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Summary

Magnetic activity in stars with outer convection zones, such as the Sun, results from the
interaction of turbulent convection, large-scale flows, and magnetic fields. In this disser-
tation, I consider problems concerning the generation, storage, emergence, and surface
transport of solar and stellar magnetic flux.

• Surface flux transport simulations have been carried out to investigate the effects
of differential rotation and meridional flow on the lifetimes of bipolar magnetic re-
gions on dwarf and subgiant stars, in order to study the structure and evolution of
starspots. It is found that the lifetime does not change considerably with emergence
latitude, rotational shear, and meridional flow, but depends strongly on the tilt an-
gles of the emerging bipolar magnetic regions, i.e., on the angle between the line
connecting the two regions of opposite polarity and the local latitudinal circle. A
sustained emergence of bipolar magnetic regions at mid-latitudes can lead to the
formation of long-lived polar spots on stars.

• Magnetic flux storage at the bottom of the solar convection zone has been studied
by analytical calculations and numerical simulations of toroidal magnetic flux tubes
under the influence of perpendicular flows. I have considered the problem whether
flux tubes can be stored for times of the order of years under the effects of perpen-
dicular and longitudinal flows in the convective overshoot region. First, relations
between the flow velocity and the resulting displacement and deformation of a flux
tube have been obtained as a function of flow and tube parameters. Second, the
dependence of the nonlinear Parker instability and the friction-induced instability
on the perturbation amplitude have been investigated by numerical simulations. A
comparison of the simulations with the analytical results indicates that a flux tube
with a radius of 1000 km and field strength 7 · 104 G can be stored in the bottom of
the convection zone for times on the order of a few years, if the convective velocities
are of the order of 10 m s−1.

• A coupled model of magnetic flux generation and transport in cool stars has been
developed in order to test solar and stellar dynamo models by comparison with
observations, and to gain a better understanding of the relationships between the
physical processes involved. The model consists of three components: 1) field gen-
eration by hydromagnetic dynamo action at the bottom of the convection zone, 2)
instability and emergence of magnetic flux tubes from the dynamo layer, 3) surface
transport of the emerged flux under the influence of differential rotation, meridional
flow, and turbulent diffusion. The combined model has been applied first to the
Sun, using the large-scale flow pattern in the solar interior and at the surface. It is
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Summary

found that the dynamo waves at the bottom of the convection zone and the surface
emergence pattern match, because the deflection of rising flux tubes is small in a
relatively slow rotator such as the Sun. This result supports an implicit assumption
that is often made when interpreting solar dynamo models, namely that the surface
activity pattern reflects the deep-seated dynamo wave pattern.

• The combined model has been applied to stars of solar structure which rotate 3 and
13 times faster than the Sun. For such rapidly rotating stars, it is found that the
difference between the magnetic field patterns in the deep convection zone and on
the surface can become quite significant. This stresses the importance of consider-
ing emergence and surface transport processes jointly with stellar dynamo models.
It turns out that, for rapidly rotating stars, a cyclic dynamo at the bottom of the
convection zone may lead to a non-cyclic surface activity. This is caused by a
combination of strong overlapping between consecutive cycles, large tilt angles of
emerging flux tubes, and surface flux transport. The combined model developed
here can be easily extended to study magnetic activity in stars in a wide range of
rotation, mass, and evolutionary state.
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1 Introduction

All observed activity phenomena of the Sun and other cool stars1 are related to the pres-
ence of magnetic fields, which affect plasmas in various environments, from the deep
interiors out to upper atmospheres of stars. With the exception of very low-mass stars,
which are fully convective, cool stars have a radiative core, where energy is transported
by radiation, and an outer envelope where energy transport by convection dominates.
In the outer envelope, the interaction of convection, rotation, and meridional circulation
leads to the generation and transport of magnetic fields. The large scale magnetic fields
are generated inside within the convection zone, and they become buoyant and emerge
in the photosphere, the visible “surface” of the star. The emerging flux is transported by
surface flows.

In the following, I will give a short summary of observations and the present un-
derstanding of the physical processes related to the generation and transport of stellar
magnetic flux, starting from the photosphere down to the bottom of the convection zone.

1.1 Observational results

The Sun. The observed surface magnetic field of the Sun exhibits a considerable
spatio-temporal organisation on large scales (see Fig. 1.1). Magnetic fields emerge at a
latitude range of about 40◦ to the north and south of the equator, in the form of bipolar
magnetic regions (hereafter BMRs), two neighbouring regions with opposite magnetic
polarity. They consist of relatively dark and concentrated sunspots and pores (smaller
sunspots without a penumbral structure), and smaller scale magnetic elements. BMRs
have a predominantly vertical magnetic field in the photosphere. and their number and
area vary with a period of about 11 years (the solar activity cycle). For a BMR, the two
neighbouring regions of opposite polarity are called as the preceding (p-, leading in the
sense of solar rotation), and the follower (f-, trailing in the sense of solar rotation) polarity
regions. The amount of magnetic flux in BMRs ranges between 1020-1022 Mx. The “quiet
Sun” outside BMRs has weaker magnetic fields, in a much more intermittent form with
mixed polarities, possibly generated by local dynamo action of surface magnetoconvec-
tion (Vögler and Schüssler 2007). Sunspots are the most coherent magnetic structures in
BMRs. In the first stages of the emergence of a large BMR, pores (small dark features
without a surrounding penumbra) appear. As a bipolar magnetic structure develops on a
larger scale, pores coalesce to form sunspots. The formation of a sunspot occurs rather

