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A comparison is made between direct numerical simulations of magnetohydrodynamic
processes in a rotating spherical shell and their mean-field description. The mean fields
are defined by azimuthal averaging. The coefficients that occur in the traditional rep-
resentation of the mean electromotive force considering spatial derivatives of the mean
magnetic field up to the first order are calculated by two different methods, with the
fluid velocity taken from the direct numerical simulations. While the first method does
not use intrinsic approximations, the second one is based on the first-order smoothing
approximation. There is satisfying agreement of the results of the both methods for
sufficiently slow fluid motions. For the investigated example of rotating magnetocon-
vection, the mean magnetic field derived from the direct numerical simulation is well
reproduced on the mean-field level. For a quasi-steady geodynamo model a discrepancy
occurs, which is probably a consequence of the neglect of higher-order derivatives of the
mean magnetic field in the mean electromotive force. At higher excitations, geodynamo
models of the same type show highly time-dependent fluid motions and magnetic fields.
The coefficients determining the mean electromotive force fluctuate then considerably in
space and time, but on the average their profiles resemble those of their counterparts in
the quasi-steady case.

Introduction. The mean-field concept has proved to be a useful tool for
the investigation of magnetohydrodynamic, in particular dynamo processes with
complex fluid motions. Within this concept, mean fields are defined by a proper
averaging of the original fields. We denote the mean fields by overbars, e.g., the
mean magnetic field and the mean fluid velocity by B and U, and the deviations
of the original fields B and U from these mean fields by b and u. The mean
electromagnetic fields are governed by equations, which differ formally from the
Maxwell’s and the completing constitutive equations for the original fields, or from
the corresponding induction equation, only in one point. In the mean-field versions
of the Ohm’s law and of the induction equation an additional electromotive force,
E, occurs, which is defined by E = u× b. It may be considered as a functional of
u, U and B. Under some simplifying assumptions, the representation

Ei = aijBj + bijk∇kBj (1)

can be justified. We refer here to Cartesian coordinates and use the summation
convention. The coefficients aij and bijk are determined by u and U and can
depend on B only via these quantities. A crucial condition for the validity of
relation (1) is a sufficiently weak variation of B in space and time.

Although by far not generally justified, the simple relation (1) for E has
been used in almost all mean-field models of magnetohydrodynamic processes,
in particular in mean-field dynamo models. In many cases now direct numerical
simulations are available. So the possibility opens up to calculate the tensors aij

and bijk with the velocity field u taken from these simulations. In this paper, we
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deal with examples of magnetoconvection and geodynamo models as investigated
by Olson et al. (1999) and by Christensen et al. (2001). We compare, with a view
to the applicability of relation (1), the mean magnetic field resulting from mean-
field models using the so determined aij and bijk with that derived immediately
from the numerical simulations.

Some of the relevant ideas have already been presented by Schrinner et al.
(2005) and are discussed here further. More details can be found in Schrinner
(2005).

1. The examples considered. In both cases, magnetoconvection and
geodynamo, a rotating spherical shell of an electrically conducting fluid is consid-
ered, in which the fluid velocity U, the magnetic field B and the deviation θ of
the temperature from the temperature T0 in a reference state is governed by

∂t U + (U·∇)U = −(1/�)∇P + ν∇2U − 2Ω× U

+(1/µ�) (∇ × B) × B − αTg θ

∂t B− ∇ × (U × B) − η∇2B = 0 (2)
∂t θ + U·∇θ − κ∆θ = −U · ∇T0

∇·U = ∇·B = 0 .

The fluid-dynamic equations have to be understood as Boussinesq approximation.
As usual, � is the mass density of the fluid, µ is its magnetic permeability assumed
to be equal to that of free space; ν, η and κ are the kinematic viscosity, magnetic
diffusivity and thermal conductivity, Ω is the angular velocity responsible for the
Coriolis force, αT is the thermal volume expansion coefficient, and g denotes the
gravitational acceleration.

