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Summary

The STEREO mission launched in October 2006 provides us for the first time with the
opportunity to observe the Sun-Earth system in three dimensions. Two almost identical
observatories on board make measurements almost simultaneously from two different
vantage points in space. In this thesis we analyse the data taken by the EUVI telescope in
the SECCHI instrument package, investigate the solar corona and concentrate on active
regions and coronal holes. Coronal loops as the building blocks in active regions, and
polar plumes, the most prominent and common features in coronal holes are of particular
interest for this PhD thesis. A general introduction to the physical background of coronal
loops and polar plumes is presented in Chapter 1. The instruments by which the data are
produced and related analysis method are shown in Chapter 2.

After a detailed introduction to an automated loop segmentation tool in Chapter 3,
in Chapter 4 we have reconstructed the 3D geometry of coronal loops from TRACE and
EUVI image pairs by using the stereoscopic technique. It is shown that the loop geometry
deviates from the assumptions used in previous studies, such as, loops lie in one plane
and have symmetric shapes. The studies in this thesis have found that these assumptions
are rarely satisfied. The comparison of the reconstructed 3D loops with the magnetic field
lines extrapolated from linear force-free models with different force-free parameters has
been made. Different loops often need to be fitted with different force-free parameters
which tells us the linear force-free field model is not adequate to describe the magnetic
field in the investigated active regions.

In Chapter 5, the 3D orientation and position of polar plumes has been stereoscop-
ically reconstructed. The ten plumes investigated show a superradial expansion in the
coronal hole in 3D which is consistent with the 2D results. Their deviations from the
local meridian planes are rather small with an average of 6.47◦. By comparing the recon-
structed plumes with a dipole field with its axis along the solar rotation axis, it is found
that plumes are inclined more horizontally than the dipole field. The lower the latitude
is, the larger is the deviation from the dipole field. We have calculated the plume width
from two different viewpoints and find that they are consistent with a circular cross sec-
tion. Given the small separation angle, more samples at large separations are however
needed to come to a firm conclusion. By projecting the 3D plumes onto EUVI images,
the relationship between plumes and bright points has been investigated. No one-to-one
association has been found.

The combination of the 3D plumes with the SUMER observations could tell us more
about the physical properties of plumes. The electron temperatures in three plumes do
not vary very much and are lower than the interplume regions. The electron densities
along the plumes decrease with height above the solar surface. The temperature obtained
from the density scale height is 1.6 − 1.8 times larger than the temperature obtained from
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Summary

SUMER line ratios. We attribute this discrepancy to a deviation of the electron and the
ion temperatures. Finally, we have found that the outflow speeds in the plumes corrected
by the angle between the line-of sight and the plume orientation are quite small with a
maximum of 10 km s−1. This speed is too small to make plumes a dominant contributor
to the fast solar wind.
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1 Introduction

1.1 Solar atmosphere

The Sun is the only star on which we can study fundamental physical processes with
high resolution. The source of the Sun’s energy is produced by nuclear reactions in its
core, transported from the core to the surface by photons in the radiative zone and by
convection in the convective zone as shown in Figure 1.1. Above the solar surface is the
solar atmosphere, divided into photosphere, chromosphere, transition region and corona.

A simple 1D temperature and density profile from the inner to outer solar atmosphere
is presented in Figure 1.2. The photosphere is a thin layer of around 400 - 500 km at the
top of the convective zone and is the visible surface of the Sun which can be seen by hu-
man eyes. The absorption lines in the photosphere are known as the Fraunhofer lines. Ob-
served photospheric phenomena are sunspots, granules, supergranules and faculae. The
temperature in the photosphere decreases with height and reaches to a minimum of about

Figure 1.1: Sun structure from interior to atmosphere (sohowww.nascom.nasa.gov).
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1 Introduction

Figure 1.2: The 1D temperature and density stratification as a function of height (Lang
2001).

4500 K at the top of the photosphere. In the chromosphere the temperature rises to about
1 × 104 K. Energy is transported to this layer mainly by radiation and waves. The chro-
mosphere is optically thin in the visible continuum spectrum and optically thick in strong
resonance lines such as Hα and Ca ii H and K. The features seen in the chromosphere are
the network of magnetic elements, bright plages around sunspots, dark filaments across
the disk and bright prominences above the limb. Above the chromosphere, the temper-
ature rises drastically from 1 × 104 K to 1 × 106 K. This region is called the transition
region where some emission lines in the ultra violet part of the solar spectrum are formed.
The outermost layer of the Sun is called the corona which will be introduced in detail
below. From the photosphere to the corona, the density decreases abruptly. It should be
mentioned that Figure 1.2 only shows a simple 1D model. In reality, the structures in the
solar atmosphere are more complicated and inhomogeneous.

1.2 Solar corona

The solar corona obtained its name from the crown like appearance evident during a
total solar eclipse. The coronal emission in the visible is faint and can only be observed
from the Earth during a total solar eclipse or by means of a coronagraph when the bright
photosphere is occulted. For the solar physicist, solar corona is a beautiful and mysterious
feature to study. It harbours many eruptive phenomena, such as flares and coronal mass
ejections (CMEs). Due to the high temperatures in the solar corona, gravity alone cannot
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1.2 Solar corona

keep the plasma to the Sun. Where not confined by the magnetic field, it may expand into
the interplanetary medium as a continuous stream of particles called the “solar wind”.
Although its high temperature has been found for over 60 years, up to now, we do not
know yet why the temperature in the corona is so high and what are the sources of the
heating energy.

The solar corona has three components:

K corona: Kontinuum Corona

The visible coronal radiation (the white-light corona) is primarily composed of two
different parts: the K corona and the F corona. The K corona extends between ∼ 1.03 R� <
R < 2.5 R� and it named after the German “Kontinuum”. Its continuum spectrum resem-
bles the photospheric spectrum without the Fraunhofer lines (absorption lines). The K
corona is produced by Thomson scattering of photospheric light by free electrons in the
corona. Due to the high temperature of the coronal electrons, the absorption lines are
broadened and mixed with the continuum. Since it is produced by Thomson scattering,
the light of the K corona is highly polarized.

F corona: Fraunhofer Corona

The F corona dominates outwards from around 2.5 R�. The prefix F is dedicated
to Fraunhofer. It displays the Fraunhofer lines superimposed on the continuum solar
spectrum as it is mainly produced by the photospheric light scattered by dust particles
into the interplanetary space and is weakly polarized. Two images of the white-light
corona at solar activity maximum and minimum are presented in Figure 1.3. At activity
maximum, the corona is seen all around the Sun, while at activity minimum, the corona
is quite different and polar coronal holes appear.

E corona: Emission Corona

The E component comprises the corona in emission lines and has a very wide spectrum
from radio waves to ultraviolet and X-rays. The two strongest emission lines in the visible
E corona are the Fe xiv 5303 Å and Fe x 6374 Å. The corona emits a very rich spectrum
of ultraviolet and extreme ultraviolet (UV/EUV) lines. Images taken with the narrow-
band spectral filters selected from some of these lines exhibit the density information of
the respective highly-ionized atoms. Figure 1.4 shows the corona observed by the EUVI
(Extreme Ultraviolet Imager) telescope on board STEREO (Solar-Terrestrial Relations
Observatory) at three wavelengths 171 Å, 195 Åand 284 Å corresponding to the peak
temperature of about 1.0 MK, 1.5 MK and 2.0 MK (details on the instrument will be
introduced in Chapter 2). Emission at wavelengths less than 100 Å is referred to as X-
rays and is often related to higher energy radiation from the hottest regions of the corona.
An image taken by the XRT (X-Ray Telescopy) on board Hinode is presented in Figure
1.5.
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1 Introduction

Figure 1.3: The white light corona observed during the total solar eclipses in August 1999
at solar activity maximum (left) and in November 1994 at solar minimum (right). The rosy
color features around the solar disk in the left panel is the chromosphere (adapted from
http://en.wikipedia.org and http://www.nasa.gov, respectively ).

1.2.1 Solar corona and magnetic fields

In the above we have seen the corona at different wavelengths. Because of the high con-
ductivity and the lower plasma β defined as the ratio of the thermal pressure to the mag-
netic pressure in the corona, magnetic fields dominate the structures. The solar corona
is usually divided into three regions, active regions, coronal holes and quiet Sun regions,
which have very different magnetic field characteristics, as shown in Figure 1.6. In active
regions and the quiet Sun, field lines are dominantly closed, whereas in the polar coronal
hole, open field lines are dominating. On the right side of Figure 1.6, a global potential
magnetic field model at the solar activity minimum is exhibited. The magnetic field lines
in the active region in the northern hemisphere are almost closed, while in the two po-
lar caps are mainly open field lines. A good working definition of quiet Sun regions is
the region encompassing all closed magnetic field regions excluding active regions (As-
chwanden 2005b). The name “quiet Sun” does not mean that this region is really quiet.
In fact, many dynamic processes in small-scale phenomena have been found as the spatial
resolution of telescopes has improved, such as bright points, explosive events. Since the
structures in active regions and coronal holes are analysed in this thesis, a more detailed
description on them will be given below.

1.2.2 Active regions

Active regions are the locations of highly concentrated magnetic field. The heliographic
position of active regions is typically confined in bands located at latitudes of ±40◦ with
respect to the solar equator. With the dynamic plasma motions in the photosphere and
chromosphere, the magnetic field in active regions is reconfigurated by flux cancellation
and magnetic reconnection. Big eruptive events like solar flares and CMEs usually occur
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1.2 Solar corona

Figure 1.4: Four images at four different EUV wavelengths taken by EUVI telescope
on board STEREO on December 4 2006. From upper to bottom and left to right are,
respectively, the corona images at 171 Å , 195 Å , 284 Å and the transition region images
at 304 Å (from http://www.nasa.gov).

in active regions. A solar flare is a sudden, rapid, and intense variation in brightness and
occurs when magnetic energy that has built up in the solar atmosphere is suddenly re-
leased. Radiation is emitted across virtually the entire electromagnetic spectrum. A CME
is an impulsive ejection of chromospheric and coronal material from the solar corona,
usually observed with a coronagraph. Most of the CMEs originate from active regions
and are often associated with other solar active phenomena, e.g., solar flares, eruptive
prominences, coronal dimmings and EIT waves.

Coronal magnetic loops are the building blocks in active regions. They maybe quite
twisted before an eruptive event happen as presented in Figure 1.7 (also in Figure 1.5).
Another spectacular loop system are the post-flare loops which are large-scale and bright
transient loop systems that are thought to form in the corona after the magnetic reconnec-
tion above the loop system occurred. They are best visible at EUV wavelengths (Figure
1.8). Solar flares sometimes can excite transverse oscillations (Aschwanden et al. 1999a,
Schrijver et al. 2002, Wang and Solanki 2004) or longitudinal oscillations (Wang et al.
2002, 2003) of the adjacent coronal loops.

The coronal loops not associated to these large eruptive events are also important from
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1 Introduction

Figure 1.5: The corona in Soft X-rays (SXR) taken by XRT (X-Ray Telescopy) on board
Hinode in February 2007 (Courtesy of Hinode/XRT consortium).

Figure 1.6: Left: three different regions in the solar corona indicated in the image taken by
EUVI on June 2007. Right: a global potential field model at the solar activity minimum
on another day to show the open and closed field line regions. (Riley et al. 2006).
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1.2 Solar corona

Figure 1.7: The SXR coronal loops observed on April 7 1997 before (at 13:38 UT) and
after (at 17:40 UT) a CME (Courtesy of Yohkoh consortium).

Figure 1.8: The post-flare loop system observed by TRACE at λ = 195Å on November 4
2003 (Courtesy of TRACE consortium).
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1 Introduction

Figure 1.9: Left: the EIT image showing the polar coronal holes at λ = 195Å taken
in November 1996 during the solar activity minimum. Right: the coronal hole extended
from the south polar cap to the north hemisphere taken by EIT at λ = 284Å in January
2002 during the solar maximum. (Courtesy of the SOHO/EIT consortium).

the viewpoint of coronal heating, since big eruptive events do not occur as frequently as
the small eruptions (§9.8 in Aschwanden 2005b). They look more quiescent in active
regions and can be observed in SXR and EUV wavebands. Actually, most of them are
poorly consistent with the static loop models according to Winebarger et al. (2003) and
loops observed in EUV are more dynamic than those observed in SXR. Until now it is
unclear yet how these quiescent loops are heated and whether the SXR and EUV loops
have different heating mechanisms. The cooling of active region loops has been suggested
to be driven first by the electron heat conduction from the corona to the chromosphere then
by radiative loss (Winebarger and Warren 2004).

1.2.3 Coronal holes

Coronal holes are regions of significantly reduced emission in all spectral lines formed
at coronal temperatures. They can last over several solar rotations. They are linked to
funnel-like unipolar concentrations of open magnetic field lines and act as efficient con-
ductors for transporting heated plasma from the corona to interplanetary space. Therefore,
coronal holes are the primary source of the fast solar wind. Because of the dominantly
open field line structures, coronal holes are most of the time “empty”, with lower den-
sity and temperature and thus appear darker than the quiet Sun surface regions. During
solar minimum, coronal holes are mainly found at the Sun’s polar regions, but they can
be located anywhere on the Sun during solar maximum. In Figure 1.9, an example is
presented of coronal holes at solar activity minimum and maximum respectively. During
the solar maximum in January 2002, the southern polar coronal hole extended out to the
north hemisphere.

On large scales and in UV and X-ray wavelengths, coronal holes appear much more
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1.2 Solar corona

Figure 1.10: Polar plumes observed by four different instruments aboard SOHO in March
1996 (Deforest et al. 1997).

homogeneous comparing to other regions of the Sun. However, if they are seen in chromo-
spheric and transition region lines, the chromospheric network is the most basic structure.
Moreover, if observed with high spatial and temporal resolution, coronal holes are highly
structured including polar plumes, polar jets, bright points, spicules, macrospicules, and
so on. The spatial scales of these structures spatially range from 1 arcsec to several tens
of arcsec, and they vary temporally from 1 minute to several days.
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1 Introduction

Plumes are ray-like structures above the polar caps best visible during the solar activ-
ity minimum with a lifetime of several hours to days. They were first found in white light
and called polar rays (e.g. Saito 1965). In Deforest et al. (1997) plumes are analysed by
taking the observations by SOHO (Solar and Heliospheric Observatory) including the in-
struments of MDI, EIT, CDS, SUMER, UVCS and LASCO C2 and C3, the ground based
HAO Mk 3 white-light coronagraph. The morphology of the plumes observed over the
south pole of the Sun is shown in Figure 1.10 and individual plumes have been charac-
terized from the photosphere to approximately 15 R� in polar coordinates. Deforest et al.
(1997) have shown that most investigated white-light polar rays can be directly associated
with the EUV polar plumes and their footpoints on the solar surface. Plumes are estimated
to occupy about 10% of the polar hole volume and reveal superradial expansion to 30 R�,
if seen in white light (DeForest et al. 2001b). Soft X-rays possibly show mainly the hot
plasma at the footpoints of the plumes (Ahmad and Webb 1978), which are also seen as
weak radio sources (Gopalswamy et al. 1992). Various efforts have been made to measure
the temperature and density of plumes at the base and above the limb (e.g. Young et al.
1999, Wilhelm 2006). From these studies, plumes were identified as cooler and denser
structures as compared to the surrounding atmosphere in coronal holes. Often plumes
are associated with bright points in coronal holes although there is no one-to-one relation
(Wang 1998). Recently Raouafi et al. (2008) found from the observations by Hinode/XRT
and STEREO/EUVI that polar jets could be regarded as precursors of polar plumes.

1.2.4 Why do we need 3D?

With the launch of STEREO in October 2006, a new dimension of the Sun has been
opened. For the first time we are able to observed the Sun from two different viewpoints
simultaneously, which provides us with the opportunity to see the Sun in three dimension.
In this thesis the 3D geometry of the coronal loops in active regions and polar plumes in
coronal holes are reconstructed. As we will see in the following, the knowledge of their
geometry is quite helpful for a better understanding of their physical background.

Why do we need 3D loops?

In the research field of coronal loop modelings, we often compare the observed in-
tensity with the intensity synthesized from the temperature and density results of loop
models to obtain some information about the free parameters in models, like loop heating
functions (Reale et al. 2000a,b). If we want to synthesize the intensity along one loop
correctly, the cosine of the angle between the line of sight and the local tangent direction
along the 3D loop should be taken account of. This cannot be done without the 3D loop
geometry. As shown in Wood and Raymond (2000) and Alexander and Katsev (1996), the
optically thin emissions in one simulated loop from different view directions can present
quite different emission distributions along the loop (Figure 1.11). When viewed from
above, the geometrical projection causes the footpoints to appear bright where the line-
of-sight direction and the local tangent direction are close to parallel. While an edge-on
view direction produces an emission maximum at the loop top simply due to the increased
path length toward the apex.
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1.2 Solar corona

Figure 1.11: Semicircular loop images at different viewing angles with a maximum tem-
perature at the loop top of logTmax = 6.8. The panels from left to right and upper to
bottom are (1) directly above, (2) 45◦ from vertical, (3) face-on, (4) rotate by 45◦ and (5)
edge-on (Wood and Raymond 2000).

In the previous studies of active region modelings before STEREO the emission from
quite a number of loops was simulated assuming loop geometries, which were often ap-
proximated by magnetic field extrapolations (Warren and Winebarger 2006, Lundquist
et al. 2008a,b). To test theories of coronal heating by the relationship between intensity
and the unsigned magnetic flux, one difficulty is the estimates of the loop length, which
were hampered by projection effects and the superpositions of structures along the line of
sight (Warren and Winebarger 2006). With the STEREO data available, this problem can
be reduced by the 3D reconstructions of coronal loops (Aschwanden et al. 2009) where
they obtained better modelled active region morphology than previous work. Further-
more, the derived 3D loop length can be utilized to test loop scaling laws, for example,
the RTV scaling laws, which predicts the relation between the pressure at the footpoint,
the maximum temperature and the loop length (Rosner et al. 1978).

A yet unsolved problem is that in loop observations the apparent loop width hardly
changes with height as it should if the hot emitting plasma is confined by a magnetic flux
tube bounded by magnetic surfaces. With increasing height above the surface, the flux
tube cross section should increase as a result of the flux conservation. However, from ob-
servations in both EUV and SXR wavebands nearly constant cross sections are repeatedly
found (Klimchuk 2000, Watko and Klimchuk 2000). With the 3D loops reconstructed
from STEREO we can check whether the distortion of the flux tube shape is caused by
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1 Introduction

Figure 1.12: The left panel shows the loop shape parameter used by Dymova and Ru-
derman (2006). The loop is approximated by an arc of a circle of radius R. l is the
distance of the circle center to photosphere and being positive when the center is below
the photosphere. The right panel is the ratio of periods, Pf /P0 as a function of the density
stratification for different values of the geometrical parameter λ = l/R. H is the density
scale height.

the view angle as suggested by Klimchuk et al. (2000). Another question is whether an
isolated loop we observed is a single flux tube. If it is, the cross-sectional shape is highly
unlikely to be simple or keep the same shape along its entire length, this can be checked
by computing the loop width along the loop at each corresponding point from two EUVI
view directions.

By associating one 3D loop with its best fit field line from magnetic field extrapola-
tions from the high spatial resolution magnetogram data (SOLIS, SDO), we can recon-
struct a corresponding flux tube to the observed loop. Then we can estimate how magnetic
field strength decreases with height in the flux tube more precisely than previous studies,
subsequently the flux tube expansion factor can be derived. In this way a one-to-one
comparison of the observed loop width with the width of its corresponding magnetic flux
tubes could be made.

Another prospective application of the 3D geometry of loops is the loop oscillations.
Wang et al. (2008) show that the kink modes of loop oscillations can be misidentified
if viewed only from one direction. Dymova and Ruderman (2006) discussed about the
geometry effect on transverse oscillations of coronal loops. They found the the ratio of the
fundamental mode, Pf , and the first overtone, Po, depends on the loop geometry (Figure
1.12). As also stated in Aschwanden et al. (2002), a more accurate determination of the
oscillation parameters should include the projection effects of the 3D loops. The measured
periods which related to the loop length can in principle be used to constrain the Alfven
speed, and thus the coronal magnetic field strength. Furthermore, 3D reconstructions
of elementary loop structures are of fundamental importance for studying the associated
(non-potential) magnetic field and related electric currents.
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1.2 Solar corona

Why do we need 3D plumes?

In the research of polar plumes, there are still two debates ongoing. One is related to
the role of polar plumes for the fast solar wind. In general, plumes are thought to harbor
smaller outflow speeds than the interplume regions, which is based on SOHO/SUMER
Doppler shift measurements (Hassler et al. 1999, Wilhelm et al. 2000) and simulations
(Wang 1994). The SUMER observations have shown that close to the solar limb, po-
lar plumes seem to be nearly in hydrostatic equilibrium and show very small or no line
shifts. Doppler dimming techniques applied to SOHO/UVCS derived the same conclu-
sion. Giordano et al. (2000) found that at the height of 1.7 R� the outflow speeds in the
interplume regions range from 100 to 150 km s−1, while in bright plumes outflows are
much lower from 0 to 65 km s−1. However, Gabriel et al. (2003) used the same Doppler
dimming techniques to SUMER data in the height range of 1.05−1.35 R� and reached an
opposite conclusion: the outflow speeds in plumes are higher than in interplume regions
and plumes makes a substantial contribution to the total line of sight.