1By the term ’cool stars’ I refer to those with effective temperatures less than about 7000 K, namely
between spectral types F to M, which have outer convection zones.
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1 Introduction

Figure 1.1: An observed magnetogram of the Sun, during the activity maximum, in 2002.
Black and white colors represent the two polarities of magnetic field.

quickly, between a few hours and a few days. In the course of the emergence, the two op-
posite polarities of the BMR separate from each other within a range of angular distance
of roughly 3◦ to 10◦, depending on the magnetic flux content. The east-west sequence of
the polarities is fixed at one hemisphere during one cycle. This is referred to as Hale’s
polarity rule, in which the polarity order of the f and the p regions in one hemisphere
reverses every 8-9 years. This is a few years shorther than the activity cycle of about 11
years, thus the consecutive activity cycles overlap with each other for a few years. A few
years before an activity cycle ends at low latitides, the next cycle starts at mid-latitudes.
The opposite polarities of BMRs are almost east-west oriented, and the order of the polar-
ity sequence is antisymmetric about the equator. In both hemispheres, the line joining the
centres of opposite polarity regions shows a systematic deviation from east-west orienta-
tion (called the tilt angle), such that the f-polarity lies at a slightly higher latitude than the
p-polarity (Joy’s law). Although a large scatter is observed, the tilt angle averaged over
all active regions increases with increasing latitude.

Other cool stars. In cool stars, the Sun-like activity signatures such as the chromo-
spheric and coronal emissions, the filling factor of photospheric inhomogeneities (spots),
etc. increase mainly with stellar rotation rate (a function of stellar mass and age) and con-
vection zone depth (a function of stellar mass on the main sequence). A dimensionless
parameter which combines both of these quantities is the Rossby number, Ro = Prot/τc,
where Prot is the stellar rotation period and τc is the convective turnover time, which in-
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1.2 Surface transport of the emerging magnetic flux

Figure 1.2: The surface brightness map of AB Doradus, a K0V type star rotating with a
period of 0.69 days. The coloured areas show the distribution of dark spot-like features
(Donati et al. 1999). Image credit: J.-F.Donati.

creases with stellar mass, according to mixing length models of convection. The strength
of some stellar magnetic activity indices is roughly inversely proportional to the Rossby
number. The Sun has a relatively thin convective envelope, and slow rotation, thus rela-
tively weak activity. A “Sun” at a distance of a few light years from us, would possibly
be chosen as an “inactive standard star”, for instance to infer the level of chromospheric
activity patterns on a very active star (e.g., Işık 2004), or a potential target for extrasolar
planet surveys. If a cool star rotates faster than the Sun, it is either hotter (more massive),
or younger, or a component of a close binary system. For cool stars rotating more rapidly
than the Sun (for Sun-like stars or cooler stars), the activity patterns are concentrated to
higher latitudes than in the Sun (Strassmeier 2002). Fig. 1.2 shows the reconstructed sur-
face brightness map of a very fast rotator (AB Dor, Prot ≈ 0.6 d), on which spots around
the poles are detected with the Doppler imaging technique.

1.2 Surface transport of the emerging magnetic flux

The emerging magnetic flux, being almost purely vertical at the photosphere, is trans-
ported rather passively on the surface by means of latitudinal differential rotation, merid-
ional circulation, and convection on supergranular scales (∼ 30 Mm), as shown by models
of surface flux transport (Sheeley 2005). The systematic tilt of bipolar regions leads to a
net transport of f-polarity magnetic flux towards the poles, which eventually reverses the
sign of the polar fields.

Numerical simulations of the transport of surface fields sourced by bipolar regions
reproduce the evolution of solar magnetograms (Sheeley 2005). The development and
reversals of the weak dipolar component of the solar magnetic field, which amounts a few
gauss near the rotational poles, can be explained by surface flux transport, owing to Hale’s
polarity rule and Joy’s law for tilt angles.
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1 Introduction

The model developed by Baumann et al. (2004, 2006) is applied in Chapter 2 to stars
by taking the stellar radii and differential rotation from observations. It is shown that the
formation of long-lasting strong polar magnetic fields observed in very active stars can be
explained by the emergence of strongly tilted active regions at mid- to high latitudes. We
find that the lifetimes of starspots (in particular those at high latitudes) are sensitive on the
size and the tilt angle of bipolar regions, as well as on the stellar radius, which determines
the diffusion time.

1.3 The rise and emergence of magnetic flux

The observational evidence summarised in Sect. 1.1 suggests that azimuthally oriented
magnetic fields emerge from the solar interior, in the form of (fragmented) magnetic flux
tubes. As shown by Parker (1975), a horizontal magnetic flux tube located in the temper-
ature equilibrium with the surrounding convection zone buoyantly rises with a velocity
of the order of the Alfvén speed �A = B/

