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Abstract. Since the stability of marginally thin current sheets has to be
treated kinetically we have developed the three- dimensional fully kinetic
electromagnetic particle-in-cell (PIC) code GISMO. Here in this paper we
describe our actual simulation approach and demonstrate the possibilities
of the related advanced diagnostics tools written in Mathematica and C.
We illustrate some of the abilities of the GISMO package by a vizualisation
of the results of kinetic simulations of the decay of thin current sheet. With
the help of a (free) virtual reality viewer one can interactively investigate
the three-dimensional structure of the unstable wave, using the enclosed
CD-ROM on a PC. The temporal evolution of the instability can also be
viewed using the attached CD-ROM with any WEB-browser.

1. Introduction

Theoretical investigations have predicted that thin current sheets usually
are formed in astrophysical plasmas (Parker, 1994; Schindler, this volume).
Meanwhile experimental investigations have veri�ed the existence of thin
current sheets in situ. Prior to substorm onsets, for example, the thickness
of the current sheet in the near Earth's magnetotail reaches the order of
the thermal ion gyro-radius in the ambient magnetic �eld �io and of the
ion inertial length c=!pi (Kaufmann, 1987; Mitchell et al., 1990; Sergeev,
1990; Pulkkinen et al., 1992; Sanny et al., 1994). In such thin current sheets
the non-gyrotropic properties of the particle motion with their typical me-
andering (Speiser) orbits across the sheet midplane becomes important. A
�rst attempt towards an appropriate non-local linear stability theory was
undertaken by Yamanaka (1978). Lapenta and Brackbill (1997) tried to
calculate the dispersion properties numerically and currently we succeeded
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in solving the corresponding eigenvalue problem analytically (B�uchner and
Kuska, 1999). It appeared that both electron and ion resonant interactions
with the �eld of the unstably growing mode have to be taken into ac-
count (B�uchner, 1998b). Appropriate numerical plasma simulations must,
therefore, be kinetic, resolving both the electron- and the ion interaction
with the electromagnetic �elds. First attempts in this direction were re-
ported by Winske (1981) and Brackbill et al. (1991). However, they just
saw some gradient instability at the edges of the current sheet in the very
beginning of the sheet evolution while they did not follow the sheet decay
further. First results about the non-local bulk current instability of thin
current sheets were published in 1996 (B�uchner and Kuska, 1996; Ozaki
et al., 1996; Pritchett et al., 1996; Zhu and Winglee, 1996). It appeared
that the bulk current instability directly leads to reconnection. The ques-
tions remained open how and in which mode - symmetric sausage mode
or asymmetric kink mode. We have now improved the GISMO code and
developed a number of appropriate diagnostic tools to solve these and other
open problems. In section 2 we describe the actual properties of GISMO
and in section 3 we demonstrate some advanced diagnostics illustrating
the instability of thin current sheets. On the CD-ROM attached to this
volume one �nds movie �les demonstrating the temporal evolution of the
instability. They can easily be viewed by any WEB-browser. The CD-ROM
also contains virtual reality �les which demonstrate the three-dimensional
structure. They can be viewed interactively using a virtual reality viewer
available from the WEB for free.

2. Simulations

GISMO is a fully kinetic electromagnetic particle- in-cell (PIC) code (Bird-
sall and Langdon, 1991). GISMO integrates the relativistic equations of
particle motion
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and ~v� = ~v=c and � = ` t=c with the maximum simulation box dimension
` = maxf`x; `y; `zg. The electromagnetic �elds are obtained by solving the

wave equations for the scalar and vector potentials � and ~A
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Figure 1. Example of a rectangular three-dimensional mesh for the potentials.
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In order to safe computer time at any time step the potentials and
�elds are determined at any grid point of a three-dimensional mesh, shown
in Fig. 1, using the Lorenz gauge condition

1

c

@�

@t
+ ~r ~A = 0: (4)

For solving the equations of motion (1) the �eld values are trilinearly in-
terpolated between the neighbouring grid points. The description of the
potentials by wave equations has several advantages. The most notable one
is the easy implementation of an implicit integration scheme and the sim-
ple formulation of the boundary conditions. The integration of the wave
equation

@2w

@t2
(x; y; z; t) = �w(x; y; z; t) + S(x; y; z; t) (5)
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is performed by the scheme
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with h0 = t(n+1) � t(n) and h1 = t(n) � t(n�1). This scheme is implicit
and unconditionally stable for all step sizes hn. GISMO carries out a step
size adjustment by the particle integrator. The Laplacian for solving the
wave equation (5) is approximated by the �nite di�erence expression
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where �x, �y and �z are the grid distance in the three spatial directions.
The time discretisation scheme (6) yields, together with the approximated
Laplacian given by equation (7), a sparse linear system of equations for the

w
(n+1)
i;j;k . This set of equations is solved at every time step by successive over-

relaxation with a conjugate gradient preconditioner. The iterative solution
is started with the potential of the previous time step, usually the initial
guess for w(n+1) is very close to the solution only a few iterations are needed
to obtain the desired accuracy. Electric and magnetic �elds are calculated
from the potentials by �nite di�erence expressions for the derivatives. The
continuous electric and magnetic �elds are obtained by a trilinear interpo-
lation of the data between the mesh points. Notice that the particle motion
across the boundaries of the simulation box violates the gauge condition.
The forces are, therefore, corrected as soon as the error in the gauge equa-
tion (4) exceeds the error in the iterative solution of the wave equation.