Another important question to be answered is what are the magnetic structures at the
plume footpoints. Some observations have shown that plumes are rooted in unipolar re-
gions. Newkirk and Harvey (1968) suggested that plumes originate in unipolar regions
at the intersection of chromospheric network boundaries. While Deforest et al. (1997)
agreed to the unipolar magnetic property of plume footpoints, they have shown from MDI
and CDS observations that plume footpoints are located within the chromospheric net-
work. On the contrary some people suggested a completely different picture that plumes
are associated with mixed polarity magnetic features at the footpoints (Wang and Sheeley
1995, Wang 1998) and formed by magnetic reconnection between bipoles and the back-
ground unipolar fields. This is supported by the higher temperature at the plume foot-
points and the high density plasma produced by the chromospheric evaporation into the
plume. DeForest et al. (2001a) have found that polar plumes are both transient and persis-
tent structures: they are recurring structures that brighten for about one day but reappear
at approximately the same location intermittently for up to 2 weeks. This temporal be-
haviour is consistent with single large unipolar flux concentrations encountering multiple
ephemeral bipolars under the influence of supergranulation, suggesting that polar plumes
are indeed formed by small scale magnetic reconnection events driven by supergranular
motions.

One handicap of all previous studies was the fact that plumes, even though well visi-
ble in 2D images beyond the limb, could not be reliably traced to the solar surface. With
their 3D reconstructions from EUVI image pairs close to the solar surface, their foot-
points can be extrapolated from the known 3D geometry if we assume that the plumes in
EUVI images can be approximated by straight lines. Hence, by plotting the footpoints
into a photospheric or chromospheric magnetogram, the magnetic properties of plume
footpoints can be derived. Another application of 3D plumes is their orientation. Since
the outflow speed calculated from Doppler shift or Doppler dimming is along the line
of sight or perpendicular to the line of sight, respectively, a true outflow speed can be
obtained by correcting for the angle between the line of sight and the plume orientation.
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1 Introduction

1.3 Research program of the present thesis

This thesis focuses on the stereoscopic reconstructions of coronal loops and polar plumes
from the SECCHI/EUVI images. As explained in the preceding discussions, 3D geometry
of coronal loops and polar plumes are important for our understanding the physics in
active regions and coronal holes.

The structure of the rest of this thesis is arranged in the following. In Chapter 2, the in-
struments and related data analysis techniques including stereoscopy, EUV emission line
spectroscopy and linear force-free coronal magnetic field extrapolation are introduced. In
order to extract loop structures from 2D EUV images, the design of an automated loop
detection tool is presented in Chapter 3 . Based on the extracted coronal loops from EUV
images taken from two different viewpoints, in Chapter 4 the stereoscopic reconstructions
of loops are exhibited first from two TRACE images taken about one day apart and us-
ing the solar rotation as a test before the STEREO data was available. Then the 3D loop
reconstructions are performed by using the real SECCHI/EUVI data. In Chapter 5 we
shift the 3D reconstructions from active regions to coronal holes and 3D polar plumes
are reconstructed. By combining the 3D geometry with SOHO/SUMER observations,
the electron temperature and density in plumes are obtained. In the end, the concluding
Chapter 6 of this thesis summarizes the main conclusions and gives an outlook for future
work.

20



2 Instruments and related data
analysis techniques

In Chapter 1 we have presented some beautiful images in different wavelengths of the so-
lar atmosphere taken by a few delicately designed space missions, such as SoHO, TRACE,
Hinode, STEREO, etc, which have been greatly improving our understanding of the Sun.
In this chapter we will first briefly introduce the instruments related to this thesis, then
show how to analyse the data observed by them.

2.1 Instruments

2.1.1 SoHO

SOHO (Solar and Heliospheric Observatory) is a project of international collaboration
between ESA and NASA to study the Sun from its deep core to the outer corona and the
solar wind. The SOHO spacecraft was launched in December 1995 and orbits around
the Sun together with the Earth by slowly orbiting around the First Lagrangian Point
(L1) where the satellite is balanced by the gravitation of the Sun and the Earth and the
centrifugal force. The scientific payload of SOHO comprises 12 instruments that are
complementary to each other and can be divided into three main groups: helioseismol-
ogy instruments (GOLF, VIRGO and MDI/SOI), solar atmosphere remote sensing instru-
ments (CDS, EIT, SUMER, UVCS, LASCO and SWAN), and solar wind in situ instru-
ments (CELIAS, COSTEP and ERNE). Here we introduce three of them, MDI, EIT and
SUMER, which are relevant to the work described in this thesis.

2.1.1.1 MDI

MDI (Michelson Doppler Imager) was designed to study the interior structure and dynam-
ics of the Sun by the approach of helioseismology. It measures the line-of-sight velocity,
continuum intensity and the line-of-sight magnetic field component with the spectral line
of Ni i at λ = 6768Å. The detailed description of MDI was given by Scherrer et al.
(1995). What we are interested in is the magnetic field measurement in the photosphere
as it provides the boundary conditions for the calculation of the magnetic field in the solar
corona. MDI images the Sun on a 10242 CCD camera and has two modes of observations
from the spatial resolution point of view. One is the full disk observations with a resolu-
tion of 1.98′′/pixel , the other mode is taken in a higher resolution of 0.63′′/pixel which
leads to a magnetogram of part of the solar surface.
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2 Instruments and related data analysis techniques

Figure 2.1: Estimated signal strength in the CCD (Date Number/s) for the four wave-
lengths of EIT as a function of temperature for a emission measure of 1044 cm−3 (De-
laboudinière et al. 1995).

2.1.1.2 EIT

The telescope EIT (Extreme-ultraviolet Imaging Telescope) was designed to investigate
the dynamics of the chromospheric network, transition region and coronal structures over
a wide range of time scales, sizes and temperatures. It provides full disk images out to 1.5
R� with an approximated 2.6′′/pixel spatial resolution from four spectral emission lines,
Fe ix (171 Å), Fe xii (195 Å), Fe xv (284 Å) and He ii (304 Å). The CCD’s temperature
response functions are shown in Figure 2.1 which are similar to the ones of TRACE and
EUVI instruments to be introduced later. We can see that EIT covers the temperature
range from 6 × 104 K to 3 × 106 K with a peak temperature around 1.2 MK, 1.5 MK,
2.0 MK and 0.08 MK for the four wavelengths, respectively. On the other hand, EIT
images are also helpful to correct the pointing information in TRACE images at the same
wavelength. For a detailed description of EIT see Delaboudinière et al. (1995).
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2.1 Instruments

Figure 2.2: Selected important emission lines in the wavelength range from 150 Å to 1610
Å by the combination of SUMER, CDS, UVCS and EIT vs their formation temperatures
(Wilhelm et al. 1995).

2.1.1.3 SUMER

SUMER (Solar Ultraviolet Measurements of Emitted Radiation) (Wilhelm et al. 1995) is
a spectrograph and measures spectral profiles of FUV/EUV lines emitted by the solar at-
mosphere from the upper chromosphere to the lower corona with a wide spectral coverage
ranging from 500 Å to 1610 Å corresponding to line formation temperatures from 104 K
to above 2 × 106 K. SUMER aims to obtain dynamic and diagnostic information of the
solar atmosphere with a spatial resolution close to 1′′, a temporal resolution of down to
1 s, and a spectral resolving power of λ/�λ = 17700 − 38300 (�λ is the pixel resolution
element). Figure 2.2 gives us the important emission lines selected by SUMER in a for-
mation temperature versus wavelength plot. For plume studies in this thesis we choose the
emission line pair Mg ix at 70.6 nm and 75.0 nm for electron temperature measurements,
Si viii at 144.0 nm and 144.6 nm for electron densities and O vi at 103.2 nm and 103.8
nm for Doppler shifts. A raster scan was made for the south polar cap from solar west to
east for around 36 hours while the Sun was rotating.
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2 Instruments and related data analysis techniques

Figure 2.3: The trajectory of STEREO A and B in different years (adapted from NASA
STEREO website).

2.1.2 TRACE

TRACE (Transition Region and Coronal Explorer) (Handy et al. 1999) uses multiple UV
and normal-incidence XUV channels to collect images of atmospheric plasmas at tem-
peratures from 104 K to 107 K. In the EUV waveband TRACE observes similar emission
lines as EIT, that is, 171 Å, 195 Å and 284 Å. The most prominent characteristics of
TRACE is its highest spatial resolution of 0.5′′/pixel, which is the highest of all currently
available solar EUV images. The CCD of TRACE is 1024×1024, the same as EIT. Owing
to the high spatial resolution, its field of view is only 8.5′ × 8.5′.

2.1.3 STEREO

The STEREO (Solar-Terrestrial Relations Observatory) mission was launched in October
2006. It provides a unique and revolutionary view of the Sun-Earth System. The main
scientific objectives are to understand the causes and mechanisms of coronal mass ejection
(CME) initiation and to follow the propagation of CMEs through the inner heliosphere to
Earth. As viewed from the Sun, the two nearly identical observatories, one ahead of
Earth in its orbit, the other trailing behind, separate at approximately 44 to 45 degrees
per year. The trajectories of the two spacecraft at different times is presented in Figure
2.3. Each spacecraft is equipped with four instrument packages, SECCHI (Sun Earth
Connection Coronal and Heliospheric Investigation), IMPACT (In-situ Measurements of
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Particles and CME Transients), PLASTIC (PLAsma and SupraThermal Ion Composition)
and S/WAVES (STEREO/WAVES).

The SECCHI suite is an imaging instrument package. It contains two white light
coronagraphs (COR 1 and COR 2), an extreme ultraviolet imager (EUVI) and two he-
liospheric white light imagers (HI 1 and HI 2) covering the space from the solar corona
to 1 AU. The first year after STEREO’s launch, while the spacecrafts’ distance to each
other is still moderate, is the phase of 3D reconstructions of coronal structures, such as
the coronal loops and polar plumes which are the major work in this thesis. As we know,
loops and plumes are well observed at EUV wavelengths. Therefore we will concentrate
on the EUVI instrument. It is actually an updated version of EIT and has four similar
emission lines to EIT, 171 Å, 195 Å, 284 Å and 304 Å. But comparing with EIT, it has
a large field of view extending to 1.7R� and higher spatial resolution of 3.2′′ attributed
to the large CCD of 2048 × 2048. In this thesis, we will use the images observed at the
wavelength of 171 Å as it produces the sharpest coronal structures comparing to the other
three wavelengths. For more details about SECCHI and the EUVI telescopes see Howard
et al. (2008) and Wuelser et al. (2004), respectively.

2.2 Data analysis techniques

In this section the data analysis techniques related to the introduced instruments are de-
scribed. The stereoscopy technique is applied to reconstruct the 3D geometry of coro-
nal features observed from two viewpoints by EUVI/SECCHI. Before STEREO was
launched, stereoscopy has been applied to TRACE or EIT data making use of the solar
rotation. Typically, image pairs taken one day apart were used and simplified assumptions
were made about the evolution of the observed structures (Aschwanden et al. 1999b). The
second technique is introduced for SUMER observations to diagnose plasma in the solar
corona by using the line-ratio method. Finally the magnetic field models are presented.
The linear force-free field models are extrapolated from the MDI photospheric magne-
tograms.

2.2.1 Stereoscopy and epipolar geometry

STEREO provides us for the first time with two simultaneously observed images of the
Sun from different vantage points. Once an object is identified in both images, the 3D
reconstruction is a purely linear geometrical problem. However, the most challenging
problems associated with stereoscopy preceding the geometrical reconstruction are the
identification of objects in the two images and the determination of correspondences be-
tween them. We leave these two tasks to Chapter 3 and Chapter 4, respectively. Here we
summarize the geometrical method related to curve-like objects, such as coronal loops and
polar plumes. The basics of the stereoscopy technique can be found in Inhester (2006a).

For curve-like objects, the principle of stereoscopy is shown in Figure 2.4. From
both observational points, we backproject the extracted curves in the images along the
two viewing directions and obtain two projection surfaces. The intersection of these two
surfaces yields a unique 3D curve in the ideal case which is the solution to the stereo-
scopic reconstruction. To calculate this intersection, the epipolar geometry is applied to
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observer 1
observer 2

projection
surfaces

Figure 2.4: Backprojections to reconstruct the 3D structure of a curve-like object (Inhester
2006a).

transform the 3D problem into a set of 2D problems.

2.2.1.1 Epipolar geometry

The epipolar geometry is sketched in Figure 2.5. The line connecting the two observers is
called the stereo base line. The reference axis epi_z originates from the solar center and
is normal to the plane determined by the two observers and the solar center. If we pick
up one point r0 on the epi_z axis, the two observers and r0 define an epipolar plane. The
intersection of this plane with the two image planes generates two straight lines. They are
the so-called epipolar lines. By selecting a series r0, we segment each image densely into
a large number of epipolar lines and get a set of epipolar planes. As we will see below, on
each epipolar plane a 3D coordinate can be easily calculated from two corresponding 2D
points from two images. By connecting the 3D points on each epipolar plane, a final 3D
curve will be achieved.

Practically, we set up one coordinate system as shown in Figure 2.5 for calcula-
tions and here we choose the HEEQ (Heliocentric Earth EQuatorial) coordinate system
(Thompson 2006). The z axis is the solar rotation axis, x axis is the intersection of the
solar equator with the central meridian as seen from the earth, and y axis is in the direc-
tion of the cross product of z and x axes to make the coordinate system right-handed. The
positions of two spacecraft in this coordinate system is given in each header of the fits
files.

A demonstration of the calculation of one 3D point �r in one certain epipolar plane is
presented in Figure 2.6. In one given epipolar plane, r0 is the intersection of the respec-
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Figure 2.5: A schematic diagram of epipolar planes in space and the respective epipolar
lines in two image planes. The observers telescope screens are derived from a projective
camera model. The epi_z axis originates from the solar center and is normal to the plane
determined by the two observers and the solar center (Inhester 2006a).

tive epipolar plane with the epi_z axis, r1 and r2 represent the two observers. For each
observer we then introduce the orthogonal coordinate axes vi and ei. vi is the unit vector
from the observer to r0 and ei is vi rotated clockwise by 90◦. di is the distance between
the observer and r0. All of these quantities can be calculated explicitly in the HEEQ co-
ordinate system from the known spacecraft position and the given position of r0. From
Figure 2.6, we can derive

tan(si) =
eT

i · �r

di + vT
i · �r

. (2.1)

where si is the angle between vi and the direction to the object. Writing Equation 2.1 in
another form and for two observers, we get(

eT
1 − vT

1 tan s1

eT
2 − vT

2 tan s2

)
�r =

(
d1 tan s1

d2 tan s2

)
(2.2)

As we will see later, tan si can be read directly from the images. Therefore, the 3D point
�r can be reconstructed by solving Equations 2.2.

To calculate the si, for convenience, we assume a simple projective geometry camera
model. In this case, the optical axis of the camera is perpendicular to the image plane.
According to Figure 2.7, the angle of s can be derived by

cos s =
f 2 + ρ0ρ cos γ√
f 2 + ρ2

0

√
f 2 + ρ2

(2.3)
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Figure 2.6: One example of how one 3D point �r is reconstructed with the projective
geometry on one epipolar plane which intersects with the epi_z axis at r0. r1 and r2 stand
for the two observers (Inhester 2006a).

Figure 2.7: Derivation of the angle s from the image coordinates for a projective geometry
camera model. The parallelogram indicates the image plane (Inhester 2006a).

28



2.2 Data analysis techniques

Figure 2.8: Local orthogonal coordinate system at one point along the reconstructed 3D
curve indicated in red. v is the local view direction, t is the local tangent direction along
the reconstructed curve. The local normal of the projection surface is n = t×v/|t×v|. The
three unit vectors framing the local orthogonal coordinate system are n, t and n × t. The
positional uncertainty wi at one point in two images leads to an error trapezoid indicated
by the red dashed square. For clarity the projection surface of the second image is not
shown here (Inhester 2006a).

where f is the camera’s focal length, ρ0 and ρ are the image distances of r0 and object
projections from the image center, respectively, and γ is the azimuth difference. For
ρ/ f → 0, ρ0/ f → 0, Equation 2.3 can be approximated by

s2 ≈
(
ρ0

f

)2
+

(
ρ

f

)2
− 2
ρ0ρ

f 2
cos γ. (2.4)

For EUVI images, s is rather small, of the magnitude of 0.005 radian. The projective
geometry can be simplified to the affine geometry. While for HI images, due to the much
larger field-of-view, projective geometry is unavoidable.

2.2.1.2 Reconstruction uncertainty

In reality, the width of an object in one image is not infinitely narrow. It has a finite
thickness due to the spatial resolution or noise. Consequently, the reconstructed 3D curve
becomes a 3D tube with a trapezoidal cross section within which the 3D curve position
cannot be resolved when the 2D positional uncertainty is considered. In Figure 2.8, the
error trapezoid at one point along the reconstructed 3D curve is indicated by the red
dashed square normal to the local tangent direction t. The local orthogonal coordinate
system at this point for one view direction is determined by t, n and n × t. We sketch the
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Figure 2.9: An error trapezoid in the plane normal to the 3D curve. α is the angle between
n1 and n2 (Inhester 2006a).

details on the error trapezoid in Figure 2.9. The four points of the error trapezoid can be
expressed as

δr = ±a1t × n1 ± a2t × n2 (2.5)

The projection of this trapezoid onto image 1 and 2 has to yield the curve width w1

and w2, respectively. Then, δr · n1 = w1/2 and δr · n2 = w2/2. Inserting Equation 2.5 into
it, we obtain the coefficients a1 and a2:

a1 =
w2

2 sinα
and a2 =

w1

2 sinα
(2.6)

where α is the angle between two normals of the projection surfaces n1 and n2 and is
always smaller or at most equal to the spacecraft separation angle. The upper limit is
reached when the loop intersects an epipolar line perpendicularly. For features parallel to
epipolar lines α is zero and the reconstruction uncertainty is infinite.

2.2.2 Optically-thin emission lines and plasma diagnostics

In the outer solar atmosphere, the transition region (TR) and the corona, the most im-
portant emissions are at Ultraviolet (UV) and Extreme Ultraviolet (EUV) wavelengths.
The continuum emission is generated by the thermal bremsstrahlung (free-free transition)
where a free electron is scattered off an ion and escapes as a free electron. What we are
more interested in is the line emission as it provides us with the temperature, density and
velocity information of the plasma. Moreover, in this thesis the data we use are obtained
from EUV imaging telescopes (EUVI, TRACE) and the EUV spectrograph (SUMER).
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Therefore, in this subsection, we will present how to calculate the observed flux of the
optically-thin emission lines formed in the TR and the corona, followed by the plasma
diagnostic techniques summarized from Chapter 2 in Mariska (1992).

2.2.2.1 Optically-thin emission lines

In Chapter 2 of Aschwanden (2005b), different atomic processes are listed for the solar
atmosphere. Due to the weak radiation field in the TR and the corona, radiative induced
absorption and stimulated emission are rare. Thus, collisional excitation and deexcitation,
as well as spontaneous radiative decay are important in establishing level populations.
Considering the ionization and recombination, photo-ionization can be neglected for the
same reason. The density in the TR and the corona is very low, the three-body recombi-
nation proceeds at too slow a rate to be important. Therefore, the important processes of
ionization are either a direct impact ionization by an electron or the auto-ionization from
two unstable excited states after the collision. For recombination, the collision induced
recombination is important and can happen either radiatively or dielectronically.