√
4πρ. Substituting the average density in the

lower convection zone (ρ ∼ 10−1 g cm−3) and a field strength of B = 104 G, one finds
a rise time of roughly one month through the convection zone. As pointed out by Gal-
loway and Weiss (1981), the conditions in the stably stratified overshoot region at the
bottom of the convection zone make it a potential location for the formation and stor-
age of magnetic flux (see Sect. 1.4 for more recent developments). The field strength
for which the magnetic energy density is in equipartition with the kinetic energy density
(B2

eq/8π = ρ�
2/2) is called the equipartition field strength (Beq). One finds Beq � 104 G at

the bottom of the convection zone, taking the velocity, �, from the mixing-length models
of convection. A flux tube with a field strength of that order and a magnetic flux of 1020-
1022 Mx has a cross-sectional radius of 500-5000 km. If one takes Btube = 105 G, which
is required to explain various properties of active regions (Caligari et al. 1995), the tube
radius would be in the range 200-2000 km. These values are small compared to the local
pressure scale height in the middle of the overshoot region, about 55000 km, and also
compared to other relevant length scales, such as the radius of curvature of a toroidal flux
ring, etc. This makes the thin flux tube approximation applicable to the problem (Defouw
1976, Roberts and Webb 1978, Spruit 1981). The approach makes the dynamical problem
tractable for both the linear stability analyses and the numerical simulations. In the thin
flux tube approximation, a flux tube is defined as a bundle of magnetic field lines which
is in total (magnetic and gas) pressure equilibrium with the field-free surroundings, since
the magneto-acoustic travel time perpendicular to the field is shorter than other relevant
dynamical time scales, for a sufficiently small tube radius. Therefore the lateral pressure
balance requires

pi +
B2

8π
= pe, (1.1)

so that the internal gas pressure, pi, is less than the external gas pressure, pe, by the
amount of the magnetic pressure. In the case of thermal equilibrium with the surround-
ings, Eq. (1.1) and the ideal gas relation require a density deficit with respect to the am-
bient medium. Therefore, the flux tube feels an upward directed buoyancy force, called
the magnetic buoyancy. The physical quantities are taken as averages over the tube cross
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1.4 Storage of magnetic flux

section, and they are allowed to change along the tube axis.
According to the rising flux tube scenario, azimuthal magnetic flux tubes of su-

perequipartition field strengths (104-105 G) experience undulatory buoyancy (Parker) in-
stabilities in the overshoot region (Spruit and van Ballegooijen 1982, Ferriz-Mas and
Schüssler 1993, 1995). They form loops rising through the convection zone up to the sur-
face, where they create bipolar magnetic regions (BMRs) on the photosphere. Numerical
simulations made by Caligari et al. (1995, 1998) reproduced many observed properties
of active regions, e.g., the tilt angle relationship, proper motions of sunspots, asymmetry
between the two legs of an emerging loop. The tilt forms at the top of the rising loop, and
mostly at the final stages of emergence by the Coriolis force acting on the horizontally
expanding tube.

Soon after the emergence, the field is likely to become dynamically disconnected from
its subsurface roots, as suggested by Schüssler and Rempel (2005). In their model, the
disconnection occurs at a certain depth, where the flux density of the tube is drastically
reduced by rising high-entropy plasma. As a result, the dynamics of the emerged loop
is governed by the effects of large-scale surface flows and not by the deeply anchored
toroidal field structure.

Extensive applications of thin flux tube simulations on stars with a variety of prop-
erties (age, mass, rotation rate) have been made by Schüssler et al. (1996), Deluca et al.
(1997), Granzer et al. (2000). The effects of deep convection zones (for stars cooler than
the Sun), and rapid rotation have been identified as responsible for the presence of high
latitude spots on stars, as predicted by Schüssler and Solanki (1992) for fast rotators.

1.4 Storage of magnetic flux

How can the required magnetic flux (flux tubes with B ∼ 105 G and a total flux of 1024-
1025 Mx per 11-year activity cycle) be generated and stored in the overshoot region be-
tween the radiative interior and the convective envelope? The following is a list of some
important aspects of the problem.

1. Observations of the internal rotation of the Sun by helioseismic inversion techniques
have revealed that there is a region of significant radial and latitudinal velocity
shear, straddling the upper radiative zone and lower convection zone, called the
tachocline2 (see Miesch 2005). However, the kinetic energy of a shear layer of
104 km thickness and a velocity difference of 100 m s−1 is about 1038 erg, about
1-2 orders of magnitude less than what is required for a total flux of 1024-1025 Mx
over an 11-year activity cycle (Howard 1974, Harvey and Zwaan 1993) at a field
strength of 105 G. With this energy source, a serious problem is how to sustain the
rotational shear to compensate for the energy transferred to magnetic energy.

2. Convective pumping of magnetic flux (see Fan 2004, Sect. 6) can provide only
a negligible part of the necessary energy, because the kinetic energy density of
convective flows is estimated to be about two orders of magnitude less than the
magnetic energy density for a 105 G layer.

2The word tachocline literally means the [region of] rotational-velocity change.
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1 Introduction

3. According to a suggested non-local model of solar convection (e.g., Shaviv and
Salpeter 1973, Pidatella and Stix 1986, Skaley and Stix 1991), the flow patterns
are extremely asymmetric in the lower convection zone. In the surface layers, ma-
terial loses its entropy by means of radiation and sink downwards, merging with
other downdrafts. This leads to strong downflows carrying low-entropy material
down to the lower convection zone, mixing there with the higher entropy material.
This mixing works as a valve, which reduces the radial entropy gradient, making
the stratification subadiabatic (positive radial entropy gradient), hence stably strat-
ified. The downflows continue (to sink) at this stage, because they still have an
entropy deficit with respect to the surroundings. Thus in the lower convection zone,
mass motions are driven not by the convective instability, but by mass conserva-
tion and the self-readjustment of the interior towards local hydrostatic equilibrium.
The downflows are finally stopped in the overshoot region, where they penetrate
only because of their excess inertia. Material which penetrates into the overshoot
region gains entropy excess with respect to the ambient medium, thus it is strongly
decelerated. In addition, the same downflows pump magnetic flux from the con-
vection zone down to the overshoot zone (Tobias et al. 2001, Dorch and Nordlund
2001). Regardless of the significance and importance of the overshoot region, the
lower convection zone thus provides with a stable environment for the storage of
azimuthal magnetic fields, until the magnetic buoyancy instabilities set in.