For the fluid velocity U, no-slip conditions are posed at the boundaries, which
are considered as surfaces of rigid bodies. Both parts of the surroundings of the
spherical shell are assumed electrically non-conducting so that the magnetic field
B continues as a potential field in these spaces. In the magnetoconvection case,
an imposed toroidal magnetic field is assumed. The temperature T0 is assumed to
be constant on each of the boundaries, and θ to vanish there.

Equations (2) can be written in a non-dimensional form, which contains
only four non-dimensional parameters, that is, the Ekman number E, a modified
Rayleigh number Ra, the Prandtl number Pr and the magnetic Prandtl number
Pm,

E = ν/ΩD2 , Ra = αT g∆TD/νΩ , Pr = ν/κ , Pm = ν/η . (3)

Here D denotes the thickness of the spherical shell and ∆T is the difference of the
temperatures at the inner and the outer boundaries. The typical magnitude B0 of
the imposed toroidal magnetic field can be expressed by the Elsasser number Λ,

Λ = B2
0/�µηΩ . (4)

In all simulations considered in the following, D = 0.65r0 is assumed, where r0

is the radius of the outer boundary. In order to characterize the results of the
simulations, we use in particular the magnetic Reynolds number Rm = uD/η
with u interpreted as a r.m.s. value of u.

For the numerical solution of the above equations a code is used, which was
originally designed by Glatzmaier (1984) and later modified by Christensen et al.
(1999).
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2. Mean-field theory. We follow here the lines of mean-field electrody-
namics as presented, e.g., by Krause et al. (1980) or Rädler (2000).

2.1. The general concept. When applying the mean-field concept, we focus
attention on the induction equation only. We refer here to a spherical coordinate
system (r, ϑ, ϕ), the polar axis of which coincides with the rotation axis. For a
scalar field F , the mean field F is defined as the average of F over all values of the
azimuthal coordinate ϕ. In the case of vector and tensor fields, the mean fields
are defined by averaging the components of these fields with respect to the chosen
coordinate system in this way. With this definition, the Reynolds averaging rules
apply exactly. Of course, all mean fields are axisymmetric about the polar axis of
the coordinate system.

Subjecting the induction equation given in (2) to averaging, we obtain

∂tB− ∇ × (U × B + E) − η∇2B = 0 , ∇ · B = 0 , (5)

with the crucial electromotive force

E = u× b (6)

mentioned above. If u is given, the calculation of E further requires the knowledge
of b. From the above equations we derive

∂t b− ∇ × (U × b + G) − η∇2b = ∇ × (u× B)
G = u× b − u× b , ∇ · b = 0 . (7)

On this basis, we conclude that E is a functional of u, U and B, which is linear
in B. Cancelling G in the first line of (7) leads to the often used “first-order
smoothing” approximation.

In some of the examples envisaged the dominant feature of the flow pattern
are convection columns, showing no other variation in time than some azimuthal
drift. We may change to a rotating frame of reference, in which they are stationary.
In simple cases, in addition to u also b, U, B and E are then steady. The result
for E obtained in this rotating frame applies in any case to the original frame, too.

In view of the examples considered, we may assume that b vanishes if B
does so. Then E must not only be linear in the sense explained above, but also
homogeneous in B. The definition of E at a given point of the (r, ϑ) plane at a
given time requires the knowledge of the components of B in some surroundings
of this point at this time and in some past. For the sake of simplicity, it is further
assumed that their variation in this surroundings is sufficiently weak so that they
can be represented there by their values and their first derivatives at this point,
and that any time variation is negligible. While the assumption concerning the
homogeneity of E in B is here well satisfied, the latter one remains to be checked
in all applications. Both together enable us to write

Eκ = ãκλBλ + b̃κλr
∂Bλ

∂r
+ b̃κλϑ

1
r

∂Bλ

∂ϑ
. (8)

We refer here again to the spherical coordinate system introduced above. The
coefficients ãκλ, b̃κλr and b̃κλϑ, called “mean-field coefficients” in the following,
are determined by u and U and can depend only via these quantities on B. They
depend, of course, on r and ϑ and, in case of non-stationary flows, also on time.
The indices κ and λ stand for r, ϑ or ϕ, and again the summation convention
is adopted. Note that E is here, with B being axisymmetric, determined by 27
independent coefficients.
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2.2. Definition of the mean-field coefficients. Two methods have been used
for the calculation of the coefficients ãκλ, b̃κλr and b̃κλϑ on the basis of the numer-
ical simulations addressed above.