Each atomic species contained in the TR or coronal plasma has many different bound
energy levels. For any emission line formed by the transition from an upper level j to a
lower level i, the volume emissivity in the transition is

ε ji = hν jiA jin j (2.7)

where Aji is the Einstein probability coefficient of the spontaneous emission and nj is the
population at the upper level j. If we assume the emission is optically thin, then the flux
observed at the Earth (or a satellite) from a volume of plasma ΔV is

F ji =
1

4πR2

∫
ΔV
ε jidV =

hν jiA ji

4πR2

∫
ΔV

n jdV (2.8)

in which R is the Sun-Earth (Sun-satellite) distance. Practically, ΔV is defined by the
spatial resolution of the instrument multiplied by the path length along the line-of-sight.
If we express the number density of ions in the excited level i in terms of other parameters,
we have

ni =
ni

nion

nion

nel

nel

nH

nH

ne
ne (2.9)

where ni
nion

is the relative population of the excited level, nion
nel

is the relative abundance of

the ionic species, nel
nH
= Ael is the abundance of a element relative to hydrogen, and nH

ne
is

the ratio of the number densities of hydrogen to electrons.
Generally, populations of electrons at each level are calculated by the statistical equi-

librium equations (SEEs), dni/dt = 0, which are coupled with the radiative transfer equa-
tions, like the case in the photosphere where induced absorption, stimulated emission and
photon-ionization are important and related to the radiation field. In the case of the TR
and the corona, the background radiation is so weak that the mentioned transitions are
negligible. Therefore only the SEEs are required to obtain the information of ni. As the
characteristic time of excitation and deexcitation is much shorter than the time scale of
ionization and recombination, we split the SEEs by dealing with excitation and ionization
separately to obtain ni

nion
and nion

nel
in Equation 2.9, respectively.
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Excitation

For each level in an ion, the self-contained excitation rate equations can be written as

dni

dt
=
∑
j�i

n jneC ji − ni

∑
j�i

neCi j +
∑
j>i

n jA ji − ni

∑
j<i

Ai j = 0

nion =
∑

i

ni (2.10)

Here the first two terms on the right side are related to collision and the last two terms are
the spontaneous emission rate from and to the level i. The latter can be obtained from the
atomic physics and is independent of the plasma. Writing the collision rate term nineCi j

in detail, we have

nineCi j = nine

∫ +∞

v0

σi j(ve) f (ve)vedve (2.11)

where σi j(ve) is the electron collision cross section as a function of the electron speed, v0

is the speed corresponding to the threshold of the electron kinetic energy ΔEi j for the tran-
sition, and f (ve) is the electron speed distribution. Though the system deviates from the
local thermal equilibrium, electron speeds can still be approximated by the Maxwellian
distribution because in the TR and the corona, in the life time of electrons the elastic col-
lisions among electrons are sufficient to establish a thermal equilibrium among them. By
applying the Maxwellian distribution of the electron speed and introducing the collision
strength Ωi j(E) as a function of the electron kinetic energy E, we obtain

Ci j =
8.63 × 10−6

gikT 3/2
e

∫ +∞

ΔEi j

Ωi j(E) exp

(−E
kTe

)
dE. (2.12)

where gi is the statistical weight of level i. Collisional deexcitation rates are obtained
using the principle of detailed balance in thermodynamic equilibrium, nineCi j = njneC ji.
By applying the Boltzmann equation, we have

C ji =
gi

g j
Ci j exp

(
ΔEi j

kTe

)
(2.13)

With the calculated collision coefficient Ci j and C ji depending on T and the Einstein
probability coefficient Ai j independent of the plasma property, we can solve the excitation
rate equations, the population at each level ni are consequently derived.

Ionization

For any given ion z of an element of nuclear charge Z, the self-contained equations of
ionization balance are

dnz

dt
= ne(nz−1qz−1 + nz+1αz+1) − nenz(qz + αz) = 0

nel =

Z∑
z=0

nz. (2.14)
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The first term on the right is the rate at which ion nz is formed by ionization from ion z−1
and recombination from ion z + 1, the second term is the rate at which ion nz is destroyed
by the ionization to ion z + 1 and the recombination to ion z − 1. The calculations and
experimental measurements of ionization and recombination rate coefficients are really
scattered throughout the fields of astrophysics, plasma physics and atomic physics and
out of the scope of this thesis, for the references see Mariska (1992). In some cases
when the time scales of ionization and recombination are longer than the time scales of
plasma evolution, the ionization balance is broken (dnz

dt � 0). The equations in 2.14 have
to be solved together with an atmospheric model including the information of T , ne and v.
While in some other simpler cases, we often reduce the ionization balance to ionization
equilibrium where for each ion z,

nzqz = nz+1αz+1. (2.15)

After obtaining all the coefficients, the relative abundance of the ionic species nion
nel

can be
calculated accordingly.

Contribution functions

Generally, in Equation 2.9 the element abundance relative to hydrogen Ael and the
ratio of the number densities of hydrogen to electrons nH

ne
can be obtained additionally

from other approaches. Here we define the frequently used contribution function in units
of erg cm3 s−1 as

G(Te, λi j, ne) = hν ji
A ji

ne

ni

nion

nion

nel
(2.16)

in which all the atomic parameters related to ni and nion are included.
By using the contribution function, the observed flux can be written accordingly in the

form of

F ji =
0.83Ael

4πR2

∫
ΔV

G(Te, λi j, ne)n
2
edV (2.17)

if we assume nH
ne
= 0.83. In this form the line flux is easily related to differential emission

measure (DEM) defined as
dEM(Te)

dTe
= n2

e

dV
dTe

(2.18)

which is a measure of the amount of plasma in a certain volume that contributes to the
emission in the temperature range Te to Te + dTe. From the observed flux and the con-
tribution functions calculated with the code CHIANTI, we can obtain a best fit DEM
distribution. Or the other way round, from simulations we get temperature, density and
synthesize the flux of a particular line we are interested in. By the comparison with the
observed flux, the free parameters in simulations can be investigated and further physical
implications will be obtained.

2.2.2.2 Plasma diagnostics

In the following, the electron density and temperature diagnostics using emission line
ratios from SUMER observations are introduced. It is important to remember that any
such line ratio provides an average value along the line of sight.
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For the plume study from SUMER observations, we analysed the density-sensitive
line pair Si viii at 1440 Å and 1446 Å and the temperature sensitive line pair Mg ix at 706
Å and 750 Å. Both the Si viii and Mg ix lines are formed at temperatures around 1 MK
which is proper for plume observations (Wilhelm 2006). If we consider two spectral lines,
one comes from the transition u → l, the other from j → i, the ratio of these two lines is
defined by

Ful

F ji
=

nuAulhνul

n jA jihν ji
(2.19)

The only term in this equation related to the electron temperature and density is nu/nj. It
can be computed by solving the statistical equilibrium equations (SEEs). Because Te and
ne enter SEEs via collisional terms, finally nu/nj will be a function of Te or ne depending
on the lines we choose. Here we have two simple cases showing how to derive the electron
temperature and density with the line-ratio method taken from Mariska (1992).

Temperature diagnostics

Suppose we have an ion with two upper excited levels 2 and 3, and the ground level
1. Two emission lines are both formed by collisions to the excited levels and spontaneous
decays to the ground level. Then the ratio of fluxes from these two lines is given by

F31

F21
=

n3A31hν31

n2A21hν21
=

n1neC13hν31

n1neC12hν21
(2.20)

Using the collision rate coefficient in Equation 2.12 and assuming the collision strengths
are energy independent, we have

F31

F21
=

hν13Ω13

hν12Ω12
exp

(
hν12 − hν13

kTe

)
(2.21)

If (hν12 − hν13)/kTe ≥ 1, this flux ratio will be temperature sensitive.

Density diagnostics

As an illustration of obtaining electron densities using line ratios, we consider a sim-
ple three-level ion. Level 1 is ground state and level 3 is metastable. The level 2 to 1
transition forms an allowed line and the collision deexcitation is negligible comparing to
the spontaneous radiative decay. The level 3 to 1 transition forms a forbidden line and
level 3 is populated by collisions and depopulated by both collisions and spontaneous ra-
diative decays. If we ignore the collisional excitation from level 2 to 3, the SEEs for level
2 and 3 can be written as

n2A21 = n1neC12 + n3(A32 + neC32) (2.22)

and
n3(A32 + A31 + neC32 + neC31) = n1neC13. (2.23)
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Figure 2.10: Density dependence of Si viii and S x line ratios (adapted from Dwivedi
(1991)).

The flux ratio R of the forbidden line 3 to 1 and the allowed line 2 to 1 is obtained by
combining these two equations and using A32 � A31,

R =
n3A31hν31

n2A21hν21
=

hν31

hν21

A31
C12+C13

C13
neC32 +

C12
C13

(A31 + neC31)
. (2.24)

When ne is low, the collision related terms C31 and C32 can be neglected. The levels 2 and
3 are populated by the collision excitation and depopulated by the spontaneous decay.
The flux ratio simplifies to

R ∝ C13

C12
. (2.25)

When ne is larger enough that A < neC, We have

R ∝ A31

ne

(
C12+C13

C13
C32 +

C12
C13

C31

) . (2.26)

This ratio is now inversely proportional to ne. If R can be obtained from the observations,
ne can then be derived accordingly.

We have shown two simplified cases above, for real line-ratio calculations the full set
of SEEs need to be solved. In Figure 2.10 and Figure 2.11, we present the computed line
ratios as a function of Te or ne for Si viii and Mg ix. Both lines are formed at coronal
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Figure 2.11: Intensity line ratios of Mg ix at 706 Å and 750 Å as a function of electron
temperature (adapted from Raymond and Wood (2000)).

temperatures around 1 MK. Once we have the line ratios from observations, the corre-
sponding electron densities and temperatures could be calculated from these two figures.
Detailed plasma density and temperature measurements in coronal holes can be found in
Wilhelm (2006).

More plasma parameters can be deduced from the spectral line profiles. The observed
Doppler shifts of the emission lines are used to measure the LOS bulk velocities according
to

v � c
ν − ν0

ν0
, (2.27)

where ν0 is the rest frequency of the photon and c is the light speed.
Furthermore, the observed line width gives us an upper limit of the ion temperature as

it should theoretically vary as

�νD = ν0

c

√
2kT
m
+ v2

u + σ
2
I . (2.28)

Here vu is the most probable non-thermal turbulent speed and σI is the equivalent Doppler
broadening contributed by instrumental effects.

2.2.3 Magnetic field models

As introduced in Chapter 1, both coronal loops and polar plumes outline the magnetic
field lines in the corona. In this section the related magnetic field models are introduced
for the cases of global Sun and active regions.

Dipole field
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Figure 2.12: The circular current system lying on the xoy plane and the definition of θ and
ϕ related to the spherical coordinate system.

A dipole field is the lowest order approximation of the magnetic field for the global
Sun. It is generated at large distances by localized current distributions. As an illustration
of the derivation of the dipole magnetic field we consider a circular current loop of radius
a centered at the origin and lying in the xoy plane (Figure 2.12). In a spherical coordinate
system, assuming a current of I the current density j(r′) could be expressed as:

j(r′) = jϕ′eϕ′ = (I/a)δ(r′ − a)δ(θ′ − π/2)eϕ′ . (2.29)

The vector potential A(r) generated can be defined as

A(r) =
μ

4π

�
j(r′)
|r − r′|dτ

′. (2.30)

This definition satisfies B = ∇ × A and ∇ · A = 0. Inserting Equation 2.29 into Equation
2.30, we come to

A(r) =
Iμ

4πa

∫ +∞

0
δ(r′ − a)r′2dr′

∫ π

0
δ(θ′ − π/2) sin θ′dθ′

∫ 2π

0

eϕ′

|r − r′|dϕ
′

=
Iμa
4π

∫ 2π

0

eϕ′

|r − aer′ |dϕ
′. (2.31)

Since the geometry is cylindrical symmetric, A(r) only has the component in direction of
eϕ, therefore A(r) = Aϕeϕ in which

Aϕ(r, θ, ϕ) = A(r) · eϕ
=

Iμa
4π

∫ 2π

0

eϕ′ · eϕ
|r − aer′ |dϕ

′. (2.32)
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Again due to the cylindrical symmetry, Aϕ(r, θ, ϕ) = Aϕ(r, θ). For simplicity of calculation,
we choose ϕ = 0, thus (Jackson 1975)

Aϕ(r, θ) =
Iμa
4π

∫ 2π

0

cosϕ′

(a2 + r2 − 2ar sin θ cosϕ′)1/2
dϕ′

=
Iμa

π
√

a2 + r2 + 2ar sin θ

[
(2 − k2)K(k) − 2E(k)

k2

]
, (2.33)

where K and E are elliptic integrals and

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
. (2.34)

If we consider the case that k � 1, then the square bracket in Equation 2.33 reduces to
πk2/16 (Jackson 1975). Accordingly the vector potential becomes

Aϕ(r, θ) =
μIa2

4
· r sin θ

(a2 + r2 + 2ar sin θ)3/2
(2.35)

The three components of magnetic field can finally be calculated by using B = ∇ × A
in the spherical coordinate system, the results are shown in the following:

Br(r, θ) =
1

r sin θ
∂

∂θ
(sin θAϕ)

=
μIa2

4
cos θ

2a2 + 2r2 + ar sin θ
(a2 + r2 + 2ar sin θ)5/2

(2.36)

Bθ(r, θ) = −1
r
∂

∂r
(rAϕ)

=
μIa2

4
sin θ

2a2 + 2r2 + ar sin θ
(a2 + r2 + 2ar sin θ)5/2

(2.37)

Bϕ(r, θ) = 0. (2.38)

For the magnetic field far from the current loop, that is, a � r, we have

Br =
μIa2

4
cos θ

2
r3

(2.39)

Bθ =
μIa2

4
sin θ

1
r3

(2.40)

Taking the example of our Sun and assuming the circular current loop lying in the
solar equatorial plane, we can derive a relation between the latitude λ and the magnetic
inclination i defined as the angle between B and eθ (Figure 2.13). If we divide Equation
2.39 by Equation 2.40, we obtain

tan i =
Br

Bθ
=

2
tan θ

= 2 tan λ (2.41)

This relationship will be used to test how well a dipole field approximates the magnetic
field of the Sun at the polar caps by comparing it with the inclination of the reconstructed
3D polar plumes in Chapter 5.
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Figure 2.13: A cross section of the Sun with the indicated dipole field direction at a given
point. B only has components in er and eθ. i is the magnetic inclination.

From Equation 2.35, we can demonstrate that in the case of a � r, the vector potential
can be written as

Aϕ(r, θ) =
μIS
4π

sin θ
r2
, (2.42)

where S = πa2 is the area of the circular current loop. If we rewrite A in the form of a
vector, then

A =
μ

4π
m × er

r2
, (2.43)

in which m = IS n is the magnetic moment with n being the unit vector of the surface s.
Accordingly, following B = � × A we come to

B = − μ
4π
�
(m · er

r2

)
. (2.44)

That is to say, the magnetic field far away from the circular current loop is a potential field
which is a specific case of the force-free magnetic field described below.

Force-free magnetic field

In magneto-statics, a magnetic field is said to be force-free when the Lorentz force is
zero, that is,

j × B = 0. (2.45)

Combining with the Maxwell equation �×B = μj, we can obtain the force-free magnetic
field condition entirely expressed by B,

(� × B) × B = 0. (2.46)
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Therefore,
� × B = μj = α(r)B, (2.47)

where α(r) is a scalar function of position. If α(r) is simply a constant, the magnetic
field satisfying Equation 2.47 is called the linear force-free magnetic field. For the case of
varying α, the magnetic field is a nonlinear force-free field. Specifically when α(r) equals
zero, there is no current flowing along the magnetic field lines and this case corresponds
to the potential case. In this thesis we will concentrate on the linear force-free field. It
is used in Chapter 4 to identify the loop correspondence in active regions. And it has
been proved that the linear force-free field is sufficient for this purpose (Wiegelmann and
Inhester 2006).

Based on the Zeeman splitting effect, the magnetic field in the photosphere can be
measured. However, in the corona the low plasma density, high temperature and weak
magnetic field strength make measurements of the Zeeman splitting very difficult. An
alternative way of estimating the magnetic field in the corona is to extrapolate it from
photospheric measurement, such as MDI observations. The extrapolation method we
introduce here is similar to the one described in Seehafer (1978).

By taking the curl on both sides of Equation 2.47 and considering α(r) as a constant,
we derive the Helmholtz equation

�2B + α2B = 0. (2.48)

We first consider the Bz component. It is the solution of the boundary value problem in
the domain 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, 0 ≤ z < +∞. Assuming Bz vanish at the vertical
planes x = 0, x = Lx, y = 0, y = Ly, the boundary value problem can be formulated as
below:

�2Bz + α
2Bz = 0

Bz(0, y, z) = 0 , Bz(Lx, y, z) = 0

Bz(x, 0, z) = 0 , Bz(x, Ly, z) = 0

Bz(x, y, 0) = Bobs , Bz(x, y,+∞) = 0. (2.49)

where Bobs is the measured LOS field in the photosphere.
We use the Fourier Transform to solve the boundary problems. Taking Fourier Trans-

form of Bz(r), we have

B̂z(k) =
�

Bz(r)e−ik·rdr3 (2.50)

According to the differentiation property of the Fourier Transform,

FT(�2Bz(r)) = (ik)2 FT(Bz(r)) (2.51)

If we take the Fourier Transform on both sides of the first equation in (2.49), we have

(−k2 + α2)B̂z(k) = 0, (2.52)

then the dispersion equation is derived as

k2
x + k2

y + k2
z = α

2. (2.53)
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The solution of Bz(r) can be obtained by the inverse Fourier Transform as

Bz(r) =
1

(
√

2π)3

�
B̂z(k)eik·rdk3. (2.54)

We separate Bz(r) as Bz(r) = T (x, y)Z(z). Because of the zero values of Bz on the four
lateral boundaries at x = 0, x = Lx, y = 0, y = Ly, we can obtain the solution Tmn(x, y) for
one combination of m and n

Tmn(x, y) = amn sin(kxmx) sin(kyny) (2.55)

where
kxm =

mπ
Lx

and kyn =
nπ
Ly
. (2.56)

According to the dispersion relation

k2
zmn = α

2 − (k2
xm + k2

yn) = α2 −
⎛⎜⎜⎜⎜⎝(mπLx

)2
+

(
nπ
Ly

)2⎞⎟⎟⎟⎟⎠ . (2.57)

If we want to have a solution of Zmn(z) decaying from the bottom, kzmn should be imag-

inary. Therefore, |α| < π
√

1
L2

x
+ 1

L2
y

has to be satisfied. Assuming that the source of the

magnetic field is mainly from the bottom boundary, this limited value of α is necessary,
otherwise the magnetic field will start oscillating in the vertical direction. Considering
the boundary condition at the top boundary, we obtain

Zmn(z) = bmne
ikamnz and kzmn = i

√(
mπ
Lx

)2
+

(
nπ
Ly

)2
− α2 (2.58)

Combining Equations 2.55 and 2.58 and denoting rmn = −ikzmn we arrive

Bzmn(r) = Cmne
−rmnz sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
(2.59)

and the complete solution considering all the combinations of m and n is

Bz(x, y, z) =
+∞∑

m,n=1

Cmne
−rmnz sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
. (2.60)

where the coefficient Cmn is determined by the boundary conditions at the bottom, that
is, Bz(x, y, 0) which can be obtained by the photospheric magnetograph like MDI. When
z = 0,

Bz(x, y, 0) =
+∞∑

m,n=1

Cmn sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
(2.61)

By multiplying sin
(

kπx
Lx

)
sin
(

lπy
Ly

)
on both sides of Equation 2.61 and integrating in the

domain from 0 to Lx and from 0 to Ly, we obtain the Fourier coefficient Cmn according to
the orthogonality of the trigonometric functions,

Cmn =
4

LxLy

∫ Lx

0

∫ Ly

0
Bz(x, y, 0) sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
dxdy. (2.62)
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As we know MDI magnetograms always give us the magnetic field directions along the
line-of-sight, while here Bz(x, y, 0) is the vertical component. To make them consistent
we prefer to choose active regions close to the disk center.

After deriving the Bz component, we are going to obtain the other two components Bx

and By by decompositing B into toroidal and poloidal fields as Seehafer (1978)

B = αr × �P + � × (r × �P), r = (0, 0, 1)T (2.63)

Then the three components of B are

Bx = − ∂
2P
∂x∂z

− α∂P
∂y

(2.64)

By = − ∂
2P
∂y∂z

+ α
∂P
∂x

(2.65)

Bz =
∂2P
∂2x
+
∂2P
∂2y

(2.66)

From Equation 2.66 it is obvious that the solution to P(x, y, z) for a given combination of
m and n has the form

Pmn(x, y, z) = kmne
−rmnz sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
. (2.67)

Inserting it into Equation 2.66 and assuming λmn = r2
mn + α

2, we find kmn = −Cmn/λmn. It
leads to

Pmn = −Cmn

λmn
e−rmnz sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
. (2.68)

According to Equations 2.64 and 2.65, we obtain

Bxmn =
Cmn

λmn
e−rmnz

{
α
πn
Ly

sin

(
mπx
Lx

)
cos

(
nπy
Ly

)
−rmn
πm
Lx

cos

(
mπx
Lx

)
sin

(
nπy
Ly

)}
,

Bymn = −Cmn

λmn
e−rmnz

{
α

mπx
Lx

cos

(
mπx
Lx

)
sin

(
nπy
Ly

)
+ rmn

nπy
Ly

sin

(
mπx
Lx

)
cos

(
nπy
Ly

)}
. (2.69)

Finally the complete solutions to the three components of magnetic field B for all the
combinations of m and n can be written as

Bx =

+∞∑
m,n=1

Cmn

λmn
e−rmnz

{
α
πn
Ly

sin

(
mπx
Lx

)
cos

(
nπy
Ly

)
−rmn
πm
Lx

cos

(
mπx
Lx

)
sin

(
nπy
Ly

)}
, (2.70)
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By = −
+∞∑

m,n=1

Cmn

λmn
e−rmnz

{
α

mπx
Lx

cos

(
mπx
Lx

)
sin

(
nπy
Ly

)
+rmn

nπy
Ly

sin

(
mπx
Lx

)
cos

(
nπy
Ly

)}
, (2.71)

Bz =

+∞∑
m,n=1

Cmn sin

(
mπx
Lx

)
sin

(
nπy
Ly

)
. (2.72)

The advantage of linear force-free field extrapolations is its simplicity in mathematics
and it requires only the LOS photospheric magnetic field measurements as input. The
free parameter α can be determined by comparing the extrapolated field lines with the
observed coronal loops from one viewpoint (Wiegelmann et al. 2005a) or two viewpoints
(Feng et al. 2007a). However, linear force-free field does not make sense on a large scale.
It can therefore only yield a local approximation. There are many papers, e.g. Wiegel-
mann et al. (2005b), showing that in many cases linear force-free or potential field is
insufficient. Moreover, the constant α has the disadvantage that all field lines carry a cur-
rent, even the open field lines which does not make sense. In this thesis, the extrapolated
linear force-free field lines are used only for matching loop pairs in two EUVI images.
As revealed by Wiegelmann et al. (2005b) for active regions the nonlinear force-free field
is more suitable to describe the magnetic properties. However, to compute the nonlinear
force-free field, we need vector magnetograms as the input and on the other hand, it is
more expensive to compute.
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3 Coronal Loop detections from EUV
images

This chapter is mainly based on the papers by Inhester et al. (2008) and Inhester (2006b)
with more extended explanations of the ridge detection method. We extract bright loop
structures from solar EUV images which are elongated ridge-like maxima in terms of im-
age intensities. The method is a derivative based method and can be separated into three
steps. First the location and orientation of a point on the ridge is detected according to
the first and second derivatives of the image intensity at that point, then detected ridge
points are connected to chains, finally these chains are fitted by smooth curves. Unfor-
tunately, image processing cannot distinguish between structures resulting from coronal
loops, moss and some other bright features. Therefore we append in the end a user in-
teractive tool to eliminate unwanted structures or split and merge some apparent loop
structures. This ridge detection method can be applied to the EUV images observed by
EIT/SOHO, TRACE, EUVI/SECCHI and in the future by AIA/SDO (Solar Dynamic Ob-
servatory) which will provide huge number of images, a motivation of the research on the
automated feature detection. A review on different coronal loop tracing methods can be
found in Aschwanden et al. (2008a).