4. A toroidal magnetic flux tube located outside the equatorial plane can be kept in
mechanical equilibrium only if it has zero buoyancy. In that case, a balance can be
established between the magnetic curvature force and the Coriolis force induced by
an azimuthal flow along the tube. In the case of such a balance between the mag-
netic and inertial forces for a neutrally buoyant flux tube, the normal (cylindrical-
radial) component of the equation of motion takes the form

B2
0

4πR0
− ρi0R0(Ω2

e0 −Ω2) = 0, (1.2)

where ρi0 is the internal density, R0 is the distance from the rotation axis, Ωe0 is the
angular velocity of the external medium (taken as the reference frame in which the
medium around the flux tube is at rest), and Ω is the internal angular velocity (van
Ballegooijen 1982, Moreno-Insertis et al. 1992).

5. As shown by Rempel et al. (2000), a magnetic layer in the upper radiative zone
can establish a mechanical equilibrium owing to a latitudinal pressure gradient of
the entire layer, where the pressure force compensates for the axial component of
the buoyancy force. They found that a magnetic layer extending from the upper
radiative zone to the lower convection zone develops a pressure-driven equilibrium
in the radiative zone, and an azimuthal flow driven equilibrium for the convective
overshoot region. Therefore, the latter case allows for the storage/existence of flux
tubes with a mechanical equilibrium stated in Eq. (1.2).

6. A possible mechanism which provides with sufficient potential energy source is the
field intensification by flux tube “explosion” (Moreno-Insertis et al. 1995). When a
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1.5 Generation of magnetic flux

flux tube rises adiabatically in the convection zone, its internal pressure decreases
more slowly than the external pressure, because of the superadiabatic temperature
gradient of the convection zone. Consequently, the internal and external gas pres-
sures would become equal at a certain height. Then the lateral pressure balance
(Eq. 1.1) would yield a zero magnetic pressure. This means that the crest of the
tube, which has reached this critical height, undergoes an extreme expansion. This
leads to a buoyant rise of high-entropy material. Consequently, the magnetic pres-
sure in the lower parts of the tube which are anchored in the deeper layers increase,
leading to an increase of the field strength there. Rempel and Schüssler (2001) have
made numerical simulations showing the dynamics of such an explosion process,
and they found that the field strength can reach 105 G in about 6 months.

7. The formation of flux tubes can take place by means of magnetic Rayleigh-Taylor
instability of a uniform magnetic layer located below a field-free layer (e.g., Fan
2001). For a layer of toroidal (azimuthal) field, perturbations which are periodic in
the latitudinal direction grows faster than those which are periodic in the azimuthal
direction. Because in the latter case, magnetic tension has a restoring effect.

In spite of all the work which indicate the possibility of sufficiently strong toroidal mag-
netic fields, the problem of flux storage is still under investigation. In principle, any sort of
(magneto-)hydrodynamical instability in the bottom of the convection zone with growth
times significantly shorter than about half the activity cycle time scale, poses a natural
problem for flux storage. I give here a few example studies related to the storage of flux
tubes. The nonlinear effects of a local updraft of material is examined by Caligari et al.
(1998). They found that upflow velocities in the range 20-50 m s−1 can destabilise a flux
tube, which form a rising loop, reaching the surface within one year. They remarked that
the convective velocities determined by the mixing-length model in the overshoot layer
are too small to cause such a nonlinear Parker instability. In Chapter 3, I extend this
work and investigate analytically the effect of perpendicular flows acting on a toroidal
flux tube. I give scaling relations between the flow parameters and the flux tube parame-
ters, and provide conditions for the non-linear development of Parker instability and the
friction-induced instability (Holzwarth et al. 2007) for a stably stored flux tube.

1.5 Generation of magnetic flux

One of the fundamental problems of astrophysics is the generation and amplification of
magnetic fields on various spatial and temporal scales. The problem is how to generate
and maintain magnetic fields by the motions of astrophysical plasmas. The research field
which investigates these issues is called hydromagnetic dynamo theory (see e.g., Moffatt
1978). Dynamo mechanisms play a key role in many cosmical phenomena, ranging from
planetary magnetism to magnetic fields in galaxies (see, e.g. Moffatt and Murdin 2000,
Rüdiger and Hollerbach 2004, Brandenburg and Subramanian 2005).

Apart from the general consensus that sunspots and the periodic nature of solar ac-
tivity result from a cyclic dynamo mechanism, many aspects of solar and stellar dynamo
problem remain unresolved, so that a complete dynamo model which uniquely predicts
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1 Introduction

the observations and does not rely on parametrisation has not been constructed (see Os-
sendrijver 2003, Charbonneau 2005). The reason is two-fold. Firstly, magnetic fields
within solar/stellar convection zones are not directly observable. On the theoretical side,
highly complex and nonlinear interactions of turbulence - the theory of which is itself
incomplete - with convection, differential rotation, meridional circulation, and magnetic
fields are poorly understood.

