this paper lead us to limits
of the applicability of two simplifications frequently used in
mean–field theory: Although in these examples the validity of
the first–order smoothing approximation has proved not to be
rigourously restricted to Rm much smaller than unity, it be-
came clear that this approximation does not work well with
Rm exceeding the order of unity. In the second example, in
addition the traditional representation of the mean electromo-
tive force considering no higher than first–order derivatives
of the mean magnetic field seems to be no longer justified.
Nonetheless, the results derived from our mean-field models
match the azimuthal averages extracted from the direct nu-
merical simulations surprisingly well.

We want to stress that neither the neglect of higher than
first-order derivatives in the expressions (1) or (8) for the
mean electromotive force nor the restriction to steady veloc-
ities is intrinsic for the presented method (i). Corresponding
extensions are planned for the future.
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