3.1 Ridge location and orientation

Loop structures are elongated ridge-like intensity maxima, if we plot the image intensity
as a surface I(x, y) in the coordinate system of (x, y, I) where (x, y) is the 2D image coor-
dinate and I is the intensity. To identify the local maxima, we need to calculate the spatial
derivatives of the image intensity which are strongly affected by image noise.

We denote by i ∈ I
2 the integer coordinates of the center of each pixel in the image

and by x ∈ R
2 the 2D continuous coordinates around the pixel center x = i. If the image

intensity varies sufficiently smoothly, the intensity I(x) in the neighbourhood of i can be
well approximated by the Taylor expansion at the pixel center i, that is (for details see
Appendix A),

I(x) � Ĩ(x) = I(i) + gT (x − i) +
1
2

(x − i)T H (x − i). (3.1)

If we diagonalize the second derivative term H by means of

UTHU = diag(h⊥, h‖), (3.2)

where matrix U = (u⊥,u‖) is composed of two eigenvectors of H, and h⊥ and h‖ are the
corresponding eigenvalues which represent the principal directions and principal second
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derivatives on the local surface. Ordering h⊥ and h‖ so that h⊥ < h‖, a point on the ridge
is then defined in differential geometry by the criteria in the following (Appendix B):

uT
⊥∇I = uT

⊥g = 0 (3.3)

(uT
⊥∇)2I = h⊥ < 0 (3.4)

|(uT
⊥∇)2I| = |h⊥| � |h‖| = |(uT

‖ ∇)2I|. (3.5)

The latter two inequalities are assumed to also hold in the neighbourhood of the ridge and
are used to find out whether a pixel center i is close to a ridge or not. To estimate the
Taylor coefficients g and H we will introduce two methods described below.

3.1.1 Taylor coefficients via linear least square fitting

The first method to obtain the Taylor coefficients is based on a local fit of Ĩ(x) from
Equation 3.1 to I(x) within a pixel box of (2m + 1) × (2m + 1) centered around the cell
center i:

(g,H)(i) = argmin
∑

j−i∈[−m,m]×[−m,m]

w(i − j)(Ĩ(j) − I(j))2 (3.6)

where w is a weight function in the pixel box separable in their x and y dependence and
can be chosen as triangle, cosine and cosine2 tapers .

Define f (gx, gy,Hxx,Hxy,Hyy) =
∑

j−i∈[−m,m]×[−m,m]
w(i − j)(Ĩ(j) − I(j))2, then g and H at

fmin are derived by solving the equations (Bjoerck 1996) :

∂ f
∂gx
= 0, ∂ f

∂gy
= 0, ∂ f

∂Hxx
= 0, ∂ f

∂Hxy
= 0 and ∂ f

∂Hyy
= 0.

3.1.2 Taylor expansions of a Gaussian filtered image

As we said before the spatial derivatives are strongly affected by image noise, to reduce
the noise influence the second method is to calculate the Taylor coefficients from a filtered
image instead of the original one:

Ī(x) =
∑

j

wd(x − j)I(j) (3.7)

Here the window function wd is a normalized Gaussian of width d and the distant pixels
where w is small are omitted. The summation in Equation 3.7 is therefore carried out over
a limited box of (2m+1)× (2m+1) where m depends on d in such a way that w(m)m2 < ε
for a small ε, like ε = 10−2.

To normalize the window function we introduce a coefficient c0

wd(x) = wd(x, y) = c0e
−
(
x
d

)2
=
√

c0e
−
(
x
d

)2 √
c0e
−
( y
d

)2
. (3.8)

It can be found from

1 =
∑

j

wd(j) = c0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m∑

j=−m

e
−
( j
d

)2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

(3.9)
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hence

c−1/2
0 =

m∑
j=−m

e
−
⎛⎜⎜⎜⎜⎝ j
d

⎞⎟⎟⎟⎟⎠2 → √
πd for large d � m→ ∞ (3.10)

The Taylor coefficients g and H can then be calculated explicitly by taking the deriva-
tives of Ī(x) (see Appendix B):

g = −c1

∑
j

(x − j)wd(x − j)I(j) (3.11)

H =
∑

j

[c2(x − j)(x − j)T − c3I2]wd(x − j)I(j) (3.12)

where I2 is a second-order unit matrix and

c1 =
s0

s1
→ 2

d2
for large d � m→ ∞

c2 =
s2

0

s2
1

→ 4
d4

for large d � m→ ∞

c3 =
s0

s1
→ 2

d2
for large d � m→ ∞ (3.13)

and

sn =

m∑
j=−m

j2ne
−
⎛⎜⎜⎜⎜⎝ j
d

⎞⎟⎟⎟⎟⎠2 →
{ √

πd n = 0
1
2

√
πd3 n = 1

for large d � m→ ∞ (3.14)

The gray scale plot of the Gaussian summation kernels is shown in Figure 3.1. From
Equations 3.11 and 3.12, we can immediately find the first-order derivative kernel−c1 x wd(x)
and the second-order derivative kernel (c2 x xT − c3 I2) wd(x). These two derivative based
kernels are very useful in image processings.

3.1.3 Some applications of the Gaussian summation kernels

In §3.1.2 we have derived the mathematical formula of the Gaussian summation kernels.
Actually they are often used to detect edges locally which are the places of local transition
from one object to another. Most edge detectors are based in some way on measuring the
intensity gradient at a point in the image, like � = (∂/∂x, ∂/∂y). However, it is sensitive
to noise. A method to reduce noise effects is first convolving the image with a Gaus-
sian filter then taking the gradient, which is exactly the Taylor coefficient g mentioned
previously. This first-derivative-of-Gaussian kernel is the so-called Sobel kernel which is
used frequently to enhance edges. We here present three examples of the applications of
Sobel kernels in Figure 3.3. The original image taken by EUVI/SECCHI and the image
convolved with the Gaussian filter are shown in Figure 3.2. For the three Sobel kernels
(only two are independent, gx and gy), one takes gradient in x direction, one in y direction,
and one in the counter-clockwise direction 45◦ to the x axis. Generally we need to choose
the direction of the gradient according to the image we analyse. gx is designed to identify
vertical structures while gy is often used to detect horizontal edges.
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Figure 3.1: Gray scale plot of the summation kernels used to derive the Taylor expansion
coefficients for a width d = 2 and window size m = 7. The upper panels are w, gx, gy,
respectively from left to right. The lower panels are Hxx, Hxy = Hyx, Hyy from left to right.

Figure 3.2: Left: the original image of the active region NOAA 10930 taken by
EUVI/SECCHI on December 12 2006 at 20:43 UT and at the wavelength of 17.1 nm.
Right: the convolved image by a Gaussian filter with a width d = 2 and window size
m = 7.
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Figure 3.3: Upper left: the original image (left panel in Figure 3.2) convolved with the
Sobel kernel gx. Upper right: the original image convolved with the Sobel kernel gy.
Lower left: the original image convolved with the Sobel kernel gx cos(45◦) + gy sin(45◦).
Lower right: the original image convolved with the kernel Hxx+Hyy which is the isotropic
mexican hat wavelet. All these kernels have a Gaussian width d = 2 and window size
m = 7.
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3 Coronal Loop detections from EUV images

Figure 3.4: The quality as a function of d for γ = 0.75 (solid line), γ = 1.5 (dotted line)
and γ = 2.0 (dashed line). In this figure we choose d⊥ = 5 as an example. γ can be chosen
between 0 to 3.

Most edges are ,however, not sharp dropoffs and often gradually change from one
intensity to another. What we usually get is a rising, a peak then a falling gradient magni-
tude. Therefore finding optimal edges (maxima of gradient magnitude) is thus equivalent
to find places where second-order derivative (Laplacian operator) is zero. As we know,
this derivative is even more noisy than the first-order one. Consequently, a smooth kernel
is necessary here. The result of the image processed by the Laplacian of the Gaussian
filter is presented in the lower right panel in Figure 3.3.

3.1.4 Automated scale selection of Gaussian width

It is obvious that in the EUVI image different loops have different width. Even one sin-
gle loop might have variations in width. For this reason, different Gaussian widths are
required for individual pixels. A common problem is to properly choose the parameter d.
Lindeberg (1998) has devised a scheme for how this parameter can be optimally chosen.
The idea is to apply method two (§3.1.2) for each pixel repeatedly with increasing scales
d, thereby estimating the ridge’s second-order derivative eigenvalues h⊥ and h‖, each as a
function of the scale d.

The true intrinsic width of the ridge is calculated by d⊥ = |(uT
⊥∇)2 log I|−1/2 ≈ (I/h⊥)1/2.

In the case of d � d⊥, the convolution with a Gaussian filter is equivalent to the convolu-
tion with a δ function, hence the filtered image intensities remain almost unchanged, that
is, Ī(x) ≈ I(x). we have

h⊥ ≈ − Imax

d2⊥
for d � d⊥ (3.15)
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3.1 Ridge location and orientation

where Imax is the intensity at the ridge point in the direction of u⊥. In the opposite case
of d � d⊥, h⊥ reflects the second-order derivative of the window shape rather than the
original image intensity. Similarly we obtain

h⊥ ≈ − Īmax

d2
. (3.16)

Since the image is convolved with a normalized Gaussian, Īmaxd ≈ Imaxd⊥. Therefore,

h⊥ ≈ − Imaxd⊥
d3

for d � d⊥. (3.17)

For d ≈ d⊥, we extend h⊥ from the two limiting cases and obtain as approximation for
h⊥(d)

h⊥ ∝ −d⊥
(d2⊥ + d2)3/2

for d ≈ d⊥. (3.18)

For each pixel we establish a quality function

q(d) = dγ(|h⊥(d)| − |h‖(d)|); 0 < γ < 3 (3.19)

which is shown in Figure 3.4. q first increases as dγ for small d � d⊥, then reaches a
maximum where the Gaussian width d matches approximately the local width d⊥ of the
ridge, and finally decreases as dγ−3 for d � d⊥. The result of the ridge detection is much
less sensitive to variations in γ than to variations in d. Smaller values of γ just shift the
position of maximal q to smaller values of d and therefore favour narrower loop structures.
In this automated scale selection method, we keep γ constant, but the optimal Gaussian
width d is chosen individually for each pixel to be at the scale where ∂q(d)/∂d = 0 which
yields

d =

√
γ

3 − γd⊥, 0 < γ < 3. (3.20)

In Figure 3.5, we present the image of quality q for the same example as shown in the
lower left panel in Figure 3.2 obtained with γ = 0.75 and width d in the range from 0.6
to 4 pixels. As expected, in regions close to loops q has higher values. The probability
density function of the optimal Gaussian width d is shown in Figure 3.6. We find that 1/3
of the pixels have an optimal scale less than one pixel, many of which are from the local
elongated noise and moss features. For loop structures, the optimal width was about 1.5
pixels with a wide distribution.

3.1.5 Interpolation of ridge positions

We have obtained a number of points which passes the criteria h⊥ < 0 and q > qmin. To
reach to the position exactly on the ridge, we need to interpolate across the ridge to arrive
at the local maximum. In the neighbourhood of a ridge, along a line across the ridge
x = i + u⊥t, the image intensity varies as

I(t) � I(i) + uT
⊥gt + uT

⊥u⊥h⊥t2. (3.21)
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3 Coronal Loop detections from EUV images

Figure 3.5: The image of the quality factor q obtained from the automated scale selection
method (Inhester et al. 2008).
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Figure 3.6: Probability distribution of the optimal Gaussian widths d for each image pixel
with h⊥ < |h‖| when applied to the image in Figure 3.2 (Inhester et al. 2008).
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3.1 Ridge location and orientation

Figure 3.7: The interpolated ridgel positions and orientations for the upper part of the
image in the left panel of Figure 3.2 by two methods described in Equations 3.23 and 3.25,
respectively. A ridgel is indicated by a dot for position and a small stick for orientation
(Inhester et al. 2008).

It can be easily shown that the local maximum is at

tmax = − uT
⊥g

2uT⊥u⊥h⊥
(3.22)

and the tangent to the actual ridge curve closer to i is

r(s) = i − u⊥uT
⊥g

2uT⊥u⊥h⊥
+ su‖ for s ∈ R. (3.23)

The other method to locate the ridge position does not use the perhaps noisy estimate
of second-order derivative h⊥ but to interpolate the first-order derivative across the ridge
between neighbouring pixel centers i and j. Define c = uT

⊥(i)u⊥(j), if u⊥(i) and u⊥(j)
are sufficiently parallel (or antiparallel), that is, |c| is larger than one threshold cmin, and
sign(c)(gT u⊥)(j)(gT u⊥)(i) < 0, then we can determine the ridge position by

r = i + t(j − i) (3.24)

where

t =
(gT u⊥)(i)

(gT u⊥)(i) − sign(c)(gT u⊥)(j)
. (3.25)

In Figure 3.7, we compare the interpolated ridge points (ridgels hereafter) obtained
with these two methods for the same image. In general, the second method produces
fewer ridgels along a loop but the distance among the ridgels is relatively constant. As

53



3 Coronal Loop detections from EUV images
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Figure 3.8: Illustration of the cocircularity condition proposed by Parent and Zucker
(1989). The ridgel positions are indicated by two small dots, the orientations of u⊥ at
these two ridgels are shown by two short lines centered at ridgel dots (Inhester et al.
2008).

already mentioned before, the second method has the advantage of avoiding the noisy
second-order derivatives. However, it has a few disadvantages at the same time. For
example, it needs at least two points to interpolate the ridge position. Consequently, it can
not detect faint ridgels that are just one pixel wide. Moreover, with the second method,
we can only detect the ridge points at the intersections of the ridge with the grid lines
connecting i and j. For ridges oriented obliquely to the grid lines, the distance between
neighbouring ridge points may vary by some amount.

3.2 Ridgel connections to chains

After detecting the individual ridgels, the next step is to connect them into chains of
ridgels. In this section we will first decide whether two neighbouring ridgels i and j can
be connected or not by calculating an associated weight proposed by Parent and Zucker
(1989). Then the allowed connections are stored, ordered and combined to chains.

For two ridgels at rn and rn+1 with the distance of hn,n+1, we construct an isosce-
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3.2 Ridgel connections to chains

les triangle with two symmetrical sides as shown in Figure 3.8. One side is formed by
connecting two ridgels. The vertex opposite to this side is defined such that the two sym-
metrical sides of the isosceles triangle make the square of the angles Δα2

n,n+1+Δα
2
n+1,n (see

Figure 3.8) minimal, the cocircularity condition suggested by Parent and Zucker (1989).
The resulting vertex is called the center of curvature. If we assume the angles are positive
in clockwise direction from u⊥, we have αn,n+1 − Δαn,n+1 = −αn+1,n + Δαn+1,n due to the
property of the isosceles triangle. Thus,

min (Δα2
n,n+1 + Δα

2
n+1,n) = min

Δαn,n+1

(Δα2
n,n+1 + (αn,n+1 + αn+1,n − Δαn,n+1)2), (3.26)

Then we can easily find that, the minimum is achieved when

Δαn,n+1 =
1
2

(αn,n+1 + αn+1,n) = Δαn+1,n. (3.27)

The local radius of curvature rn,n+1 = rn+1,n can be calculated from

rn,n+1 = rn+1,n =

1
2hn,n+1

cos(1
2(αn,n+1 − αn+1,n))

(3.28)

With each connection between one pair of ridgels we associate one weight, named a
binding energy defined by the parameter Δαn,n+1, rn,n+1 and hn,n+1:

en,n+1 = (
Δαn,n+1

αmax
)2
+ (

rmin

rn,n+1
)2
+ (

hn,n+1

hmax
)2 − 3 (3.29)

As proved above that Δα2
n,n+1 = Δα

2
n+1,n, thus we have en,n+1 = en+1,n. The right side of

Equation 3.29 measures three types of distortions and can be regarded as three corre-
sponding energies of an elastic line element. The first term measures the deviation of
the two ridge orientations from the cocircularity condition; the second and the third ones
measure the bending and stretching, respectively. αmax, rmin and hmax are three free pa-
rameters needed to be set by users and give us control on the relative weight of the three
terms. αmax is the upper limit of the deviation from cocircularity, rmin the smallest accept-
able curvature radius, hmax the largest acceptable distance. Therefore, only connections
with negative energy are allowed.

In practice, the energy in Equation 3.29 has some problems because it tends to discard
ridgel pairs with small hn,n+1. As is seen in Equation 3.28, rn,n+1 is proportional to hn,n+1

which makes rn,n+1 go down below rmin very easily for a nearby ridgel pair. For this reason
we allow for measurement errors in r and u⊥. The binding energy is modified accordingly
to the minimum within these given error ranges.

In the next step all the allowed ridgel connections with a negative energy are stored, or-
dered with respect to energy and combined to reach a global energy minimum. We started
from the connection with the lowest energy and connect ridgels to chains by searching the
allowed connections. Each ridgel has two sides divided by u⊥ and we only allow at most
one connection on either side. Connections to one side of a ridgel which has already been
occupied by a lower energy connection before are simply discarded. The connections in
this way reach an energy state close to global minimum. However, we might miss a lower
global energy state by always searching the next ridgel according to a relative lower en-
ergy locally. It might happen that a connection between ridgels i - j with some energy ei, j
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Figure 3.9: Sketch of the curve fit parameters di, Δαi and ri. The ridgels are indicated by
their locations and orientations. For each ridgel i, di = |di| is the distance, Δαi the angle
between the direction of di and the ridgel orientation, ri the curvature radius (Inhester
et al. 2008).

prevents a bypass i - k - j with energy ei,k + ek, j < ei, j but ei,k, ek, j > ei, j because connection
i - j was introduced earlier. Since en,n+1 = en+1,n this global minimum problem can be
considered a minimizaion problem of undirected graphs. Some improvements should be
found from graph theory.

3.3 Curve fits to the ridgel chains

The final step is to fit the connected ridgel chains to smooth curves. What we use here
are the higher-order polynomials from third to fifth order since the curvature of coronal
loops does not change much along them. We tried high-order spline functions as well.
However, they are too flexible for the curves we aim at. For a 2D polynomial curve we
have the parametric form

p(t) =
5∑

n=0

qnt
n for t ∈ [−1, 1]. (3.30)
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3.4 Discussions

The polynomial coefficients q are determined by minimizing∑
i∈chain

(dT
i di) + μ(p′′

T p′′)(ti) (3.31)

with respect to qn for a given μ. Here,

di = ri − p(ti) (3.32)

are the distances of the ridgels from the curve fit. The distribution of node points ti is
initially ordered in the interval [−1, 1] so that ti − ti−1 is proportional to the geometrical
distances |ri−ri−1|. By making the derivative of 3.31 with respect to qn zero and solving the
resulting linear algebra equations of qn, we obtain the corresponding coefficients qn(μ).
Once a new set of qn(μ) for a given μ is calculated, the curve nodes ti are replaced by the
exact closest point to ri

ti = argmint(ri − p(t))2. (3.33)

The second-order derivative p′′ is introduced to control the curvatures of the polymonial
curve. For different μ, the minimum 3.31 generates fit curves with different curvatures.
To find an optimal μ, we set up a scheme in Figure 3.9 and minimize the equation with
respect to μ below:

Echain(μ) =
∑

i∈chain

d2
i

d2
max

+
∑

i∈chain

Δα2
i

α2
max

+ r2
min

1∫
−1

1
r(t)2

dt (3.34)

The first two terms generally require a large curvature which is balanced by the third
term. Because E depends on μ nonlinearly we cannot obtain the optimal μ as we did for
the polynomial coefficients qn. Alternatively, we compute it in an iterative way with μ
starting from a large numerical value. The parameters dmax, αmax and rmin are chosen to
tune the relative weights between the mean square of spatial and angular deviations of the
fit from a chain of ridgels and the integrated curvature of the fit.