1.6 Coupling the models

In the literature, the work is mainly focused on the individual aspects of solar and stellar
magnetism, e.g., as described in the previous sections. The most global models that incor-
porate various aspects of solar magnetism are the Babcock-Leighton-type [flux transport]
dynamo models (e.g., Dikpati and Charbonneau 1999). They parametrise the effects of
magnetic buoyancy and assume that the surface distribution of the field is the same as at
the bottom of the convection zone. The first attempt to combine models of flux emer-
gence and surface transport has been presented by Holzwarth et al. (2006) for rapidly
rotating cool stars. The authors prescribe butterfly diagrams for the initial distribution of
flux tubes in the bottom of the stellar convection zone, and they let the Parker-unstable
thin flux tubes rise through the convection zone, under the influence of strong meridional
flows and rapid rotation. The resulting emergence pattern is then used as input for a sur-
face flux transport model. In their model, meridional flows are an order of magnitude
faster than the solar values, and this is the primary effect reproducing the intermingling
of mixed polarity regions around the rotational poles, similar to the detected patterns on
AB Dor, a rapidly rotating K-type dwarf star. In Chapter 4, I present the first model which
combines the generation, emergence, and surface transport of solar magnetic flux, and I
apply it to the cases of other, more active cool stars. The coupled model is not meant to be
a conclusive solution to the solar dynamo problem itself, neither is it intended to “predict”
solar magnetic cycles. It is made to have a reference model which represents the basic
features of solar magnetic activity with consistently coupled components. The main aim
is to check the consistency of different model components with each other, and further-
more apply the model to more active cool stars, in order to gain insight on the physics of
stellar magnetic activity in a broader scale.
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2 Magnetic flux transport on active
cool stars: starspot lifetimes1

2.1 Introduction

Magnetic flux emerges on the solar surface in the form of bipolar magnetic regions (here-
after BMRs or bipoles), the larger ones of which include sunspots, pores, and plages
(consisting of small-scale magnetic flux concentrations) in two patches of opposite po-
larity. The observations indicate that, after their emergence, magnetic flux in BMRs is
subject to flux transport by means of convective motions on different scales (granulation,
supergranulation), differential rotation, and meridional flow. Under the effects of these
flows, magnetic flux is redistributed on the surface, leading to flux cancellation and polar-
ity reversals of the polar field, which is possibly an important ingredient of the underlying
dynamo mechanism. Magnetic flux transport on the surface of the Sun has been studied
through numerical simulations by several authors, who were able to reproduce the evo-
lution of the radial magnetic field on the solar surface through the magnetic cycle (e.g.,
Wang et al. 1989a, Dikpati and Choudhuri 1995, van Ballegooijen et al. 1998, Wang 1998,
Mackay et al. 2002, Baumann et al. 2004).

Observations of spots and magnetic fields on stars other than the Sun are mainly re-
stricted to rapidly rotating, i.e. magnetically active, nearby G-K stars, because of the
relatively high spectral resolution and low noise required by the indirect surface imaging
techniques. One of the striking observational results is that, in contrast to the solar case,
long-lived spots or spot groups lie at high latitudes and often even cover the rotational
poles (see Strassmeier 2002), in some cases with intermingling of opposite polarities
(Donati et al. 2003a). Such accumulation of magnetic flux at high latitudes can arise by
a combination of poleward deflection of rising flux tubes by the Coriolis force (Schüssler
and Solanki 1992, Schüssler et al. 1996, Granzer et al. 2000) and surface flux transport af-
ter emergence (Schrijver 2001, Schrijver and Title 2001). Recently, Mackay et al. (2004)
used a flux transport model to show that the observed intermingling of large amounts of
positive and negative magnetic flux at very high latitudes could occur with a flux emer-
gence rate 30 times that of the Sun, a range of emergence latitudes between 50◦-70◦, and
a meridional flow of 100 m s−1, which is about 10 times faster than in the case of the
Sun. Intriguingly, the observed fields of very active stars often appear to have a strong
azimuthal component (Donati et al. 2003a), which is not observed in the case of the Sun2.

1This chapter is a slightly modified and extended version of the article published by Işık et al. (2007).
2Recently, a weak toroidal field component on the solar surface has been reported, which varies in phase

with the magnetic cycle (Ulrich and Boyden 2005).
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2 Magnetic flux transport on active cool stars: starspot lifetimes

Observational techniques like Doppler imaging can only detect starspots which are
much larger than typical sunspots. Because of the limited resolution of the imaging
techniques, it is unknown whether the observed starspots are single large spots or con-
glomerates of smaller spots (cf. Solanki and Unruh 2004). In any case, except for the
polar spots, which in some cases persist up to decades (cf. Hussain 2002), the observed
starspots have lifetimes that are less than one month (Barnes et al. 1998, Hussain 2002,
Kővári et al. 2004). An individual sunspot (and presumably a starspot as well) is a more
coherent structure than the magnetic region in which it is embedded: because of the mag-
netic forces, its magnetic flux is not passively transported by convective flows or sheared
by differential rotation, but resists to them (e.g., by suppressing granulation). Sunspots
gradually lose flux through (turbulent) erosion by convection at the boundaries (Petrovay
and Moreno-Insertis 1997). The decay time of an individual sunspot is proportional to
its maximum diameter (Petrovay and van Driel-Gesztelyi 1997), which is consistent with
the turbulent erosion models (Petrovay and Moreno-Insertis 1997). On the other hand, a
cluster of small spots is more likely to be dispersed by differential rotation, meridional
flow, and supergranulation. The structure and evolution of starspots, in comparison with
sunspots, has been reviewed by Schrijver (2002). So far there has been no theoretical
investigation devoted to the lifetimes of starspots.