Method (i) is based on equation (7) for b. It is solved numerically with u and
U taken from the numerical simulations mentioned, but employing nine properly
chosen steady “test fields” B = B

(ν)
, ν = 1, . . . , 9. Note that the velocities

are treated as independent of the test fields and are therefore the same in all 9
cases. One criterion for the choice of the test fields is that higher than first-order
derivatives of their components with respect to r and ϑ are equal to zero or at
least as small as possible. With the results for b obtained in this way, E = E(ν)

is calculated for each ν. Writing then down equations (8) with Eκ = E(ν)
κ and

Bλ = B
(ν)

λ for ν = 1, . . . , 9 for any given r and ϑ, we arrive at three sets of nine
linear algebraic equations for the coefficients ãκλ, b̃κλr and b̃κλϑ. Solving these
equations, we can define all 27 coefficients for all r and ϑ.

Method (ii) is applicable to steady situations only, ignores any mean fluid
motion and uses the first-order smoothing approximation. The steady version of
equation (7) for b with U = 0 and G = 0 can be solved analytically for arbitrary
u and B. On this basis, E and so the coefficients ãκλ, b̃κλr and b̃κλϑ can be defined
for arbitrary u in the usual way and later specified by choosing u according to the
numerical simulations mentioned.

We point out that u needed to determine the coefficients ãκλ, b̃κλr and b̃κλϑ in
both methods was taken from simulations with non-zero B. That is, the resulting
coefficients are already subject to a magnetic quenching corresponding to this B.

2.3. A coordinate-independent representation of the mean electromotive force.
Relation (1) for E can be understood as establishing a coordinate-independent

relationship between E , B and ∇B by representing it in a Cartesian coordinate
system. In that sense, Ei and Bj have to be understood as vectors, aij , bijk and
∇jBk as tensors, all with the usual properties under coordinate transformations.
By contrast, relation (8) is from the very beginning a specific one, which applies
only in the chosen spherical coordinate system, and the coefficients ãκλ, b̃κλr and
b̃κλϑ should not be interpreted as tensor components.

The coordinate-independent relationship between E, B and ∇B, expressed
above in the form (1), is equivalent to

E = −α ·B− γ × B

−β · (∇ × B) − δ × (∇ × B) − κ · (∇B)(s) ; (9)

see, e.g., Rädler (1980, 2000). Here α and β are symmetric second-rank tensors, γ
and δ are vectors, κ is a third-rank tensor with some symmetries, all determined
by u and U only, and (∇B)(s) is the symmetric part of the gradient tensor of
B, that is, when referring again to a Cartesian coordinate system, (∇B)(s)ij =
1
2 (∇jBi + ∇iBj). We extend the notation “mean-field coefficients” also to the
components of α, γ, β, δ and κ. The α term in (9) describes in general an
anisotropic α-effect, and the γ term an advection of the mean magnetic field like
that by a mean motion of the fluid. The β and δ terms can be interpreted in
the sense of an anisotropic electric mean-field conductivity and the κ term covers
several other influences on the mean fields.