The final curve fits of fifth-degree polynomials to the connected ridgel chains are pre-
sented in the left panel of Figure 3.10. The ridgels are detected by the automated scale
selection method and then interpolated with the first interpolation method described in
Equation 3.23. However, from this image we have segmented not only loop structures but
some other bright structures, for example, moss. The image processing scheme itself can-
not distinguish between them. Therefore in the last step, we interactively clean unwanted
loop-irrelated structures and split and merge some obvious loop features. On the right
side of Figure 3.10 the result from this last step of modification is shown.

3.4 Discussions

In an EUV image of the Sun we can identify plenty of structures including coronal loops.
For some specific loop studies, it is required to extract their shape from the EUV im-
age. One of such applications is to compare the traced loops with the projected magnetic
field lines since coronal loops should outline magnetic field lines due to the high electric
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3 Coronal Loop detections from EUV images

Figure 3.10: Left: curve fits to ridgel chains by the fifth-order polynomials. Right: Results
from cleaning, splitting and merging of loop structures by a user interactive tool (Inhester
et al. 2008).

conductivity in the coronal plasma. This comparison could serve as a validity test for
the underlying field-extrapolation methods. The comparison could be done either with
loops traced from a one-view EUV image or with loops identified from two images taken
simultaneously from two view directions.

Inhester et al. (2008) compared the loops extracted from the EUVI image taken on
December 12 2006 at 23:43:11 UT with the magnetic field lines extrapolated from linear
force-free field models with the force-free parameter α varied in the range from -0.0427
Mm−1 to 0.0356 Mm−1. The results of the comparison show that each identified loop is
associated with a field line with different α values. It indicated that a linear force-free
field model is not sufficient for this active region. Actually an X-class flare occurred in
this active region next day. Therefore the time when the traced loops were observed in
Inhester et al. (2008) was in the preflare period. According to the nonlinear force-free
field extrapolations in the same active region, we find that the magnetic field lines are
highly sheared in the core field region in this period (Guo et al. 2008).

Due to the projection effect, the optimal force-free parameter α inferred by comparing
the projected field lines with loops observed from only one view point is problematic,
because several field lines with different α values might produce the same projection. The
best-fit magnetic field line to a given loop might not be unique. This problem could be
solved if we compare the extrapolated field lines with the loops identified from two si-
multaneously recorded images from two view directions. The details will be presented in
the next chapter where the extracted loops are used for the tie point stereoscopic recon-
structions in order to obtain their 3D geometry.

The SDO mission in the future will have very high time cadence of observations and
a huge number of images will be recorded. Therefore, automated feature detection tools
will be quite helpful to study the time evolution of structures. In the case of coronal loops,
loop oscillations will be a very interesting application of our tool.
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4 Stereoscopic Reconstruction of
coronal Loops

STEREO provides us with the first opportunity to observe the Sun-Earth system simulta-
neously from two different viewpoints. Three dimensional information of quiescent coro-
nal structures as well as of dynamic phenomena such as Coronal Mass Ejections (CMEs)
can be inferred. A fundamental 3D reconstruction task is to reconstruct coronal loops, the
building blocks of the solar corona. Before STEREO data become available, all the stere-
oscopy work made use of the solar rotation and had to be based on the assumption that
the magnetic structures are stable within the time interval used for stereoscopy. In this
chapter, we will first present the stereoscopic reconstruction of the loops observed one
day apart by TRACE which serves as a preparation for the real EUVI/SECCHI data from
STEREO. In the second section of this chapter, 3D reconstructions of the loops observed
by EUVI on board STEREO are detailed. The EUVI image pairs are recorded simulta-
neously and no assumption on the time evolution of loops is required for the stereoscopic
technique we use.

4.1 Stereoscopy of the loops observed by TRACE

Assuming stationary loop structures, a triangulation method has been applied to Sky-
lab/XUV data by Berton and Sakurai (1985) and to SOHO/EIT data by Portier-Fozzani
and Inhester (2001). Aschwanden et al. (1999b) and Aschwanden et al. (2000) general-
ized the concept of solar-rotation stereoscopy to dynamic stereoscopy which allows the
loop structures to evolve dynamically. They traced out individual loops from two EIT
images observed one day apart. For each of these loops they determined a circular fit and
allowed the fit parameters to smoothly vary in time.

For the STEREO mission, Wiegelmann and Inhester (2006) developed a tool of mag-
netic stereoscopy which combines pure geometrical stereoscopy with estimations of the
local magnetic field orientation from different magnetic field models. Their work showed
that the extrapolated field lines can help to remove the ambiguities inherent in classical
stereoscopy. They applied their method only to a model active region from which they
computed artificial loops as seen from two different viewpoints. In this work we apply
this magnetic stereoscopy to real TRACE and SOHO/MDI data. This represents a test of
the method to solar data affected by noise, instrumental artifacts, etc.
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4 Stereoscopic Reconstruction of coronal Loops

Figure 4.1: SOHO/MDI line of sight magnetogram observed on 1 March, 1535UT with
NOAA 8891 located in the white square (Feng et al. 2007b).

4.1.1 Observations and Loop Identification

The investigated long-lived active region NOAA 8891 was visible on the disc from Febru-
ary 26 2000 to March 9 2000. The TRACE Flare Catalog, http://hea-www.harvard.edu/
trace/flare_catalog/index.html, lists no M or X class flares occurring in this active region
during the above time. For the stereoscopy work we concentrate here on the data observed
on March 1 and March 2 when the active region was close to solar center. A first task is
to identify one dimensional curves out of the 2D EUV images. In the following we call
these 1D structures “loops”. Projected 3D magnetic field lines (which are 1D structures
as well) are called “projected field lines”. There was no flare happening in this active re-
gion during these two days, so we can assume that the magnetic field was slowly evolving
and can be considered as invariant over short time scales (say during one day or so). The
active region we concentrate on is marked by the white square in Figure 4.1 observed by
SOHO/MDI.

Figure 4.2 shows two EUV images of this active region recorded by TRACE in the
171 Å waveband about one day apart, one on March 1, 1422UT and the other on March
2, 1744UT. We can regard TRACE image on March 2, 1744UT as an approximation of
the EUVI image from STEREO A, and TRACE image on March 1, 1422UT as from
STEREO B. To correct the TRACE pointing, the two TRACE images are calibrated sepa-
rately with the SOHO/EIT data closest in time (March 1, 1300UT and March 2, 1900UT).
The sun rotated about 17 degrees during the above time.

Coronal loops are often visible only as faint structures, even in TRACE images which
at present have the highest spatial resolution. To enhance the loop structures in the two
TRACE observations, high-pass filtered images are created by subtracting a 5 × 5 boxcar
smoothed image from the original image. Figure 4.3 shows the filtered results. Subse-
quently the loops are traced out in the filtered images and marked in Figure 4.4. Because
the right part of Loop 0 in the left panel of Figure 4.3 is invisible, a white line is shown
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4.1 Stereoscopy of the loops observed by TRACE

Figure 4.2: TRACE 171 Å data of AR 8891 on March 1, 1744UT (left) which can be
looked as an image taken by EUVI on board STEREO A and March 2, 1422UT (right) as
an image observed by EUVI B (Feng et al. 2007b).

in the left panel of Figure 4.4 as a reference of the direction of Loop 0. It is segmented
out from another TRACE image which was observed on March 1, 1351UT, about 30 min
earlier, Its coordinates were then transformed onto March 1, 1422UT by aligning both im-
ages to the EIT image observed on March 1, 1300UT. Loop identification is not straight
forward. Here the loops are traced by hand. Efforts towards developing an automated loop
tracing tool have been made and an overview about the current developments is given in
Aschwanden et al. (2008a), Lee et al. (2006) and Inhester et al. (2008) (See Chapter 3).

4.1.2 Magnetic Field Extrapolation and Field Line Projection

The coronal magnetic field usually cannot be measured directly. Therefore one has to
extrapolate it from photosphere magnetic observations (line of sight or vector magne-
tograms). Because of low β values in the lower corona, the magnetic field can be con-
sidered force-free. In this work we use the linear force-free field extrapolation method
(Seehafer 1978) described in Chapter 2 to match loop pairs from two TRACE images.
The required accuracy of the field lines which is needed to associate loops depends both
on the resolution of the image and on the average distance between the individually iden-
tified loops in the image. The distance of the projected field lines to the loops should be
smaller than the distance between neighbouring loops.

Combined with the divergence-free condition, the force-free equations are written as:

∇ × B = αB (4.1)

where α is a constant for linear force-free field. The input of the extrapolation code is the
SOHO/MDI line-of-sight magnetogram observed on March 1 1535UT. The model has
one free parameter "α" which is a priori unknown. Several authors (e.g. Carcedo et al.
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4 Stereoscopic Reconstruction of coronal Loops

Figure 4.3: High-pass filtered TRACE 171 Å images on March 1, 1744UT (left) and
March 2, 1422UT (right) (Feng et al. 2007b).

Figure 4.4: Hand-traced loops (red lines) marked with numbers on the filtered TRACE
171 Å images observed on March 1, 1744UT (left) and March 2, 1422UT (right). In
the right image, the white line is segmented out from another TRACE image which is
observed on March 1, 1351UT and then tranformed its coordinate onto March 1, 1422UT
(Feng et al. 2007b).
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4.1 Stereoscopy of the loops observed by TRACE

Figure 4.5: Three dimensional potential magnetic field of NOAA 8891 extrapolated from
SOHO/MDI data. Only closed field lines are plotted (Feng et al. 2007b).

2003, Marsch et al. 2004) used coronal images in EUV, X-ray and Hα to compute the
optimal linear force-free parameter α by comparing magnetic field line plots with images
from a single viewpoint (e.g. SOHO, Yohkoh).

The Seehafer solution is computed on a rectangular grid 0 - Lx and 0 - Ly and contains
the free force-free parameter α. To normalize α, we choose the harmonic mean L of Lx

and Ly defined by
2
L2
=

1
L2

x

+
1
L2

y

. (4.2)

The force-free parameter αL is limited by -
√

2π ≤ αL ≤ √2π in the Seehafer solution.
Potential fields correspond to α = 0. We have computed the linear force-free field model
with Lx = Ly = L = 285Mm for 45 different values of α varied from −0.0156 Mm−1 to
0.0156 Mm−1 (for convenience of calculation, the value of αL increases by 0.2 at every
step). For each field line, the starting point is chosen randomly in the photosphere in the
region where the magnetic field strength is larger than 20 G. In total, 4183 field lines have
been computed. We show as example the potential field (i.e. the case α = 0) in Figure 4.5.
Here only the closed field lines are plotted as we are only interesting in closed coronal
loops.

The extrapolated 3D magnetic field lines should be projected onto both TRACE im-
ages to be compared with identified loop structures. To facilitate the projection, we con-
vert the position of points (xi, yi, zi) on a 3D field line from the coordinate system of the
extrapolation respectively to the two heliocentric coordinate systems established for the
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4 Stereoscopic Reconstruction of coronal Loops

Figure 4.6: Projection results of the extrapolated 3D potential field lines along two
TRACE view directions. The left image is for the viewpoint B on March 1, 1744UT
and the right one for the viewpoint A on March 2, 1422UT (Feng et al. 2007b).

TRACE observations (details of the coordinate transformation are described in Appendix
C). The projection results for the potential field lines are given in Figure 4.6 as an exam-
ple. The left image shows the projection along the TRACE view direction on March 1,
and the right one along the view direction on the next day, March 2. Comparing these two
projection images with the two TRACE images, we can see that generally the potential
field lines indicate the directions of the identified loops. A quantitative analysis will be
discussed later and shown that potential and even linear force-free field is not sufficient.

4.1.3 Magnetic Stereoscopy

In two TRACE images we have five identified loop structures for viewpoint A, six loop
structures for viewpoint B; On the other hand we have 4183 projected field lines for
both viewpoints. They form the necessary materials to reconstruct the 3D geometry of
coronal loops. In a first step, we quantify the distance of the projected field lines to each
loop. Two loops in different images (later we call the TRACE image observed on March
1 TRACE Image A, and the other one TRACE Image B) are defined to form a pair if
there is a common field line which projects closely to both loops. Then the stereoscopic
reconstruction is performed with the identified loop pairs.

4.1.3.1 Loop pair identification

The faint, diffuse coronal plasma and the “jungle” of nested loops do not allow a clear
association of loops in two TRACE images with each other. However, this is an important
step before the stereoscopic reconstruction. If the problem of loop association is not
solved properly, the stereoscopic reconstruction can fail or lead to incorrect results.
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4.1 Stereoscopy of the loops observed by TRACE

Figure 4.7: This figure illustrates how the parameter Cl(b) is calculated. Red line is one
traced loop, black line is one projected magnetic field line and Green sticks show the
area between the loop and the part of the field line corresponding to the loop (Feng et al.
2007b).

To quantify how good the correspondence is between a loop combination from both
TRACE images, we introduce three quantities ClAlB(b), ClA(b) and ClB(b). ClA(b) measures
the average distance between the loop lA in TRACE Image A and a certain projected field
line b and shows how well the loop and field line agree with each other. ClB(b) is similar to
ClA(b) but for TRACE Image B. Both are defined as the area between the traced loop and
the projected field line divided by the loop length (see Figure 4.7). ClAlB(b) is the average
of ClA(b) and ClB(b). Two points should be mentioned here. At first, for the case that the
field line is much shorter than the loop, they do for obvious reasons not match well. We
penalize ClA(b) or ClB(b) by a large number (1000 arcsec in our calculation). Conversely, if
the observed loop is shorter than the projected field line, this match is accepted. Secondly,
because it is difficult to trace the exact positions of the loop footpoints, the section near the
footpoints of the loops is omitted to get a more precise average distance (see Figure 4.7
as an example).

For each loop pair combination, that is one loop picked from Image A and the other
loop picked from Image B, we can find a certain field line from the total of 4183 field
lines which minimize ClAlB(b). It is easy to understand that the smaller ClAlB(b) is, the
better the loop pair associate with each other. For a better visualization, we plot 1/ClAlB(b)
in Figure 4.8 (left). The left panel shows the initial results of loop matching. The loop
pairs found in this way and their best fit field lines are used later as references to obtain
further results.

Because the starting footpoints of all the 4183 field lines we calculated here are ran-
domly selected on the photosphere and the interval of the 45 α values is not small enough,
we might have missed some more precise candidates which fit the loop pairs even better.
To find these improved candidates, for each possible loop pair found from the initial re-
sults, we calculate additional field lines with smaller steps in α and with their footpoints
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4 Stereoscopic Reconstruction of coronal Loops

Figure 4.8: Loop association with linear force-free field model. The matrix ClAlB(b),
where C is in units of arcsecond, shows how well each loop in Image A associates with
each loop in Image B. The horizontal axes are the loop numbers from Figure 4.4 . Higher
value corresponds to better association. The left panel shows the initial results of loop
matching found by a coarse field line group. The right panel is the final results identified
through the comparison with a more refined field line group. The maximum value of the
vertical axis increases from 0.3 arcsec to 0.8 arcsec (Feng et al. 2007b).

focussed near the footpoint of the optimal field line found so far. The starting points on
the photosphere of the new field lines are regularly distributed on a 10 arcsec wide circle
centered at the starting point of the old optimal field line associated with the respective
loop pair. Moreover, the αL in steps of 0.1 are varied around the value of the old optimal
field line. Now comparing all the 2585 new field lines gathered from every group with the
loops traced from Image A and Image B, we obtain a more precise result (see the right
panel of Figure 4.8). The most probable loop pair which has the smallest value of ClAlB(b)
has now changed from loop pair (1-1) (C = 3.71 arcsec) to loop pair (0-0) (C = 1.54 arc-
sec). From Figure 4.8 we can see the maximum value of the vertical axis increases from
0.3 arcsec to 0.8 arcsec.

All the possible loop pairs we have found are listed in Table 4.1 with the αL value
of the field line that best fits each loop pair. The obtained fits suffer from the non-
simultaneous recording of the two TRACE images, so that, the loop structures may have
evolved from one day to the other due to the lifetime of EUV loops. This problem does
not exsit for the STEREO data. Table 4.1 demonstrates that there need not be a one-to-one
correspondence between loops and field lines. Loop pairs 2 and 3 both contain loop No.
1 in Image A. ClAlB(b) is relatively similar in both cases, so that, it can only formally be
used to favour loop pair 2. In view of the non-uniqueness of loop pair combinations and
loop evolution, we only reconstruct the 3D loop for the most probable loop pair (0-0) in
the next subsection. This loop pair and its best fit field line are shown in Figure 4.9. The
correspondence is surprisingly good, considering the uncertainties inherent in magneto-
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4.1 Stereoscopy of the loops observed by TRACE

Figure 4.9: Dotted lines: loop No.0 in Image B (left) and loop No.0 in Image A (right);
Solid lines: projections of the best fitting field line onto the respective image, we use
b(0,0) as the notation for this field line (Feng et al. 2007b).

Table 4.1: List of the possible loop pairs and α values of the field line best fit with each
loop pair (Feng et al. 2007b).
Loop pair Loop No.(Image A) Loop No.(Image B) ClAlB(b)(arcsec) α(10−3Mm−1)

1 0 0 1.54 -4.2
2 1 1 3.08 -5.3
3 1 2 3.45 -5.3
4 2 3 4.63 -4.2
5 4 4 6.36 2.8

graph measurements (which do not compensate for the unknown properties of magnetic
elements, Solanki (e.g. 1993)).

In this work we extrapolate the magnetic field with the linear force-free field model
which assumes constant α value in this active region. However, from Table 4.1 we find
negative α values for the loop pairs in the northern part of this active region, while in
the southern part, positive α value is obtained. This is in contradiction with the linear
force-free assumption and indicates that this magnetic field model is not a perfect ap-
proximation of the loops in NOAA 8891. It should be noted that the magnetic field lines
which were calculated cannot be considered to represent a valid field model because their
α value differs. We here use the field lines only as a mean to associate loops. Wiegelmann
and Neukirch (2002) also investigated whether the linear force-free field model is good
enough to approximate the loops in active region NOAA 7986. They found similar results
to this work: different α values are needed to describe different subgroups of loops. So
the nonlinear force-free field model would be a better field model for this active region
(cf. Wiegelmann et al. 2005b).
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4 Stereoscopic Reconstruction of coronal Loops

Figure 4.10: Left: the white line shows the traced partial Loop 0 in Image B and the red
line is the best fit field line b(0,0) with this loop. Right: the red line shows the extended
complete loop following the guide of the field line b(0,0) (Feng et al. 2007b).

4.1.3.2 Complete loop feature identification

One problem for the stereoscopy of loops is that not always the same segments of a loop
are well visible and clearly identified in the two images. As can be seen from Figure 4.9,
this is clearly the case for loop pair 1. We employ the best-fit magnetic field line b(0, 0)
as a guide to extend the loops 0 in Image A and B. The originally identified loop and the
field line b(0, 0) are overplotted on Image B in the left panels of Figure 4.10; the traced
complete loop is shown in the right panels.

Lee et al. (2006) introduced a method to automatically segment solar loops based on
the oriented connectivity and used the potential magnetic field model to guide the loop
orientation. As they pointed out, sometimes the simplicity of the physical model could
cause the segmentation process to fail. Therefore, computed field lines lying as close as
possible to the true loops should be combined to extract reliable loop structures. Without
additional information it is hard to clearly identify loops in plasma images. A projection
of computed magnetic field lines can help to achieve this aim. Magnetic field lines do,
of course, exist space filling in the corona and might depend additionally on a priori
unknown parameters, e.g. the force-free parameter α. For the identification of a plasma
loop we choose the field line, which is (in 2D projection) closest to the loop in the image
to guide the loop direction.

4.1.3.3 Stereoscopic reconstruction

In this subsection we show as an example the stereoscopic reconstruction from the loop
pair (0-0) and we demonstrate how the best fit field line b(0, 0) helps with this reconstruc-
tion.

For the stereoscopy method test, we at first reconstruct the 3D curve from the two
projections of the field line b(0, 0) to check whether the result is the original 3D field
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4.1 Stereoscopy of the loops observed by TRACE

Figure 4.11: Geometrical stereoscopy from two projections of field line b(0, 0). The blue
surface is generated by back projection along the view direction of Image A, and the
green surface is along the view direction of Image B. Yellow points are the solutions of
3D reconstruction. Left: the results of purely geometrical stereoscopy, right: the results
of magnetic stereoscopy. Two red lines: 3D field line b(0, 0) (Feng et al. 2007b).

line or not. The basic idea of our geometrical stereoscopy is given in the left panel of
Figure 4.11. The 1D curves (projected field line or identified loop) can be projected back
along the view direction which generates a 3D solution surface on which the real 3D curve
must lie. From two view directions, we obtain two such surfaces and their intersection
must be the 3D solution (Wiegelmann et al. 2005a, Wiegelmann and Inhester 2006).

In the case of the two projections of b(0, 0), classical stereoscopy gives two solutions:
one is the correct original 3D field line, the other consists of some yellow points strung
out nearly in the vertical direction. Considering the epipolar geometry, since the epipolar
lines for STEREO and TRACE observation are only slightly inclined with respect to
the ecliptic, loops in north-south direction which intersect epipolar lines only once are
reconstructed straight. For the loops in an east-west orientation, two-time intersection
usually yields two solutions that cross each other (Inhester 2006a). Obviously the second
solution is a ghost 3D feature introduced by the fact that the coronal plasma is optically
thin and we should find a way to remove it. The presence of such ghosts is particularly
annoying since most loops are expected to be oriented roughly in the east-west direction.