In this chapter, we present simulations of BMR and starspot evolution on the basis
of a linear surface flux transport model, with an aim to explain the observed starspot
lifetimes, and to compare various configurations. We carry out numerical simulations
in order to examine the evolution of the radial magnetic flux in monolithic as well as
in clustered forms, and to infer lifetimes for starspots covering a range of sizes, initial
latitudes, and transport parameters. We apply the surface flux transport code of Baumann
et al. (2004) (see also Baumann 2005), to the cases of a single bipolar magnetic region
with different parameters, to a multitude of bipoles at high latitudes, to a unipolar cluster
of starspots, and to a large monolithic, unipolar spot. The plan of the chapter is as follows:
the surface flux transport model and the definition of starspots are introduced in Sect. 2.2.
The evolution of bipolar regions is treated in Sect. 2.3, with emphasis on the effects of
surface flows and the emergence latitude upon BMR lifetimes. The results for a set of
starspot configurations are discussed in Sect. 2.4 and concluding remarks are given in
Sect. 2.5.

2.2 Model setup

To simplify the problem, we ignore any horizontal components of the surface magnetic
field and assume that the magnetic field on the stellar surface is directed only in the radial
(vertical) direction, as well justified for the case of the Sun (Solanki 1993, Martínez Pillet
et al. 1997). Stellar magnetic regions are assumed to have a bipolar structure with a
geometry similar to those of the solar BMRs (except for Sect. 2.4, in which unipolar spots
are considered). The flux transport model is restricted to the surface, which is defined by
the stellar radius, r = R�. The signed flux density of a BMR is written in the form

B(λ, φ) = B+(λ, φ) − B−(λ, φ), (2.1)
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2.2 Model setup

Figure 2.1: (a) Angular velocity normalised to its equatorial (λ = 0) value (left axis,
top curves) and shear rate (right axis, bottom curves) for three stars: the Sun, AB Dor,
and HR 1099. ‘AB Dor max.’ and ‘AB Dor min.’ correspond to the maximum and
minimum observed Δω values obtained by Donati et al. (2003b). (b) Meridional flow
velocity (positive means poleward flow). Both plots are for the northern hemisphere. The
shear rate and the meridional flow profiles are antisymmetric with respect to the equator.

where λ denotes the stellar latitude and φ the longitude. Following van Ballegooijen
et al. (1998) and Baumann et al. (2004), we assume the unsigned field strength of the two
polarities of a newly emerged BMR to be

B±(λ, φ) = B0 exp

[
−2

[
1 − cos β±(λ, φ)

]
β2

0

]
. (2.2)

Here, β±(λ, φ) are the heliocentric angles between any given position (λ, φ) and the centre
of the positive and negative polarities, (λ±, φ±). The total size of a BMR is controlled
by β0, the initial characteristic width of each polarity, and by the angular separation of
the centres of the two poles, Δβ, which are related by the relation β0 = 0.4Δβ. B0 is
arbitrarily set to 250 G, a reasonable value for the case of the Sun 3. Initially the BMR
is placed at a given latitude according to one of the following configurations: (1) both
poles of the BMR are at the same latitude, (2) the line joining the centres of the two
polarities makes an angle α with a latitudinal circle, which is called the tilt angle. The
latitude dependence is chosen to be α = 0.5λ0, where λ0 is the latitude of emergence. The

3The magnetic field strength can be scaled arbitrarily, because the field evolution described by Eq. (2.3)
is linear and passive. Therefore, a different peak strength for the initial field results in the same patterns of
flux evolution, only scaled by a factor in the field strength. Because we take a fixed fraction of B0 as the
threshold field strength to define the size of an evolving BMR (see below), the resulting flux evolution is
independent of the initial peak strength. Another reason for choosing B0=250 G is that we get magnetic
fluxes comparable to those of solar active regions.
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2 Magnetic flux transport on active cool stars: starspot lifetimes

orientation of a bipole axis (i.e., the line joining the centres of the two polarities) is such
that the leading polarity (with respect to the direction of rotation) is nearer to the equator.
The time evolution of the radial magnetic field is determined by the induction equation,
which is written in spherical coordinates (R�, λ, φ) as

∂B
∂t
= −ω(λ)

∂B
∂φ
+

1
R� cos λ

∂

∂λ
(�(λ)B cos λ)

+
η

R2
�

[
1

cos λ
∂

∂λ

(
cos λ

∂B
∂λ

)
+

1
cos2 λ

∂2B
∂λ2

]

+S (λ, φ) − Dr(ηr), (2.3)

where λ is the latitude, ω(λ) is the angular velocity of rotation, �(λ) is the meridional flow
velocity, η is the constant coefficient for horizontal turbulent diffusion associated with
the nonstationary convective motions (supergranulation in the case of the Sun), S (λ, φ) is
the source term describing the emergence of the BMRs, and Dr an additional decay term
representing the radial diffusion of magnetic flux with an effective diffusivity ηr (Baumann
et al. 2006). For the numerical solution of Eq. (2.3), the magnetic field is expanded in
spherical harmonics with a maximum degree of 63, which (for R� = R�) corresponds
roughly to the observed size of supergranules (≈30 Mm) on the Sun. For the newly
emerged BMRs, the spherical harmonic coefficients defining the field distribution are
multiplied by a spatial filter of the form exp[−β2

0l(l+1)/4] (van Ballegooijen et al. 1998),
in order to diminish the effect of ringing (Gibbs phenomenon) caused by the truncation of
the expansion in spherical harmonics.