Like the number of the components of aij and bijk in (1), that of the com-
ponents of α, β, γ, δ and κ in (9) is 36, too. If we, however, specify (9) to our
spherical coordinate system and consider the axisymmetry of B, this number re-
duces to 27, just in agreement with the number of the coefficients ãκλ, b̃κλr and
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b̃κλϑ. We may therefore, without changing E, choose nine coefficients of α, β, γ,
δ and κ arbitrarily, e.g., put them equal to zero. The remaining 27 components of
α, β, γ, δ and κ are then uniquely determined by the 27 coefficients ãκλ, b̃κλr and
b̃κλϑ. In that sense we express in the following all results originally obtained for
ãκλ, b̃κλr and b̃κλϑ in terms of α, β, γ, δ and κ. We stress that these last quan-
tities are chosen with some arbitrariness, which, however, has no any influence on
E.

We also point out that the components of ∇ × B and (∇B)(s) with respect
to the spherical coordinate system contain the Bκ not only in the form of their
derivatives, but also without derivatives. Therefore, α and γ depend not only on
ãκλ, but also on b̃κλr and b̃κλϑ. With our special choice of α, β, γ, δ and κ, we
have, e.g., αrr = −(ãrr − b̃rϑϑ/r), αϑϑ = −(ãϑϑ + b̃ϑrϑ/r) and αϕϕ = −ãϕϕ.

3. Magnetoconvection. We consider here a simulation by Olson et al.
(1999) with E = 10−3, Ra = 94, Pr = Pm = 1 and an imposed toroidal magnetic
field corresponding to Λ = 1. In this case convection columns occur, which drift in
the azimuthal direction. In a properly defined frame of reference the fluid motion
as well as the magnetic field are steady. The intensity of the motion is characterized
by Rm ≈ 12. A flow pattern is shown in Fig. 1.

The results for α, β, γ, δ and κ obtained by the two methods explained
above, (i) and (ii), do not completely coincide. This was to be expected since
method (ii) is based on the assumption U = 0 and first-order smoothing. In the
steady case considered here the latter is surely justified for Rm′ � 1 (a sufficient
condition), where Rm′ = ul/η, with u being again the r.m.s. value of u and l a
characteristic length of the u-field. It seems reasonable to assume that l is not
much smaller than D, that is, Rm′ is not much smaller than Rm. We consider of
course the results for α, β, γ, δ and κ obtained by method (i) as most reliable.
A part of them is represented in Figs. 2 and 3. The results obtained by method
(ii) fairly agree with them as far as the profiles of these quantities with respect to
r and ϑ are concerned, but overestimate their magnitudes typically by a few per
cent. When calculating α, β, γ, δ and κ for the given u, we may scale down Rm
by a proper reduction of Pm. For values of Rm up to about 10 the results of the
two methods are in satisfying agreement; see also Fig. 5 below.

Inspecting Figs. 2 and 3 and recalling that Pm = 1, we see that the com-
ponents of α and γ reach values of several η/D. The dominating component of
α is αϕϕ, which is crucial for the generation of a poloidal from a toroidal mean
magnetic field, followed by αrr and αϑϑ. The effect of γ consists in the expulsion
of the mean magnetic flux from the main convection region. The components of β,

Fig. 1. The radial velocity in the magnetoconvection case at r = 0.59 r0, normalized with
its maximum given by Ur = 16.98 ν/D. In the grey scale coding, white and black corre-
spond to −1 and +1, respectively, and the contour lines to ±0.1, ±0.3, ±0.5, ±0.7, ±0.9.
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Fig. 2. Components of the (symmetric) α tensor and the γ vector in a meridional
plane in the magnetoconvection case determined by method (i) in units of ν/D. For
each component the grey scale (white – negative, black – positive values) is separately
adjusted to its maximum modulus. Note that there is a sign error in the presentation of
γ in Fig. 2 of Schrinner et al. (2005).
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Fig. 3. Components of the (symmetric) β tensor in a meridional plane in the magneto-
convection case determined by method (i) in units of ν. Grey scales as in Fig. 2.
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Fig. 4. The quantity (αϕϕ)rms in the magnetoconvection case in ν/D units, in depen-
dence on Λ.

in particular the diagonal ones, take values up to about η. That is, the mean-field
diffusivity, and the mean-field conductivity, differ clearly from the original ones.