To get rid of the ghost feature we add the information of the best fitting magnetic field
line b(0, 0) to the purely geometrical stereoscopy. This is achieved by limiting the Z range
(i.e. normal coordinate) of the two back projection surfaces to ±8 arcsec (the exact value
is not important to the results) of Z values of the field line b(0, 0). The stereoscopic recon-
struction result using this additional constraint is shown in the right panel of Figure 4.11.
Now the ghost feature has disappeared.

Now we apply this magnetic stereoscopy method to the TRACE data, loop pair 0-
0. The 3D reconstruction of this loop pair (Figure 4.12) is marked by the yellow dotted
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4 Stereoscopic Reconstruction of coronal Loops

Figure 4.12: Magnetic stereoscopy of loop pair 0-0. Yellow points give the solution of the
3D reconstruction, the red line is the best fitting 3D magnetic field line. The right panel
shows the reconstruction error bars at five points along the 3D magnetic field line (Feng
et al. 2007b).

features, and the best fit 3D field line is marked by the red line. Generally the yellow
dotted features form a reasonable outline of the 3D loop except the part near the loop top.
As shown by Inhester (2006a), the positional error of the 3D curve reconstruction can
be estimated by w/(2 sin(γ/2)), where γ is the angle between the local projection surface
normals and w is the width of the loop cross section in the EUV image. The difference
in heliographic longititude of the spacecraft between two days is about 17 degree. The
angle γ can not be larger than this stereo base angle. The two normal unit vectors of the
projection surfaces become almost parallel near the loop top. Hence the loop top is the
most difficult part to be reconstructed by stereoscopy. Our reconstruction lies within the
error bars shown in the right panel of Figure 4.12. Since the two STEREO spacecraft
remain in the ecliptic the loop top will be the most uncertain part for any stereoscopic
reconstruction of loops in the east-west orientation.

4.2 Stereoscopy of loops observed by EUVI/SECCHI

With the launch of NASA’s STEREO mission in October 2006, a new dimension of solar
coronal observations has been opened. For the first time, objects above the solar surface
can be perceived in three dimensions by analysing the stereo image pairs observed with
the SECCHI instruments onboard the STEREO spacecraft and without making a-priori as-
sumptions about their shape. The two STEREO spacecraft orbit the Sun at approximately
1 AU near the ecliptic plane with a slowly increasing angle of about 45 degrees/year be-
tween STEREO A and STEREO B. Each spacecraft is equipped with, among other instru-
ments, an EUV telescope (SECCHI/EUVI). For the objectives of the mission and more
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4.2 Stereoscopy of loops observed by EUVI/SECCHI

STEREO probe B A
Helioc. dist. (AU) 1.068788 0.958071
Sun’s app. rad. (arcsec) 897.866 1001.625
Longitude (degrees) -4.277 7.524
Latitude (degrees) -0.293 0.095

Table 4.2: STEREO spacecraft coordinates at the time of the observations. Spacecraft
longitude and latitude are given in the Heliocentric Earth Ecliptic (HEE) coordinate sys-
tem (Feng et al. 2007a).

details about the EUVI telescopes see Wuelser et al. (2004) and Howard et al. (2008).
The major building blocks of the solar corona are loops of magnetic flux which are

outlined by emissions at, e.g., EUV wavelengths. In principle, the magnetic field in the
lower corona can be derived from surface magnetograms by way of extrapolations (e.g.
Wiegelmann 2007). However, missing boundary values and measurement errors may in-
troduce considerable uncertainties in the extrapolation results so that there is an obvious
need for an alternative three-dimensional determination of the coronal magnetic field ge-
ometry. Among other goals of the mission, this requirement has been one of the drivers
for STEREO.

Attempts for a three-dimensional reconstruction of the coronal magnetic field from
EUV observations have started long before STEREO data was available and date back
more than a decade (Berton and Sakurai 1985, Kouchmy and Molodensky 1992). Here,
we for the first time use two simultaneously observed EUVI images observed by the two
STEREO probes and rigourously reconstruct loop shapes without any further assumption
about their temporal or spatial behaviour from which earlier reconstructions employing
consecutive images from a single spacecraft suffered. We compare the reconstruction
results with field lines derived from linear force-free magnetic field models with variable
α, the ratio of field-aligned current density to field strength (Seehafer 1978).

4.2.1 The data

For our reconstruction we used EUV images at λ = 171Å taken by the almost identical
SECCHI/EUVI telescopes onboard of the two STEREO spacecraft at 2007-06-08 03:21
UT when the well isolated active region NOAA 0960 was close to solar disk centre. The
line λ = 17.1 nm is emitted by the Fe ix ion which forms at about 1.1 million K. At the
time of these observations, the two STEREO spacecraft had a heliocentric separation of
11.807 degrees. The precise spacecraft positions at the time of the observation are listed
in table 4.2.

For a comparison of our reconstruction with magnetic field lines we made use of a
SOHO/MDI magnetogram taken only 9 seconds prior to the EUVI images. The active
region is well isolated from neighbouring field sources so that an extrapolation of the
surface field is possible. MDI, however, provides only the line-of-sight field component,
which for this bipolar region close to the disk centre is almost identical to the radial field
component on the solar surface. For this reason we can employ here only a linear force-
free field model for the extrapolation of the magnetogram (Seehafer 1978).

71



4 Stereoscopic Reconstruction of coronal Loops

Figure 4.13: Contrast enhanced zoom of the EUVI images B (left) and A (right) of the
active region NOAA 0960. Heliographic north is upward. The axes are scaled according
to the image pixel size. Individual loop structures are emphasized by white curves and
enumerated. Equal numbers do not imply a correspondence across the images (Feng et al.
2007a).

4.2.2 The reconstruction

The first step in the stereoscopic reconstruction scheme is the isolation and identification
of individual loops in each of the EUV images. In Figure 4.13 we show the portion of the
EUV images containing the active region. The EUV structures were contrast enhanced by
an unsharp mask filter. Next, individual loop structures were detected by a loop segmen-
tation program described in Chapter 3. This program detects individual bright loops in an
image by treating them as elongated intensity ridges (Inhester et al. 2008). For identifi-
cation, the loop curves were enumerated. These assignments, e.g. a number lA for a loop
curve in image A, were made independently in each image.

To establish correspondences of projections lA � lB of the same loop across the im-
ages is the hardest part in the stereoscopy procedure. For isolated loops they can some-
times be guessed by visual comparison of the image pair. Also, some guidance is provided
by matching constraints which corresponding pairs of loop projections have to obey (In-
hester 2006a). Often, however, the visual comparison of loop structures does not yield
unique correspondences. To disentangle the typically crowded active region loop ensem-
bles we have developed a systematic scheme which determines correspondences with the
help of magnetic field model calculations (Wiegelmann and Inhester 2006, Feng et al.
2007b). The idea is to find three dimensional field lines from a more or less accurate
model of the active region magnetic field as a first approximation to the final loops whose
projections are close to the loop projections identified in the images from spacecraft A
and B. If a field line can be found with projections sufficiently close to a loop in both
images, this is strong evidence that these loop curves represent projections of the same
three-dimensional loop.

The probability of a correspondence between a pair (lA, lB) of loop curves in image
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4.2 Stereoscopy of loops observed by EUVI/SECCHI

Figure 4.14: Proximity of loops identified in images A and B in figure 4.13. The proximity
is expressed by the inverse of a distance measure C (see text). The loops from image A
and B are arranged along axes ‘EUVI_A’ and ‘EUVI_B’ according to their respective
identification number lA and lB. For each pair (lA, lB) the inverse of C is displayed by a
column at the location of the loop pair in this matrix representation. Columns exceeding
0.5 Mm−1 have a black top. Here, only loops from the northern half of the active region
were considered (Feng et al. 2007a).

A and B is measured by C = 1
2minb (ClA(b) + ClB(b)) as introduced in the section of

loop correspondence from two TRACE images. Here, the set of possible field lines b
comprised all possible foot point locations and a wide range of α values from -0.0156 to
+0.0156 Mm−1 and only serve as a mean to establish the correspondence, they are not
intended to represent a consistent field model of the active region. The linear force-free
field model used is only consistent if α is a global constant. Strictly speaking, the field
lines lmin for which C attains the minimum are each from a different field line model as α
turned out to differ for each loop pair.

In Figure 4.14 the inverse of C is shown for the loops in the northern half of the
active region, lA = 0 to 18 and lB = 0 to 17. Some few loop combinations show a clearly
enhanced 1/C and are thus much more probable than the majority of combinations (lA, lB).
We accepted for a reconstruction only loop pairs with a value of C below 2 Mm. This
corresponds to an average distance between the field line projection and the loop curves
in each image of 2 pixels or less. When more than one combination was possible for one
loop, the most probable one was taken such that each loop receives no more than one
partner and the sum of C of all selected correspondences was minimised (Wiegelmann
and Inhester 2006). In all, 20 pairs from Figure 4.13 could thus be identified.
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Figure 4.15: Vertical View of the three-dimensional reconstruction results from a view-
point within a degree from the STEREO A spacecraft. Heliographic north is upward. The
reconstructed loop sections are drawn in yellow, the closest fit field lines in red. The loop
pairs (lA, lB) drawn are: 4-2, 12-12, 5-3, 7-5 (northward part of this AR) and 45-45, 44-43,
42-42, 24-23, 30-29 (southward part) (Feng et al. 2007a).

Figure 4.16: Same as Figure 4.15, but seen from a view point NE of the active region.
Heliographic north points to the lower left corner. The SECCHI instruments observed
from approximately above (Feng et al. 2007a).

The last step is the stereoscopic reconstruction of the three-dimensional loop from
each accepted pair (lA, lB). This purely geometrical step often yields multiple solutions
(Inhester 2006a). They were discarded by retaining only the three-dimensional recon-
struction closest to the best fit field line lmin.

4.2.3 Results

In Figures 4.15 and 4.16 we present two views of a set of reconstructed loops. Figure 4.15
shows the reconstructed loops (yellow) and the associated closest fit field lines(red) ob-
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Figure 4.17: Example of a reconstructed loop with error estimates. The reconstruction is
shown in yellow along with error bars. The associated best-fit linear force-free field line
(red curve) is much lower in height (Feng et al. 2007a).

Loop pair |α| height length
iA, iB (10−3Mm−1) (Mm) (Mm)

5, 3 1.8 71.9 229
7, 5 8.3 20.6 105
45,45 2.3 58.2 253
44,43 2.8 27.3 188
42,42 2.8 57.2 210

Table 4.3: Best fit field line parameters for a representative list of closed loops of active
region NOAA 0960 (Feng et al. 2007a).

tained by extrapolation from a position within a degree from the STEREO A spacecraft.
As expected, loops and field lines agree relatively well from this perspective because they
were chosen to be close in this projection. Figure 4.16 therefore provides a completely
different view of the active region. This view shows that most of the loops cannot easily
be approximated by planar curve segments. This geometrical simplification was often
used for loop reconstructions in the past because a more involved shape could only rarely
be resolved from previous observations. This figure also reveals deviations between the
loops and field lines. E.g., the loops on presumably open field lines appear to be more
strongly curved than the corresponding field lines from the extrapolation.

We attribute this disagreement to a deficiency of the linear force-free field line extrap-
olation. For the closed field lines, the best fit |α| values derived above fell in the range
from 1.8 to 8.3 10−3 Mm−1 (see table 4.3). For the open field lines, these values turned
out to be smaller in magnitude, with values |α| <2.5 10−3 Mm−1. As α is a global con-
stant for the linear force-free field model, the influence of the stronger currents on the
closed active-region field lines is not accounted for on the open field lines. This may ex-
plain why the open field lines were calculated with less curvature than the corresponding
stereoscopically reconstructed loops.

The loop reconstruction is also prone to errors, however. These may occur whenever a
projected loop section in the images are directed tangentially to an epipolar line (Inhester
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2006a). For the viewing geometry of our observations, epipolar lines are nearly horizontal
in the images and the critical part for closed, E-W orientated loops therefore lies more
or less near their apex. Also the open loop structures 16-19 in image B and 17-20 in
image A (see Figure 4.13) suffer from this problem as they are orientated almost entirely
horizontally in the images. We have therefore not attempted to reconstruct them even
though a correspondence could well be identified.

In Figure 4.17 we display the reconstruction of loop (5,3) (yellow curve) which shows
by far the largest deviation to its best fit linear force-free field line (red curve). For most
other loops, this discrepancy is much less although the agreement is rarely perfect. For
some points along the loop (5,3), we also show error bars which represent the geometrical
reconstruction error when the uncertainty for the loop projection in the images is assumed
to be 1.5 pixels. In this case, the height of the loop top turns out to be ∼ 1.5 times above
that of the corresponding field line. This field line (the first entry in table 4.3) again
shows a relatively small value |α|. Since this α value gave the best fit of linear force-free
field lines to the loop projection in the images, we conclude that the linear force-free
assumption is often not adequate (c.f. Wiegelmann et al. 2005b).

4.2.4 Discussion and outlook

We demonstrated that EUV data from the new STEREO spacecraft allows for the first
time to make a reliable stereoscopic reconstruction of the spatial distribution of hot, mag-
netically confined coronal plasma and, by inference, provide a full three dimensional view
of the arrangement of coronal field lines. We found that linear force-free field models are
helpful to establish correspondences between the loops observed in the STEREO image
pairs. The field lines from these linear force-free models need not be physical but only
serve as a first order approximation to the final loops. Realistic magnetic field models of
the corona will have to be judged by their capability to yield field lines in agreement with
the stereoscopically reconstructed loops. Our scheme to determine correspondences will
become even more valuable when the stereo base angle grows and loop structures become
more difficult to be identified in the image pairs.

The reconstructions will also allow more precise analyses of emissions from loops.
The observed brightness of EUV loops is, e.g., strongly modified by the cosine of the
angle between the line of sight and the loop’s local tangent. This may, besides other
effects, contribute to the enhanced EUV brightness of the lower loop segments commonly
observed on the solar disk: these loop segments close to the loop’s foot points are more
aligned with the radial direction and they make a small angle with the view direction.
This may cause them to appear brighter than the loop top which is viewed at more or less
right angles.

Other applications have been proposed (Aschwanden 2005a, Aschwanden et al. 2008b).
e.g., the amount of twist of a reconstructed loop indicates how close the flux tube is to a
kink instability. Török et al. (2004) found a threshold of about 3.5π in numerical simula-
tions for the twist Φ = LBφ/rB‖. Here L is the length of the flux tube, B‖ the toroidal field
along its axis and Bφ � αB‖r/2 the poloidal field at a radius r from the flux tube centre. In
some cases it may be possible to resolve the number of turns n which a field line makes
about the flux tube centre from stereoscopic reconstruction and thus to determine the twist
from Φ = 2πn. Likewise, the twist is also related to α and L by Φ = αL/2. For the active
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region observed here, table 4.3 gives values of Φ < 0.5 well below the kink instability
threshold.

Another perspective for stereoscopic loop reconstruction is the analysis of loop oscil-
lations from a series of image pairs. The reconstructed loops will allow us to determine the
transverse polarisation of these oscillations (Aschwanden et al. 2002, Wang and Solanki
2004). Since the coronal magnetic field has a complicated geometry without symmetries,
the frequency of these oscillations will significantly depend on this polarisation. Note
that these phenomena are invisible in the magnetic surface data and therefore cannot be
retrieved from field extrapolations, which in addition require a stationary magnetic field.
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5 Stereoscopic reconstruction of polar
plumes

We have reconstructed the 3D geometry of the polar plumes by analysing the simultane-
ously observed EUVI images for two data sets, April 7 and June 1 in 2007. Preliminary
results of the 3D plume coordinates obtained on one of the studied days, April 7, are
shown in Curdt et al. (2008). In this chapter which is mainly based on the paper of
Feng et al. (2009), we describe an improved method of stereoscopic reconstruction in
detail. Furthermore, based on the 3D coordinates, we have calculated the inclination of
plumes to the LOS of the Earth and to their local radial direction for both date sets. We
have compared the 3D orientation of plumes with the local direction of a dipole magnetic
field. The dipole field is the lowest order approximation of the coronal magnetic field
at times of low solar activity when the plume observations were made. Additionally, we
have calculated the footpoint positions of the reconstructed plumes and projected them
onto the EUVI images to investigate their relationship to EUV bright points. For the first
data set, SOHO/SUMER observations were also available. We have used them to deter-
mine physical parameters, including the temperature, density and LOS (Line-Of-Sight)
Doppler shift. By projecting a 3D plume onto the SUMER density map, its density scale
height could be calculated. The temperature corresponding to this scale height and the
temperature derived spectroscopically from SUMER has been compared.

5.1 The data

STEREO was launched somewhat after the solar activity minimum which provides us
with good opportunities to observe polar plumes. We selected two data sets for this study,
one in the south polar cap on 2007-04-07 22:01:17 UTC and the other in the north po-
lar cap on 2007-06-01 00:09:00 UTC. Both were recorded by the two almost identical
SECCHI/EUVI telescopes at λ = 171 Å corresponding to a formation temperature of
roughly 1 MK. The position information of both spacecraft, the exposure time and the
compression mode are given in Table 5.1.

On April 7, the separation of the two spacecraft was 3.6◦. The HEEQ (Heliocentric
Earth EQuatorial coordinate system; Thompson (2006)) latitudes of the two spacecraft
were well below the Sun’s equatorial plane. At that time the solar south pole was tilted
towards the spacecraft which was very appropriate for observing as much as possible of
the southern polar area. In addition, to improve the signal to noise ratio of the EUVI
images, a longer exposure time and a smaller compression were applied. The image pairs
chosen in this work have 20 s exposure time, compared to the normal exposure time of 2
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Figure 5.1: The south polar cap observed on 2007-04-07 22:01:17 UTC at λ = 17.1 nm
by EUVI A (upper) and B (bottom). The corresponding epipolar lines are approximated
by the two long-dashed lines. The dotted lines are the identified plumes (see Section 3 for
details) (Feng et al. 2009).
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5.1 The data

Figure 5.2: The north polar cap observed at 2007-06-01 00:09:00 UTC by EUVI A (up-
per) and B (bottom) (Feng et al. 2009).
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Date April 7, 2007 June 1, 2007
STEREO spacecraft B A B A

Sun-Earth. dist.(d/au) 1.0277777 0.9640101 1.0647322 0.95860281
Sun’s app. rad.(R�/”) 933.69200 995.45200 901.28300 1000.3757
HEEQ longitude(ϕ/◦) -0.918945 2.697643 -3.6847666 6.7788499
HEEQ latitude(θ/◦) -6.404608 -5.999570 -1.4801556 0.2276848
resolution(Δx/(′′/pix)) 1.5900000 1.5877700 1.5900000 1.5877740
Separation (α/◦) 3.62 10.6

Exposure time (T/s) 20 16
Compression mode ICER4 ICER4

Table 5.1: The positions of the two STEREO spacecraft given in HEEQ coordinate system,
exposure time of the observation and compression mode of the recorded data on 2007-04-
07 22:01:17 UTC and on 2007-06-01 00:09:00 UTC.

s. The images were compressed by the format ICER (a wavelet-based image compression
file format) 4 which requires two times the storage of images obtained after applying the
usual ICER 6 compression used ordinarily for EUVI images at 171 Å . In Figure 5.1,
the southern polar cap in both EUVI views is presented with five plume pairs marked by
numbers below them.

In parallel, SUMER which was introduced in § 1.1.1.3 in Chapter 2 performed a raster
scan from 2007-04-07 01:01 UTC to 2007-04-08 12:19 UTC in the southern corona. The
scan direction was from solar west to east. To combine with 3D plume geometry, we
derived the electron density map from the emission line pair Mg ix at 70.6 nm and 75.0
nm, the electron temperature map from line pair Si viii at 144.0 nm and 144.6 nm, and
the LOS Doppler shift map from the O vi at 103.2 nm and 103.8 nm. The details of the
SUMER observations can be found in Curdt et al. (2008).

The second analysed EUVI data set was recorded on June 1, when the separation angle
between the spacecraft was 10.6◦. This increased separation angle reduced the reconstruc-
tion uncertainty considerably. At the same time, this separation angle is still sufficiently
small so that the correspondence between individual plumes in both EUVI images can
still be unambiguously identified. The related spacecraft positions, observation and com-
pression parameters are listed on Table 5.1.

5.2 The reconstruction

To reconstruct the 3D geometry of the plume, the first step is to identify the points along
the plume axis and associate the corresponding plume pair in the two simultaneous EUVI
images. To establish this correlation between the plumes, we extracted from each image
the intensity profiles along corresponding epipolar lines (Inhester 2006a) in both images.
Figure 5.3 gives an example for the April 7 data. The intensity distributions along the
corresponding epipolar lines, which are approximated by the two long-dashed lines in
Figure 5.1, were smoothed by taking the average over three pixels. The plume centers
were selected according to the local intensity maxima and marked by the corresponding
numbers.
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5.2 The reconstruction

Figure 5.3: The intensity distributions smoothed over three pixels along the corresponding
epipolar lines in each EUVI image observed in April. The black and red lines are for
EUVI A and B, respectively. The x coordinate of the solar center in A and B lies at
1020.62 and 1035.52 in units of pixels, respectively. The numbers refer to the plumes in
Figure 5.1 (Feng et al. 2009).