The relevant quantities for the flux transport are the latitudinal angular velocity profile
ω(λ), the meridional flow profile �(λ), the horizontal turbulent magnetic diffusivity, η, and
the effective radial diffusivity, ηr. As a reference configuration we consider the values
corresponding to the solar case. The angular velocity profile is taken after Snodgrass
(1983),

ω(λ) = 13.38 − 2.30 sin2 λ − 1.62 sin4 λ deg day−1, (2.4)

and the meridional flow profile (Snodgrass and Dailey 1996, Hathaway 1996) is assumed
as

�(λ) =

{ −�0 sin(πλ/λc) : if |λ| < λc

0 : otherwise,
(2.5)

where �0 = 11 m s−1 and λc = ± 75◦ (van Ballegooijen et al. 1998, Baumann et al. 2004).
For the case of rapid rotators, the following differential rotation profile is used:

ω(λ) = ωeq − Δω sin2 λ. (2.6)

Here, ωeq is the equatorial angular velocity and Δω is the velocity difference between
the poles and the equator. The values of the latter are 5.54 and 2.64 deg day−1, for AB
Dor (maximum and minimum observed surface shear rates), and 1.21 deg day−1 for HR
1099 (Donati et al. 2003b). The differential rotation and meridional flow profiles given
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2.3 Starspots as bipolar magnetic regions

by Eqs. (2.4)-(2.6) are shown in Fig. 2.1.

In the following, we consider the evolution of BMRs on stars with various shear rates
and radii in order to investigate the impact of surface flows on the lifetimes for BMRs of
different sizes. Then we consider the evolution of starspots in Sect. 2.4.

2.3 Starspots as bipolar magnetic regions

In this section we present numerical simulations of single bipolar magnetic regions and
of multiple BMRs emerging randomly around a polar spot. Partly, BMRs are important
because they harbour starspots visible in Doppler imaging. Partly, the Zeeman-Doppler
imaging technique should be able to detect the largest BMRs on stars. In this connection,
we consider starspots as bipolar magnetic regions. We take the horizontal diffusivity
η = 600 km2 s−1 (Wang et al. 1989b) and the effective radial diffusivity ηr = 100 km2 s−1

(Baumann et al. 2006). These values are appropriate for the Sun. We adopt them for all the
simulations in this section, since the properties of the large-scale convective flows (which
determine the turbulent diffusivities) are unknown for stars with a different mass in a
different evolutionary stage. This uncertainty should be kept in mind when considering the
results for stars other than the Sun. The smallest BMR considered here has β0 = 4◦,Δβ =
10◦, roughly representing the largest solar BMRs shortly after their complete emergence,
and also the smallest structures that can be resolved in Zeeman-Doppler reconstructions
of active cool stars (Donati et al. 2003a). We consider this angular size as the ‘standard’
one in Sec. 2.3.1 and Sec. 2.3.2. The area of a BMR at a given time is determined
from the corresponding simulated field distribution on an angular grid with 360 points in
azimuth and 180 points in latitude, by adding up the area for which a threshold magnetic
field strength is exceeded. Fig. 2.2 shows the fractional area of the region as a function of
the threshold field strength and time. If the normalised threshold strength is taken below
about 0.2, the area determined by that threshold shows an an initial increase owing the
diffusion of the magnetic field to a larger area. After a certain time, the region defined by
the threshold starts to shrink. In the present context, the threshold field strength is taken to
be 0.14 times the value of the initial peak field strength B0, so that the initial area for the
’standard’ BMR is equal to 323 square degrees, or about 8 thousands of the stellar surface
area. This value is determined by requiring that the lifetime of a BMR (as defined by the
time when the field strength falls entirely below the threshold) with β0 = 4◦,Δβ = 10◦

becomes equal to two months, which is about the lifetime of a similar-sized BMR around
a solar minimum, which we estimated visually from SOHO/MDI synoptic magnetograms
for the time period 25.06.2004 and 14.09.2004 (Carrington rotations from 2018 to 2020).
We obtained this estimate by tracking relatively isolated BMRs of size Δβ ≈ 10◦ at a
latitude of about 10◦ on consecutive synoptic magnetograms. The estimated lifetimes
of around two Carrington rotations, roughly two months after their maximum size of
development, can be compared with the largest BMRs shown by Harvey (1993), which
have areas up to 70 square degrees and lifetimes up to 3 months.
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2 Magnetic flux transport on active cool stars: starspot lifetimes

Figure 2.2: Profiles of area (in fractions of the solar surface area) of a BMR as a function
of the threshold field strength, for different times (in days) after the emergence. The initial
BMR has the size corresponding to β0 = 4◦ and Δβ = 10◦, which covers a fraction 0.8%
of the solar surface, and emerges at λ0 = 40◦ latitude. The threshold field strength is
normalised to the initial peak field strength. The lower the threshold value, the longer the
duration of the initial expansion of the BMR. Above a threshold value of 0.2, the area
always decreases, i.e., BMR always shrinks.