A mean-field model of magnetoconvection, using (9) and our results for α, β,
γ, δ and κ, reproduces very well the B-field obtained from the direct numerical
simulations.

We have also investigated the quantity δE defined by

δE = (EDNS − EMF1)/EDNS
rms , (10)

where EDNS corresponds to the quantity E immediately extracted from the direct
numerical simulation and EMF1 corresponds to this quantity determined according
to (9) (considering no higher than first-order derivatives of B) with α, β, γ, δ and
κ as obtained by the above-described calculations, and B corresponding to the
direct numerical simulations (or, what here is the same, to the mean-field model).
EDNS
rms is the r.m.s. value of EDNS. Slightly deviating from the standard definition

of the r.m.s. value used in the case of urms, with averaging over the volume of
all fluid shell, here the average is taken over the part of the meridional plane,
which corresponds to the fluid layer. With the exception of few small areas of this
plane, |δE| is much smaller than unity. This indicates that the representation (9)
is indeed sufficient for the purposes of the example considered.

As explained above, the results reported here imply some magnetic quenching.
In this respect, the results obtained with various B, i.e., various Λ, are of interest.
Fig. 4 shows (αϕϕ)rms, the r.m.s. value of αϕϕ defined as in the case of EDNS

rms , as
a function of Λ. The increase of α in the presence of a weak magnetic field, that
is, for small Λ, is due to an increasing vigour of convection by the relaxation of
the geostrophic constraint. A strong magnetic field, however, inhibits convection
and reduces αϕϕ. Like αϕϕ, the other components of α are also quenched. The
quenching is, however, not the same for different components what leads to varying
amplitude relations among these components for the varying strength of the mean
magnetic field. In addition to the α-quenching, e.g., a β-quenching also takes
place.

4. A quasi-steady geodynamo model. We consider now the case with
E = 10−3, Ra = 100, Pr = 1 and Pm = 5, in which the numerical simulations by
Christensen et al. (2001) indeed show a dynamo. Again the fluid motion and the
magnetic field in a properly chosen rotating frame of reference are steady, and the
intensity of the motion can now be characterized by Rm ≈ 40.

In this case, there is a clear difference in the results for α, β, γ, δ and κ
obtained by the two methods. To give an example for that, we consider again the
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Fig. 5. The quantity (αϕϕ)rms in the quasi-steady dynamo case in ν/D units, with αϕϕ

determined by methods (i) and (ii) (solid and dashed lines, respectively) in dependence
on Rm.

quantity (αϕϕ)rms defined above. Fig. 5 shows the dependence of this quantity on
Rm, which is again varied by varying Pm. In this case, the first-order smoothing
approximation provides us with reasonable results only up to values of Rm of
about 10, but in general it overestimates αϕϕ.

An attempt has been made to reproduce the quasi-steady dynamo observed
in the direct numerical simulations by a mean-field model using the representation
(9) of E with the calculated α, β, γ, δ and κ. The results were not completely
satisfying. The mean-field model with the most reliable choice of these quantities,
that is, according to method (i), proved to be slightly subcritical. As Fig. 6 shows,
however, the steady mean magnetic field extracted from the direct numerical sim-
ulations is geometrically rather similar to the slowly decaying one of the mean-field
model.

Fig. 6. The mean magnetic field components from a direct numerical dynamo simulation
(upper panel) and from the corresponding mean-field model (lower panel). Grey scales
as in Fig. 2.
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The quantity δE turns out to be larger than in the case of magnetoconvection
by a factor of the order of 10. This seems to indicate that the representation (9)
no longer describes the real E reasonably. The neglect of higher than first-order
derivatives of B is no longer justified. This statement is in some agreement with
findings by Avalos et al. (2006).

5. Time-dependent geodynamo models. At higher excitations, geo-
dynamo models of the type considered so far show highly time-dependent motions
and magnetic fields. Let us add two examples of that kind.