Figure 5.4: A schematic explanation of why a different number of peaks might be visible
from different perspectives. The upper left panel shows the assumed cross section of
two plumes. The lower left panel displays the LOS integrated intensity as seen in the
y-direction, The right panel exhibits the intensity as seen along the x-direction (Feng et al.
2009).
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5 Stereoscopic reconstruction of polar plumes

For plumes 0, 1, 2 and 4 the association is clear. However for plume 3 there is some
uncertainty due to the complicated superposition of probably several plumes along the
line of sight. The intensity distribution around plume 3 in EUVI A is dominated by one
prominent peak (marked as 3a in Figure 5.3) with a smaller peak (3) on the right side,
whereas in EUVI B two distinct peaks (3b and 3) appear. There are four possible ways to
associate the two plume signatures in the two images. Trying all combinations, we judged
their likelihood from the inclination of the resulting 3D plumes. When a point on the 3D
plume leaves from its footpoint on the solar surface, its distance to the solar rotation axis
should increase as well. The second criterion is that the angle between the plume and the
local meridian plane passing through the plume footpoint should be as small as possible
(see Figure 5.7). In this way, we find that the combination of peak 3 in image A and peak
3 in image B gave the most reasonable result. In Figure 5.4, we sketch the situation which
we think yields the different peaks in the two images for plume 3. Here we assumed a
circular shape and a uniform intensity distribution within the cross section of two plumes
of different radii. Figure 5.4 shows the resulting intensity distributions from two different
perspectives.

Finally, the axes of the five plumes were traced by repeating the procedure for each
plume at eight different heights above the solar limb. Since in EUV images plumes are
shaped as nearly straight lines, each plume axis was approximated by a linear function and
plotted as a dotted line in Figure 5.1. The identification of the plumes for the second data
set observed in June 2007 is similar and the results are overplotted on the corresponding
EUVI A and B images shown in Figure 5.2.

From these linear 2D plume positions in both EUVI images, we reconstruct the 3D
plume locations based on epipolar geometry in the frame of the HEEQ coordinate system.
The reconstructed plumes are straight lines in 3D. In order to obtain an error estimate, we
here assume a maximal uncertainty of 3 Mm, corresponding to an positional error in the
images of 4.3′′ in EUVI A and 4.0′′ in EUVI B, in the estimated plume position along
the epipolar line due to the three-pixel smoothing as mentioned before. We shall see in
the next section that this uncertainty is propagated to an analogous uncertainty of the
stereoscopic reconstruction.

5.3 Results

We present the different perspectives of plumes for two data sets derived from stereoscopic
reconstructions in Section 5.3.1, as well as the plume orientation analyses, plume width
calculations and the relationship between plumes and EUV bright points. In section 5.3.2
the results obtained by combining stereoscopic reconstructions and the plume density and
temperature deduced from SUMER observations are shown. The density scale height and
its corresponding temperature are calculated by assuming the plume in our study is in
hydrostatic equilibrium.
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5.3.1 Stereoscopic results

5.3.1.1 Side view and top view

In Figure 5.5, we present a view of the 3D placement and direction of polar plumes from
a perspective that is 90◦ to the left and 20◦ up compared to the view direction of STEREO
A. Of the five reconstructed plumes in April, three are in front of the solar limb as seen
from STEREO A, the other two are behind the limb. For the data set in June, only plume 6
lies in front of solar limbs as seen by both spacecraft. The black solid lines indicate the
reconstruction uncertainties calculated following the methods described in Chapter 2 by
assuming a maximal 3 Mm variation of the plume axis position. The resulting uncertain-
ties are directed mainly half way between the view directions of STEREO A and B, and
are considerable for the data set in April since the spacecraft separation angle was small
at that time. With the increased separation angle in June, the uncertainties are greatly
reduced for the same assumption of 3 Mm uncertainty in 2D.

The polar view of the ten plumes projected onto the solar equatorial plane is shown
in Figure 5.6. Larger symbols indicates the plume positions at greater heights above the
solar surface. All ten plumes oriented close to their local meridian planes and inclined
away from the rotation axis.

5.3.1.2 Plume’s orientation analysis

In Figure 5.7 a sketch of the 3D plume geometry is presented to analyse the plume orien-
tation. The relevant results is shown in Table 5.2. Concerning the latitudes and longitudes
of the plume footpoints, all the plumes are located within a latitude cone of 20◦ around
the pole. For a better estimate of the outflow speeds along the plumes from FUV (Far
Ultraviolet)/ EUV spectral observations by SUMER and UVCS on board SOHO, the an-
gle β between the LOS from the Earth and the plumes’ orientation were calculated. They
range from 65.7◦ to 128.6◦ for plume 3 and 8 being almost perpendicular to the view di-
rection of the Earth. For the angle γ off the meridian plane, we found for all ten plumes
a maximum departure of 14.2◦. This indicates that the magnetic azimuthal component Bϕ
was very small on the polar cap during the time of our observations. The deviation of the
plume projection to the solar radial direction êr is calculated and represented by the angle
ψ. This angle in general becomes larger with increasing distance of the footpoint from
the pole as shown in the upper panel of Figure 5.8. This means that the plumes do not
converge to the solar center, which is consistent with the 2D results (Deforest et al. 1997,
Fisher and Guhathakurta 1995). They found the plumes/rays appear to diverge radially
from a point between the solar center and the respective pole.

In addition, we compared the 3D plume structure which outlines the coronal magnetic
field with the assumption of a dipole with its axis along the solar rotation axis. In this
case the plume’s inclination angle i and the footpoint latitude λ should be related by
tan(i) = 2 tan(λ) (see Page 50 of Fowler (2005) and also §2.2.3 in Chapter 2). From the
related two rows in Table 5.2 we find that this relation is not well satisfied for each plume
and | tan(i)| < 2| tan(λ)| in all cases. Therefore the magnetic field is not well approximated
by this dipole field and is more horizontal, as also shown in the middle panel of Figure 5.8.
In the bottom panel we check how much plumes deviate from the dipole field and how this
deviation changes with the latitude. We find that at lower latitudes, the plumes are more
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5 Stereoscopic reconstruction of polar plumes

Figure 5.5: Side view of the south polar cap on April 7 (upper panel) and the north polar
cap on June 1 (lower panel): a perspective that is 90◦ to the left, and 20◦ up relative to the
view direction of STEREO A. The coordinates x and y range from −0.5 R� to 0.5 R�, z
ranges from −0.87 R� to −1.17 R� for the south polar cap and from 0.87 R� to 1.17 R� for
the north cap. The long curve is a circular segment crossing the pole. The shorter curves
are the solar limbs as seen from the two spacecraft (black from STEREO A and red from
STEREO B. The dotted points are the reconstructed 3D plume axes. The solid lines are
the extrapolations back to r = 1 R�. The uncertainties are indicated by the black solid
lines which are perpendicular to the plume directions in 3D (Feng et al. 2009).
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5.3 Results

Figure 5.6: Top view: projections of the reconstructed 3D plumes onto the solar equatorial
plane in April (left) and June (right) together with the associated uncertainties (black solid
lines). For each plume, the size of the circle is proportional to the distance of the 3D point
to the solar surface. In the left panel, the solar limb as seen from the Earth is indicated by
the curve near the pole which is marked by a star symbol. The view direction from the
Earth indicated by the arrow marked E at the right edge of the figure is also shown. In
the right panel, the solar limb as seen from STEREO A is indicated by a black curve and
seen from STEREO B is indicated in red. The view directions of the two spacecraft and
the Earth are marked on the right side (Feng et al. 2009).

Date April 7 June 1
Plume 0 1 2 3 4 5 6 7 8 9
λ/◦ -84.7 -85.0 -78.0 -85.4 -69.7 74.5 83.2 86.9 84.4 79.6
ϕ/◦ -69.9 -131.3 -171.6 96.9 132.5 -145.6 -60.7 -177.9 111.7 141.3
β/◦ 65.7 106.7 117.4 94.4 128.6 118.8 68.6 103.2 97.6 114.8
γ/◦ 12.2 -8.61 -1.70 8.67 9.85 -2.25 14.2 -4.48 1.10 1.62
ψ/◦ -15.0 -19.9 -21.9 -10.4 -37.0 17.4 13.2 9.35 10.4 19.6

tan(i) -3.73 -2.77 -2.52 -5.45 -1.32 3.19 4.26 6.07 5.43 2.80
2 tan(λ) -21.9 -22.3 -9.40 -24.9 -5.42 7.20 16.7 37.5 20.4 10.9
(i − i′)/◦ 12.4 17.3 15.8 8.10 26.5 -9.49 -9.77 -7.82 -7.59 -14.4

Table 5.2: Footpoint position and inclination of the reconstructed plumes on April 7 and
on June 1. The relevant angle symbols are the same as defined in Figure 5.7. The first two
rows are the footpoint latitudes and longitudes of the plumes. β gives the angle between
a plume orientation and the LOS direction of the Earth. γ measures how much a plume
deviates from the local meridian plane and its sign depends on the sign of êplume

T · êϕ. ψ is
the complementary angle of magnetic inclination i and its sign is the same as the sign of
êplume

T · êθ. All angles are given in units of degrees. The last three rows are the tangent of
magnetic inclination, two times the tangent of the latitude, the difference of the magnetic
inclination i with the dipole magnetic inclination i′ corresponding to arctan(2 tan(λ)).
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5 Stereoscopic reconstruction of polar plumes

Figure 5.7: A schematic illustration of 3D plume geometry in the HEEQ coordinate sys-
tem. The 3D plume is indicated by the thick dashed line started from the solar surface.
The plume footpoint is parameterized with the longitude ϕ and latitude λ (the colatitude
is denoted as θ). We establish the local coordinate framed by êr, êθ and êϕ (for clearness
of this figure êϕ is not shown) which originates from the footpoint. The projection of the
3D plume onto the local meridian plane spanned by êr and êθ makes two angles: ψ is the
angle between the projection and êr, i is the angle between the projection and êθ and is
the so-called magnetic inclination. γ is the angle between the 3D plume and its projection
mentioned above (Feng et al. 2009).
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horizontal than the dipole field. This was already noted by Saito (1965) who used a bar
magnet of finite length to fit the plumes/rays at different distances from the Sun observed
during a solar eclipse. Banaszkiewicz et al. (1998) described a simple analytic model for
the magnetic field at solar activity minimum. A dipole and a quadruple field were added to
construct the coronal magnetic field in the solar minimum. The reconstructed 3D plumes
could be used as a reference in the polar region to test other, more sophisticated magnetic
field models (Neukirch 1995, Ruan et al. 2008).

5.3.1.3 Plume’s width analysis

Besides the orientation, we calculated the width of the isolated and prominent plume 4
from viewpoints of EUVI A and B by fitting the intensity profiles around this plume with
Gaussian distributions. For the plume width w at a given height h we use the definition of
Aschwanden et al. (2008c)

w(h) =

∫ xb2

xb1
[I(h, x) − b(h, x)]dx

max[I(h, x) − b(h, x)]
, (5.1)

where xb1 and xb2 are the x coordinates of the two plume boundary points determined
by the two local minima on either side of the plume (Figure 5.9). Here, b(h, x) is the
linearly varying background intensity between xb1 and xb2. I(h, x) − b(h, x) then denotes
the background subtracted plume intensity distribution as a function of height h. The
intensities associated with this plume along two epipolar lines are shown in Figure 5.9 as
an example. By using the epipolar geometry, we identify the corresponding plume point
in two images and calculate the plume width from EUVI A and EUVI B, respectively.
Subsequently the plume widths along the corresponding epipolar lines are transformed to
the widths perpendicular to the plume direction within the frame of the epipolar geometry.

For this plume, we found from both viewpoints that the width very slightly decreases
by around 10 % in the height range from 20 Mm to 90 Mm in 3D. The mean width and
standard deviation from EUVI B is 14.0 ± 0.86 Mm, while from A it is 12.7 ± 1.22 Mm.
The two widths differ by less than 1.5σ so that this measurement is consistent with a
circular plume cross section. However, given the small separation angle, a more curtain-
like structure cannot be ruled out either. More isolated and prominent plumes need to be
analysed at large separation angles to come to a conclusion regarding the cross section
of the plumes. It should be mentioned here that we have only considered the circular
or simple noncircular cross sections for plumes and we have not taken into account the
substructure that is known to exist within plumes (e.g., DeForest 2007, Deforest et al.
1997). Unresolved morphology can mimic a surprising range of other effects including
modifying the inferred density (both from photometric density estimates and from line-
ratio estimates, in different ways for the two techniques) and the observed scale height.

5.3.1.4 Plume and EUV bright points

To investigate the relationship between plumes and EUV bright points, we projected the
reconstructed 3D plumes onto two EUVI images. For the data in April, given the small
separation angle, only the projection onto EUVI A is plotted in Figure 5.10. Only plume
1 is associated with a bright point. Plumes 0 and 3 were rooted in the brighter part of the
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5 Stereoscopic reconstruction of polar plumes

Figure 5.8: Upper: the absolute value of ψ as a function of the absolute value of λ. The
plus signs are for the data in April and star signs for the data in June. Middle: the plot
of tan(i) versus 2 tan(λ). The solid line corresponds to tan(i) = 2 tan(λ). Bottom: The
difference of the magnetic inclination i from the dipole field inclination i′ as a function of
the absolute latitude (Feng et al. 2009).
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5.3 Results

Figure 5.9: The intensity profile around plume 4 along two epipolar lines in EUVI B. On
each line the two plus signs indicated the plume boundary and the connected straight line
shows the plume background. Within the range between the two boundary points, the
intensity is fit by the Gaussian distribution (Feng et al. 2009).

Figure 5.10: Projection of the 3D plumes onto the image of EUVI A observed on April 7
(Feng et al. 2009).

91



5 Stereoscopic reconstruction of polar plumes

Figure 5.11: Projections of the 3D plumes on EUVI A and B recorded on June 1 (Feng
et al. 2009).

coronal hole, but not on a bright point. Considering the evolution of polar plumes (Wang
1998, Raouafi et al. 2008), plumes 0 and 3 were observed perhaps in the decaying phase
in which the bright points have already disappeared but the two plumes were still visible.
For the big bright point close to the limb between plumes 3 and 4, we tried to find a plume
pair but none of the possible peaks in the two plume intensity profiles (e.g., Figure 5.3)
produced a reasonable result with a footpoint close to this bright point and an orientation
roughly along the diverging direction of the magnetic field around the pole.

For the data in June, Figures 5.5 and 5.6 reveal that of the five reconstructed plumes
only plume 6 lies in front of the solar limbs as seen by STEREO A and B, the footpoints
of the other four are hidden by the limb. By projecting the reconstructed plumes onto
two simultaneous EUVI images (see Figure 5.11) and taking into account Figures 5.5
and 5.6, the spatial relationship between plumes and bright points can be inferred. The
plume in front of both limbs, that is, plume 6 could be associated with a very faint bright
point. Plume 7 presents a nice example of the importance of having 3D information when

92



5.3 Results

associating plumes with bright points. If we consider only EUVI B, then plume 7 seems
to be related to a bright point right in front of the limb. However, when we check both
Figures 5.5 and 5.6 we find this plume is rooted just behind the limbs seen by EUVI A
and B. Therefore, the association to the bright point near the limb is probably spurious.
For plumes 8 and 9, it is difficult to reach a firm conclusion. We see two bright points
in both images close to the plume roots. The association is possible if the bright point
relevant to plume 8 is big enough and the height of the bright point relevant to plume 9 is
large enough that it could be seen from EUVI A and B, even though it is behind the limb.

5.3.2 Results combining stereoscopy and SUMER observations

For the data set in April, SUMER observations are available. To obtain the electron
density and electron temperature along a plume, we assume that the geometry of a plume
does not change during its evolution, and then project it onto the density and temperature
maps deduced from the line ratio of the Mg ix line pair and the Si viii line pair, respectively
(Wilhelm 2006, Wilhelm et al. 2009). Consistent with the previous results, the plumes
are denser and cooler than the interplume regions. The Doppler shift measurements, we
deduced from the O vi lines based on the method outlined in Wilhelm et al. (1998).

SUMER scanned the relevant region from April 7 01:01 UTC to April 8 12:19 UTC
continuously moving from west to east. To compare these data with the EUVI observa-
tions of a 3D plume, we need to first rotate the Sun from the EUVI observations to the
time at which SUMER scanned it. An example is shown in the density map in the up-
per panel of Figure 5.12. The inclined lines are the projected positions of three plumes.
The vertical line corresponds to the position of the SUMER slit at April 8 01:00 UTC.
Consider plume 1, the plotted location was obtained by first rotating the Sun to this time
and then projecting plume 1 onto the density map. From Figure 5.12 we can see that the
projected plume 1 and the corresponding slit position are consistent.

The time at which the SUMER slit passes through the centers of the three plumes 0, 1
and 2 are April 8 02:00 UTC, April 8 01:00 UTC and April 7 22:00 UTC, is less than four
hours after the EUVI observations. Due to the inclination of these three plumes, they are
scanned by SUMER for about 2.5, 2 and 1 hours, respectively. We have checked the EUVI
images at April 8 02:00 UTC, April 8 01:00 UTC and found that plume 0 and 1 were still
present though the plumes appeared more diffuse at 02:00 UTC. For plume 3, we could
not make a comparison because the time difference between the EUVI observation and
the corresponding time at which it was scanned by SUMER is too large. Plume 4 in the
EUVI observation lies outside the field of view of the SUMER scan. In Figure 5.12, the
plus signs are the projections of the 3D plumes reconstructed from two EUVI images, the
solid lines are their extrapolations outwards. We somewhat arbitrarily choose the upper
end of height profile where the temperature by SUMER does not dramatically deviate
from 0.9 MK. It makes the plumes more or less isothermal, which is an assumption for
the later calculations. Furthermore, above ≈ 120 Mm the temperature plot is too noisy for
a quantitative analysis. For the density, ≈ 150 Mm to 170 Mm might be an approximate
limit.

We projected a 3D plume onto LOS Doppler shift map as well to get a more precise
outflow velocity along the plume by dividing the SUMER velocity with the cosine of the
plume inclination angle to the LOS. However, we did not find any significant Doppler shift
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Figure 5.12: Projections of the 3D plumes 0, 1 and 2 onto the SUMER electron density
(upper) and temperature (lower) map with the marked plume numbers. The vertical solid
line in the density map corresponds to the position of SUMER slit at April 8 01:00 UTC.
The plus signs are the projections of the 3D plumes reconstructed from two EUVI images
recorded on April 7 and solid lines are the extrapolations downwards to the point where
the standard deviation of the temperature along the plume is around 0.1 MK (Feng et al.
2009).

from SUMER observations, the maximum of the Doppler velocities is around 3 km/s. If
we take this number as a reference to estimate the outflow velocities along the plumes
0, 1 and 2, we found that they are quite small with a maximum of 10 km/s which is too
low to make plumes be a dominant contributor to the fast solar wind. This speed is much
smaller than the sound speed cs ≈ 140 km s−1 for a temperature of ≈ 0.9 MK.

Similar to Gabriel et al. (2003), we have made an estimate of the plume contribution to
the fast solar wind. The proton flux density for the high-latitude fast solar wind observed
during the solar minimum from Ulysses at rE = 1AU is 2.05 ×108 cm−2 s−1 (McComas
et al. 2000). We take the cross sectional area of the coronal hole from Munro and Jackson
(1977) that matches the observed values extremely well,

A(r) = A0(
r
r0

)2 f (r), (5.2)

where the subscript 0 refers to quantities evaluated near the solar surface and f (r) is
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Figure 5.13: Logarithmic electron density along the plumes 0, 1, 2 from SUMER ob-
servation as a function of height above the solar surface as deduced from stereoscopic
reconstructions (Solid lines). The dashed lines are fits based on hydrostatic equilibrium
described by Equation 5.7. In the upper right of each figure we mark the numerical values
for λ (density scale height), Tλ (temperature corresponding to scale height), Ts (electron
temperature from SUMER) and its standard deviation σT s (Feng et al. 2009).

95



5 Stereoscopic reconstruction of polar plumes

the area expansion factor which reaches an almost constant value of 7.26 beyond 3 R�.
Therefore, the mean proton flux density mapped to the solar surface in the coronal hole
is:

2.05 × 108 × A(rE)
A0

= 2.05 × 108 × (
rE

r0
)2 × 7.26 cm−2 s−1 ≈ 6.88 × 1013 cm−2 s−1. (5.3)

On the other hand, the electron flux density contributed by plumes are estimated by taking
the maximal density in Figure 13 and maximal velocity of 10 km s−1, that is, 107.8 cm−3 ×
106 cm s−1 ≈ 6.31 × 1013 cm−2 s−1. Comparing the mean flux density and the flux density
from plumes, we find that the former is a little bit higher than the latter, and taking into
account the filling factor of plumes in coronal holes of 10 % (Ahmad and Withbroe 1977),
it is unlikely that the plumes investigated in this work are a dominant contributor to the
fast solar wind.