Both the charge % and the current density ~j are calculated from the posi-
tions and velocities of the particles. The solution of the relativistic equations
of motion (1) is obtained using an explicit embedded Runge-Kutta scheme
of the order 4(3) with step size control (Deuhard, 1994). This is the clas-
sical Runge-Kutta method but with an embedded third order step. Table
1 provides the coe�cients which we used for the integration of the particle
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TABLE 1. Butcher tableau used for
the integration of the particle orbits.

orbits. The fourth order integration scheme ensures that the particle gyra-
tion in the magnetic �eld is resolved properly. The step size control plays
an important role in the integration of the equations of motion. In fact,
the accuracy of the integration is an often overlooked quantity in kinetic
simulations. However, the correct modeling of the dynamic system usually
requires a stable and accurate solution, with the accuracy being even more
important! The step size control ensures both that the solution stays stable
and that the local truncation error

[�̂] = (� � ��)=6 (8)

is lower than the desired accuracy for all trajectories (here � and �� are the
fourth and third order approximation obtained by the embedded Runge-
Kutta pair). For modeling an instability the step size control speeds up the
calculation during the initial metastable phase of the system evolution and
the classical Runge-Kutta method has the advantage that it can be imple-
mented in a memory e�cient way. In addition to the memory saving imple-
mentation the classical Runge-Kutta method contains two redundant steps
in the middle of the integration interval h and at the end. This redundance
improves the convergence of the solution for the particle motion. Higher
order Runge-Kutta integrators (Cash and Karp, 1990; Hairer et al., 1987;
Verner, 1993) would not improve the integration quality due to the force
term, calculated by a low order interpolation. The maximum local error of
the integration was chosen to be �̂ < 1 � 10�5. The motion of the particles
near boundaries must be consistent with the boundary conditions for the
�elds. In the case of a Harris (1962) equilibrium we assume, for example,
periodic boundary conditions in the x and y directions 0 � x � `x, 0 � y`y,
0 � z �� `z box, i.e. w(0; y; z) = w(`x; y; z) and w(x; 0; z) = w(x; `y; z).
Further we put the potentials to zero at the upper and lower boundaries
and use free boundary conditions in the remaining directions.



6 J.-P. KUSKA AND J. B�UCHNER

3. Diagnostics

Here we want to draw the readers' attention to the unavoidable necessity
and essential importance of appropriate and advanced diagnostic tools. This
is especially important in case of three-dimensional particle code simula-
tions due to the vast amount of data produced. High quality diagnostics
must be able to organize the simulated data output in a way that allows a
most direct veri�cation or falsi�cation of hypotheses based of theoretial or
experimental investigations. We will demonstrate this by using the insta-
bility of thin current sheets as an example. The linear dispersion theory of
thin current sheets predicts a most unstable density wave propagation in
the current direction. For small mass ratios the wavelength should depend
on it, with � � 2�Lz for a mass ratio M = 1 and � � 2Lz for M = 64.
The the oscillation frequency is expected to be close to the ion frequency in
the ambient magnetic �eld (B�uchner and Kuska, 1999). The mode should
also couple to reconnection with a wave vector kx perpendicular to that
of the unstable wave (ky). The recognition of such mode calls for a three-
dimensional diagnostics in the real space. In the velocity space one could
investigate the responsible resonant interactions. Also, everything should
be presented in its time dependence, since the process is dynamic, non-
stationary. As an example we demonstrate part of our diagnostics for runs,
simulating the unstable decay of thin (Harris, 1962) -type current sheets.
The runs were carried out on a 128�128�64 mesh for the electromagnetic
potentials. The box sizes were chosen as 12Lz � 12Lz � 6Lz in physical
units with Lz being the sheet half-width. In our example the simulation
parameters were Te = Ti = 40 keV , udi = 2 vti and n = 1 cm�3. This
parameter set guarantees both a thin current sheet and a su�ciently high
resolution of the Debye length. The temporary evolution of the sheet can
be followed best by watching the movies, stored on the attached CD-ROM.
For comparison we show results for a mass ratio M = Mi=me = 1 and for
M = 64. The three-dimensional structure can be viewed using the virtual
reality �les, also stored on the attached CD-ROM. They were produced for
three di�erent moments of time. The virtual reality approach allows to see
the density structures from all possible view angles. We show one partic-
ular snapshot out of them in Fig. 2. The Figure corresponds to a moment
of time after a sausage mode bulk current instability has developed. Fig. 2
depicts the ion density isosurface for a mass ratio M = 64 simulation. In
addition the left wall of the box shows isodensity contours for a cut through
the box at X = 6 Lz. At the bottom one sees isodensity contours for a cut
through the box at Z = 3 Lz. This speci�c view angle allows to watch the
transition to three-dimensional reconnection, as discussed in more details
in a separate paper (B�uchner, this volume).
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Figure 2. Example for the advanced GISMO-diagnostics tools based on Mathematica
and C: Ion density isosurface for a developed sausage mode instability in case of a mass
ratio M = 64. The left box side shows isodensity contours for a cut through the simulation
box at X = 6 Lz and the bottom plane depicts isodensity contours for a cut through the
box at z = 3Lz can be seen. The arrow indicates the current and wave propagation
direction

4. Conclusion

Since we published in 1996 the �rst simulation results obtained by the newly
developed GISMO code, we have developed its performance further and,
mainly, added a large number of diagnostic tools based on Mathematica and
C. Now GISMO has proven to be a stable and exible program for kinetic
plasma simulations. A number of physical results was already obtained or
illustrated by using GISMO (cf., e.g., B�uchner and Kuska, 1996; B�uchner
and Kuska, 1999; B�uchner and Kuska, 1997; B�uchner et al., 1998a; B�uchner,
1998b). The stability of GISMO is due to the implemented step size control
scheme and other original features described in this paper. Its exibility
arises from the usage of C-WEB TCL scripts for controlling the program.
This allows an easy extension of GISMO to simulate other plasma problems
were both electron and ion interactions are important.
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