The first one is defined by E = 10−4, Ra = 334, Pr = 1 and Pm = 2.
The numerical simulation by Olson et al. (1999) indeed shows a highly time-
dependent but still strongly columnar convection. Compared to the quasi-steady
case considered before, Rm has roughly doubled, Rm ≈ 88. When applying the
mean-field concept to this situation, a generalization of relation (8) for Eκ might
be necessary so that the time derivatives of Bλ are also included. Nevertheless,
method (i), which was established on the basis of (8), provides us with correct
results for the mean-field coefficients considered so far if steady test fields are
used. We have defined them in this way. Their time-averaged profiles are similar
to those in the quasi-steady case what suggests similar dynamo processes. The
amplitudes of the coefficients, however, vary considerably with time, on the scale
of the convective turnover time, with fluctuations as large as the mean values.
While the dominating coefficients fluctuate somewhat moderately, the variation of
the less significant coefficients is even stronger. Fig. 7 displays exemplarily the
profile and the time-variability of αϕϕ.

In the last example we have E = 3 ·10−4, Ra = 990, Pr = 1/3, Pm = 1 and, as
a result, Rm = 350. As shown by Kutzner and Christensen (2002), it belongs to the
dynamos with a reversing dipole field. The convection is no longer columnar and
shows no longer equatorial symmetry. Again the mean-field coefficients have been
defined according to method (i) with steady test fields. At any given time they
vary, compared to the previous example, on much smaller spatial scales and do not
exhibit equatorial symmetries. If averaged over sufficiently long times, however,
the coefficients show profiles similar to those of their steady counterparts, see
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Fig. 7. Time-averaged αϕϕ (left) and a time series of (αϕϕ)rms (right), both in units of
ν/D, in the case of a dynamo with time-dependent but columnar convection. Grey scale
as in Fig. 2.
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Fig. 8. Time-averaged αϕϕ, in units of ν/D, in the case of a dynamo with time-
dependent convection showing no longer columnar structure and equatorial symmetry.
Grey scale as in Fig. 2.

Fig. 8. The relative amplitude fluctuations of the mean-field coefficients are by a
factor of the order of 10 larger than in the previous example and the fluctuations
exceed the mean values by far. Such strong fluctuations may be the cause of
polarity reversals, see Hoyng et al. (2001).

6. Summary. The first two examples considered in this paper, that is, the
cases of rotating magnetoconvection and of a quasi-steady geodynamo model, lead
us to limits of the applicability of two simplifications frequently used in the mean-
field theory. Although in these examples the validity of the first-order smoothing
approximation has proved not to be rigourously restricted to Rm much smaller
than unity, it has become clear that this approximation does not work well with
Rm exceeding 10. In the second example, in addition to the traditional representa-
tion of the mean electromotive force considering no higher than first-order spatial
derivatives of the mean magnetic field seems to be no longer justified. Nonethe-
less, the results derived from our mean-field models match the azimuthal averages
extracted from the direct numerical simulations surprisingly well.

In two more examples, geodynamo models of the same type but at higher exci-
tations are considered, which exhibit highly time-dependent motions and magnetic
fields. The coefficients, determining the mean electromotive force, fluctuate then
considerably in space and time, but on the average their profiles resemble those of
their steady counterparts.
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[6] F.Krause, K.-H.Rädler. Mean-Field Magnetohydrodynamics and Dynamo
Theory. Akademie-Verlag Berlin and Pergamon Press Oxford (1980).

[7] C.Kutzner, U.R.Christensen. From stable dipolar towards reversing nu-
merical dynamos. Phys. Earth Planet. Inter., vol. 131 (2002) pp. 29–45.

[8] P.Olson, U.Christensen, G.A.Glatzmaier Numerical modelling of the
geodynamo: mechanisms of field generation and equilibration. J. Geophys. Res.,
vol. 104 (1999) pp. 10383–10404.
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