We assume that the plume plasma is in hydrostatic balance considering their long
lifetime of one or more days and the absence of any measurable flow. However, if the
plasma ions are heated by, e.g., ion cyclotron waves a thermodynamic equilibrium does
not necessarily exist since the plasma is mainly cooled by a divergent electron heat flux
and by inelastic electron collisions with the ions (Tu and Marsch 1997). Following their
two-fluid approach, the sum p = pi + pe of ion and electron pressure has to obey

d
dr

(pi + pe)(r) = −ming�
R2
�

r2
(5.4)

Quasineutrality in this balance is insured by an ambipolar electric field which cancels
when the momentum equations for ions and electrons are added. Here, mi is the mean ion
mass, n the plasma density and g� the gravity acceleration at the solar surface. For the
total pressure we have

p = pi + pe = nkB(Ti + Te) = 2nkBTλ (5.5)

Insertion and integration yields, changing the variable r to h = r − R�

p = p0 exp

(
−mig�

kB

∫ h

0

R2
�

Tλ(R� + h′)2
dh′
)

(5.6)

For the small height range of our observations, we can neglect a possible height variation
of Tλ inside the plumes. Then

n � n0 exp

(
−mig�

kBTλ

h
(1 + h/R�)

)
= n0 exp

(
− h
λn(Tλ) (1 + h/R�)

)
(5.7)

where the scale height λn(Tλ) depends on Tλ = (Ti + Te)/2 and n0 is the density at h = 0
taken to be the base of the corona. For typical coronal mean mass mi we have λn(Tλ) �
47 Mm (Tλ/MK) (Aschwanden 2005b).

Since we know the density along the plumes from SUMER observations and we know
the 3D height from the stereoscopic reconstructions, we can fit these two variables, ne and
h to derive Tλ and n0 in Equation 5.7. In Figure 5.13, we present the results of fits based
on Equation 5.7 to the density stratification of plumes 0, 1, 2. The calculated density scale
height is given along with the corresponding temperature Tλ and the electron temperature
deduced from SUMER Ts in Figure 5.13. We have invariably Tλ > Ts. The fits describe
the data reasonably well suggesting that they are consistent with hydrostatic equilibrium.
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5.4 Discussion and outlook

We have reconstructed the three dimensional geometry of ten polar plumes using simulta-
neous observations by the two STEREO spacecraft. For two different days, the locations
of the footpoints of ten plumes and their inclinations were determined. Even though the
statistical basis is small, we find that the plumes we could detect from the EUV images are
homogeneously distributed over the polar cap. For both cases, the deviation of the plumes
to the local meridian plane is rather small with an average of 6.47◦. The deviation of the
plume projection onto the local meridian plane from the local radial direction becomes
larger in general with increasing distance of the plume from solar poles. For these two
data sets, a simple dipole model with its axis along the solar rotation axis for the global
magnetic field does, however, not provide a good description of the obtained inclinations.
The magnetic field in these two coronal holes were more horizontal than this dipole field
by 12.9◦ on average. The lower the latitude is, the larger is the deviation from the dipole
field.

Moreover, we find that EUV plumes and EUV surface bright points are not always re-
lated, which is consistent with the observations of Wang (1998) and Raouafi et al. (2008).
Of the three plumes in front of the solar limb on April 7, only one was definitely as-
sociated with a bright point. For the other two we did not find a related bright point.
Conversely, we saw a bright point in the images to which no plume pair could be assigned
to in the two EUVI images. A possible explanation could be that the lifetime of a bright
point is shorter than the formation and decay time of a plume. Wang (1998) assumes a
bright-point lifetime of around 12 hours, while for plumes he assumes lifetimes around
one day. From the case study of June, we find that care is required when paring plumes
with bright points. Spatial coincidence in a single image could easily be misleading.

For the data set in April, based on the results of 3D reconstruction and electron tem-
perature, electron density and Doppler shift derived from the SUMER observations, we
calculated the density scale height by assuming that a plume is in hydrostatic equilibrium.
Using the reconstructed 3D direction of the plumes in space we could set an upper limit
of 10 km s−1 for the outflow speed along the plumes. The absence of a significant flow in
plumes at heights less than 1.2 R� is in agreement with the conclusions of Wilhelm et al.
(2000) and Raouafi et al. (2007). The temperatures derived from the density scale height
were all in excess of 106 K, while SUMER derived electron temperatures were well be-
low 106 K from line ratios of Mg ix. The ratio of the temperature obtained from the scale
height, Tλ, to the electron temperature from SUMER, Ts, is Tλ/Ts ≈ 1.6 − 1.8. Recently,
Del Zanna et al. (2008) found that the coronal electron temperatures derived from the
Mg ix line ratio may have been significantly underestimated. A coronal hole inter-plume
temperature of 0.85 MK is now revised to 1.16 MK. This conclusion would reduce the
discrepancy between the temperatures derived from the two techniques in our work, but
would not eliminate it entirely. Even with this correction, Tλ/Ts ≈ 1.32 to 1.46 remains.
A possible explanation for this discrepancy could be a deviation of electron and ion tem-
peratures. The scale height provides the average of the electron and the ion temperature
while line-ratios depend on the electron temperature as shown in Chapter 2. The corrected
ratio of Tλ to Ts corresponds to a ratio of the ion temperature to the electron temperature
of from 1.64 to 1.92, which is qualitatively consistent with the result of Wilhelm (2006)
derived from a different method. The effective ion temperatures he deduced from the line
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5 Stereoscopic reconstruction of polar plumes

widths are higher than the electron temperatures as well.
By comparing the stereoscopic reconstruction of polar plumes with other data, further

fundamental questions related to plumes can be answered. One such application is the
projection of the plume footpoints onto photospheric and chromospheric magnetograms.
By analysing the magnetic polarities around the footpoint, we can test whether the plume
is rooted in a unipolar magnetic field surrounded by several magnetic elements of the same
polarity as suggested by Newkirk and Harvey (1968), or in a configuration as described
by Wang (1998). According to the latter paper, a plume is formed by the reconnection of
a unipolar magnetic flux with an emergent bipolar flux.
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6 Conclusion and outlook

In this thesis we have reconstructed the 3D geometry of coronal loops in active regions
and polar plumes in coronal holes by analysing image pairs taken by the EUVI/SECCHI
instrument on board the twin STEREO spacecraft. Based on the studies of this thesis, the
questions listed in the Summary could be answered to some extent. On the other hand,
a number of further considerations has been raised which are summarized as an outlook
after the conclusion.

Chapter 4 has presented how to reconstruct the 3D geometry of coronal loops and to
obtain at the same time the best fit magnetic field lines selected from linear force-free
field models with different force-free parameters. We find that the reconstructed 3D loops
are neither circular, nor symmetric and even not confined in one plane. The calculated
3D loop lengths and loop heights are helpful to test loop scaling laws, calculate the true
density scale heights, etc. Different force-free parameters are associated with different
loop pairs. This means that the linear force-free models are sufficient to identify the loop
correspondences from the image pairs, but do not yield a consistent magnetic field model
for active regions. To better describe the magnetic properties, more sophisticated models,
such as nonlinear force-free field models are required.

In Chapter 5, the 3D orientation and position of the polar plumes have been recon-
structed. The deviation of the reconstructed plumes from the local meridian planes is
quite small. Since plumes outlines the magnetic fields in the coronal holes, this small
deviation means that the azimuthal magnetic field component Bϕ is much less than the
meridional components Br and Bθ. We have found that the 3D plumes are inclined more
horizontally than a dipole field having its axis along the solar rotation axis. The de-
rived 3D orientation can be used as well to test other more complex global magnetic field
models (Neukirch 1995). It is shown that the plumes and the EUV bright points are not
one-to-one related. One of the explanations could be that comparing to the formation and
decay time of plumes, the bright points have shorter lifetime (Wang 1998).

From SUMER observations, the temperature and density maps scanned around the po-
lar cap are obtained. Together with the calculated 3D plume coordinates, the temperature
and density distributions as a function of 3D height are derived. The density stratification
agrees with the hydrostatic equilibrium reasonably well. We find that the temperature
corresponding to the density scale height is invariably larger, around 1.6-1.8 times, than
the temperature deduced from SUMER. A possible explanation could be a deviation of
the electron and ion temperatures. The scale height depends on the average of the elec-
tron and ion temperatures, whereas the line-ratio techniques for SUMER measures the
electron temperature. Generally the ion temperature is somewhat higher than the electron
temperature. Finally, the outflow speeds corrected by the angle between LOS and the
plume orientation give a maxima value of 10 km s−1. This is too small to make plumes a
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6 Conclusion and outlook

major contributor to the fast solar wind.
The 3D geometry of coronal loops and polar plumes is only the first step. Further

investigations taking advantage of the 3D information are required for a deeper under-
standing of coronal loops and polar plumes. The outlook of this thesis is summarized
below.

• By comparing the loop emissions synthesized from simulations with the observed
emissions, we can obtain the information of how a loop is heated. A correct emis-
sion synthesis requires us to take into account the angle between the line-of-sight
and the local tangent direction along the 3D loop.

• From two different viewpoints, two loop widths and then the shape of the loop
cross section can be determined. Subsequently we can check how the cross section
of loops varies with height in 3D. Is it consistent with the constant cross section
from one-view results? If it is true, how do we explain the expanding flux tube
from photosphere to corona?

• From the study of TRACE observations (Wang et al. 2008), it is shown that the 3D
loop geometry helps to resolve different kink modes of transverse loop oscillations,
whether horizontal or vertical. However, all the previous studies made the assump-
tion that loops were confined in a plane. A complete image of how loops oscillate
in 3D is required to more precisely determine some poorly known parameters, such
as the mean magnetic field strength of coronal loops.

• It is also interesting to investigate quantitatively how loops change their configu-
ration before and after eruptive events, for example, a flare. By checking the side
view of reconstructed 3D loops we can tell whether they are more sheared or twisted
before the occurrence of a flare. On the other hand, nonlinear force-free magnetic
field extrapolations at the same time are also helpful to calculate the related free
energies which are expected to become regularly available after the launch of the
SDO mission.

• Considering the 3D orientation and location of polar plumes, the extrapolated foot-
points on the solar surface need to be combined with the photospheric or chro-
mospheric magnetograms to find out the magnetic properties at plume footpoints,
whether unipolar or bipolar.
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A Differential geometric ridge
definition

Consider a local smooth surface generated by the local 2D Taylor expansion of the inten-
sity I at one cell center i

I(x) � Ĩ(x) = I(i) + gT (x − i) +
1
2

(x − i)T H (x − i) (A.1)

where the elements g and H are (
gx

gy

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∂∂x∂
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎠ I(x), (A.2)

(
Hxx Hxy

Hyx Hyy

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂2

∂x2
∂2

∂x∂y
∂2

∂x∂y
∂2

∂y2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ I(x), (A.3)

we find that the diagonalization of H gives us the principal directions of the local surface
and the ratio of the two principle curvatures as shown below.

From differential geometry it is known, that the vicinity of any point on a regular sur-
face can be described by two tangent vectors - principal directions and two corresponding
real numbers - principal curvatures (see Figure A.1). The principal directions and cur-
vatures of the surface in general can be calculated from the Dupin indicatrix (Mei and
Huang 2004) which is either one or a pair of conics in the tangent plane at one point I(i)
and for elliptical points the radius of the indicatrix in any direction is equal to the square
root of the radius of curvature in that direction. The equation of the Dupin indicatrix is
written as

Lx2 + 2Mxy + Ny2 = ±1 (A.4)

where for the surface in the form of r = (x, y, I(x, y)),

L =

∂2I
∂x2√

1 +
(
∂I
∂x

)2
+
(
∂I
∂y

)2
M =

∂2I
∂x∂y√

1 +
(
∂I
∂x

)2
+
(
∂I
∂y

)2
N =

∂2I
∂y2√

1 +
(
∂I
∂x

)2
+
(
∂I
∂y

)2 (A.5)

101



A Differential geometric ridge definition

Figure A.1: A schematic drawing of a local surface with its tangent plane,
normal vector and two planes of principal curvatures. The two principal di-
rections align with the intersections of the two planes of principal curva-
tures with the tangent plane indicated by the blue lines on the tangent plane
(http://commons.wikimedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg).

The principal directions of the Dupin indicatrix which is also the principal directions
of the local surface at I(i) are calculated by diagonalizing the matrix(

L M
M N

)
(A.6)

the corresponding eigenvalues and eigenvectors are the principal curvatures and direc-
tions, respectively. From Equations A.3 and A.5 it can be easily shown that matrix
H has the same eigenvectors and the difference in eigenvalues is only the coefficient(
1 +
(
∂I
∂x

)2
+
(
∂I
∂y

)2)−1/2

.

If we assume the eigenvalues of H are h⊥ and h‖, the corresponding eigenvectors are
u⊥ and u‖, respectively, we have

UTHU = diag(h⊥, h‖), (A.7)

in which U = (u⊥,u‖). Ordering h⊥ and h‖ so that h⊥ ≤ h‖, in the case that i is located
exactly on a ridge, then u⊥ is the principal direction across and u‖ is the direction along
the ridge, h⊥ and h‖ are the associated second derivatives of the image intensity in the
respective directions. A positive ridge is identified according to Lindeberg (1998) in the
following:

uT
⊥∇I = uT

⊥g = 0 a vanishing gradient across the ridge (A.8)

(uT
⊥∇)2I = h⊥ < 0 a negative second-order derivative across the ridge (A.9)

|(uT
⊥∇)2I| > |((uT

‖ ∇)2I| a 2nd order derivative magnitude across the
or |h⊥| > |h‖| ridge larger than along

(A.10)

102



B Derivation of Gaussian summation
kernels

If we apply the first and second-order derivatives on Equation B.1

Ī(x) =
∑

j

wd(x − j)I(j), (B.1)

we obtain (
gx

gy

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∂∂x∂
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎠ Ī(x) = −
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j
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2
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= −
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2
d2

(x − j)wd(x − j)I(j) (B.2)

and (
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4
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4
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=
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j

[
4
d4

(x − j)(x − j)T − 2
d2

I2] wd(x − j)I(j) (B.3)

Here and below summation over j always means over the limited support j ∈ [−m,m] ×
[−m,m].

The above first and second-order derivatives are derived in the continuous case. To
obtain the correct response on a discrete grid, we must modify the coefficients. We denote
the various moments of a 1D Gaussian summed over the pixel grid by

sn =

m∑
j=−m

j2ne
−
⎛⎜⎜⎜⎜⎝ j
d

⎞⎟⎟⎟⎟⎠2 →
{ √

πd n = 0
1
2

√
πd3 n = 1

for large d � m→ ∞ (B.4)

We redefine g as in Equation B.2 but with a general coefficient c1

g(x) = −c1

∑
j

(x − j)wd(x − j)I(j). (B.5)
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B Derivation of Gaussian summation kernels

c1 is determined so that we obtain unity at x = 0 for a linear I(j) = jx or jy. Hence,(
1
0

)
= c1

∑
j

(
j2
x

jy jx

)
wd(j) (B.6)

which yields

c1 =
1

c0s0s1
=

s0

s1
→ 2

d2
for large d � m→ ∞. (B.7)

For H we have with general coefficients c2 and c3 from Equation B.3

H =
∑

j

[c2(x − j)(x − j)T − c3I2] wd(x − j)I(j) (B.8)

The coefficients are determined by H at x = 0

H(0) =
∑

j

[c2(−j)(−j)T − c3I2] wd(−j)I(j)

=
∑

j

(
c2 j2x − c3 c2 jx jy

c2 jx jy c2 j2y − c3

)
c0 e

−
(
x
d

)2
e
−
( y
d

)2
I(j) (B.9)

when I(j) = const, we have H(0) = 0 which yields c2s1s0 − c3s2
0 = 0. If I(j) = jx jy, we

come to

H(0) =

(
0 1
1 0

)
(B.10)

from which we obtain c2c0s2
1 = 1. Therefore,

c2 =
s2

0

s2
1

−→ 4
d4

for large d � m→ ∞

c3 =
s0

s1
→ 2

d2
for large d � m→ ∞ (B.11)

In the limit of large m, all coefficients have the values of the continuous differentiations.
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C Projections of the 3D magnetic field
lines onto EUV images

To project the 3D field lines onto two TRACE images we define three different coordi-
nate systems. For a detailed introduction to the coordinate systems for solar images see
Thompson (2006).

Heliographic coordinate system (HGC) The heliographic coordinate system is coro-
tating with the solar surface. It is independent of the positions of the spacecraft. A po-
sition on the solar surface is generally specified by heliographic longitude and latitude
coordinates (L, B) (in units of degrees). The position of the observer is usually localized
in this coordinate system which can be found in the FITS header OBS _B0, 0BS _L0. The
z axis of this HGC system is along the solar rotation axis, the x and y axes are in the heli-
ographic equator plane towards 0◦ and 90◦ Carrington longitude, respectively. Numerical
coordinate values are conveniently given in units of solar radius.

Heliocentric coordinate system (HCC) The coordinates of TRACE and EIT obser-
vation are heliocentric coordinate systems which are related to the spacecraft positions.
This coordinate system has its origin in the solar center. The z axis points to the observer,
the x axis is along the cross product of the z axes of the heliographic and heliocentric
coordinate systems, and the y axis is the cross product of the z axis and x axis to make
the system right handed. As mentioned earlier TRACE images are aligned with EIT data
which have been mapped to the earth view, the position of viewpoint in the heliographic
coordinate system then is given by the EART H_B0 and EART H_L0 in the FITS header
of EIT data.

For an observing point (L, B) in the heliographic system, we can calculate the unit
vectors along three axes of the corresponding heliocentric coordinate system. They are
stored in the three columns of matrix A.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ − sin L − cos L sin B cos L cos B

cos L − sin L sin B sin L cos B
0 cos B sin B

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Given a vector rHGC represented by the three HGC coordinates, the projection along three
unit vectors of HCC gives the coordinates of rHGC in the heliocentric coordinate system
rHCC. Therefore, the transformation from rHGC to rHCC can be expressed as

rHCC = AT rHGC. (C.1)

Conversely,
rHGC = ArHCC. (C.2)
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C Projections of the 3D magnetic field lines onto EUV images

With these two expressions we can transform between the heliocentric coordinate systems
for two TRACE (EIT earth) viewpoints.

Magnetic field extrapolation coordinate system (MEC) The Seehafer method of
linear force-free field extrapolation is computed in a rectangular box with the bottom in
the range of [0 : Lx, 0 : Ly] covering the area chosen in the MDI magnetogram. To project
the 3D magnetic field lines onto two TRACE images we should convert the coordinates
in the MEC system to the coordinates in the two HCC systems of TRACE observations.
The idea is that we first transform the MEC system to the HGC system and then to the
two TRACE HCC systems respectively according to Equation C.1.

For convenience of transformation, we shift the origin of MEC coordinate system to
the center of the selected region (1

2 Lx, 1
2 Ly) on the solar surface. Then the z axis points

outwards from the coordinate origin along the connection line of the solar center and the
shifted origin, the x and y axes lie in the plane vertical to the z axis. This MEC system is
easily transformed to the HCC system by shifting the origin from the solar surface to the
solar center and rescaling to the units of solar radius, as the numerical coordinate values
in this extrapolation coordinate system are given in units of MDI pixels.

To transform the coordinates in the HCC system to the HGC system we should know
the coordinate values (L, B) of the shifted MEC origin in the heliographic coordinate
system. To find it we calculate its heliocentric coordinate values in units of arc seconds
first from the pixel system by

x = CDELT1(i −CRPIX1) (C.3)

y = CDELT2( j −CRPIX2) (C.4)

z =
√

R2� − x2 − y2 (C.5)

Here (i, j) are the coordinates of the origin in the pixel system, (x, y, z) are the coordinates
in the heliocentric coordinate system. CDELT1, CDELT2, CRPIX1 and CRPIX2 are
spatial resolutions in units of arcsec and the position of Sun center in the pixel system and
can be found in the FITS header of MDI data. We rescale (x, y, z) values in units of arc
seconds to the values in units of solar radius. Now the coordinate values of the origin can
be transformed to the heliographic coordinates according to Equation C.1 to obtain the
(L, B) coordinates of the origin.

With the calculated (L, B), now the coordinates of the 3D field lines in the HCC system
can be converted to the coordinates in HGC system. The whole process from the MEC
system to the HGC system is shown in Equation C.6.

rHGC = AMEC

⎛⎜⎜⎜⎜⎝rMEC − ( 1
2 Lx,

1
2 Ly, 0)T

R�(pixel)
+ (0, 0, 1)T

⎞⎟⎟⎟⎟⎠ (C.6)

where AMEC is the coordinate transform matrix calculated from (L, B) of the origin of the
MEC system. Then the coordinates in the TRACE HCC system are obtained by applying
Equation C.1

rHCC = AT
TRACErHGC = AT

TRACEAMEC

⎛⎜⎜⎜⎜⎝rMEC − ( 1
2 Lx,

1
2 Ly, 0)T

R�(pixel)
+ (0, 0, 1)T

⎞⎟⎟⎟⎟⎠ . (C.7)

Here ATRACE is the coordinate transform matrix from (L, B) of the TRACE spacecraft
position. For the projections onto TRACE images, only x and y values of rHCC are needed.
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