2.3.1 Main sequence star of solar radius

In this section we present simulations of the evolution of single BMRs on a star of solar
radius. Examples are the Sun and the rapidly rotating K0-dwarf AB Doradus, (R ≈ R�,
according to Ambruster et al. (2003).

2.3.1.1 The effects of large-scale flows upon lifetimes

Fig. 2.3 illustrates the dependence of BMR lifetime on emergence latitude. It shows the
evolution of BMRs with β0 = 4◦,Δβ = 10◦, for three different emergence latitudes: 10◦,
40◦, and 60◦. The flow profiles represent the solar case given by Eqs. (2.4) and (2.5). It
can be seen that, 55 days after the emergence, the BMR emerged at λ0 = 60◦ has more re-
maining flux than the one at λ0 = 10◦, while the one at λ0 = 40◦ has already lost all its flux
with field strengths above the threshold. Fig. 2.4a shows the evolution of area (normalised
to its initial value) for the BMR at λ0 = 40◦ and Fig. 2.4b shows the BMR lifetime as a
function of the emergence latitude. For all emergence latitudes, the area increases in the
initial phase by about 10 percent, owing to the spreading by diffusion of the field above
the threshold (e.g., Fig. 2.4a for 40◦). After about 15 days, the region above the threshold
field strength begins to shrink, as the reduction of its length scales (steepening of the field
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2.3 Starspots as bipolar magnetic regions

Figure 2.3: Evolution of BMRs with different emergence latitudes (λ0), with tilt angles
equal to 0.5λ0, and with solar surface shear. Magnetic field values above the threshold are
indicated by white regions enclosed by a thick black contour. The projections are centred
at a fixed meridian and 60◦ latitude. The latitude circles are plotted with 30◦ intervals.
Elapsed time after emergence (in days) is indicated. Stellar (differential) rotation is shown
with respect to the rest frame of the equator. The initial BMR configuration corresponds
to β0 = 4◦,Δβ = 10◦, leading to an initial area of about 323 square degrees, or 0.8% of
the solar/stellar surface area.
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2 Magnetic flux transport on active cool stars: starspot lifetimes

Figure 2.4: (a) Time variation of BMR area normalised to its initial value, for a BMR
with β0 = 4◦,Δβ = 10◦ emerged at 40◦. BMR area is defined as the area above a given
threshold (see text). (b) BMR lifetime as a function of the emergence latitude.

gradient) by means of surface shear leads to increasing diffusion rates. The strength of
this effect is proportional to the local surface shear (see Fig. 2.1a), and is partly responsi-
ble for the variation of lifetime as a function of emergence latitude (Fig. 2.4b). The effect
can also be seen when one compares the evolution of BMRs at 10◦ and 40◦ in Fig. 2.3.
On the other hand, the bipole at 60◦ lives longer than the ones at 10◦ and 40◦, although the
local shear rate is higher for the former. The reason is the meridional flow (see Fig. 2.1b):
firstly, there is an acceleration of the poleward flow with increasing latitude until around
37◦, above which the flow is decelerated. Therefore, a BMR emerging at a latitude lower
(higher) than about 37◦ experiences a diverging (converging) flow. The effect can be seen
in Fig. 2.5, in which lifetimes are plotted as a function of emergence latitude, in the pres-
ence and absence of the meridional flow (Eq. 2.5). Another effect of the meridional flow
is that low-latitude BMRs are advected to latitudes with stronger shear, whereas the high-
latitude BMRs are moved to regions with less shear. Both of the effects mentioned above
contribute to the longer lifetimes of high-latitude BMRs.

Next we consider the effect of varying the latitudinal rotation profile (surface shear)
by using the results for the solar profile (as above), and those for AB Doradus (Fig. 2.1a),
with observed minimum and maximum values for Δω of 2.64 and 5.54 deg day−1, respec-
tively (Donati et al. 2003b). The variation of BMR lifetime as a function of the emergence
latitude for the three cases is shown in Fig. 2.6, for tilt angles α = 0.5λ0 (Fig. 2.6a) and
α = 0 (Fig. 2.6b), respectively. The lifetimes are affected by the shape of the rotational
shear profile (cf. Fig. 2.1a). For instance, for λ0 = 30◦, 56% weaker shear leads to an
about 37% (14 days) longer lifetime. The effect of meridional flow becomes more notice-
able for the cases with smaller rotational shear. For α = 0, the BMRs suffer more flux
cancellation at the longer neutral line between the opposite polarities, so that they live
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2.3 Starspots as bipolar magnetic regions

Figure 2.5: The effect of meridional flow upon lifetimes of BMRs emerged at various
latitudes. The solar differential rotation profile has been used. The diamond symbols show
the lifetimes with a meridional flow according to Eq. 2.5 (Fig. 2.1b). The asterisks show
lifetimes in the absence of meridional flow. Below λ0 ≈ 40◦, meridional flow decreases
the lifetimes, because the meridional flow accelerates with latitude and carries the BMR
to regions with larger rotational shear. Above λ0 ≈ 40◦, it decelerates with latitude and
also carries the BMR to regions with less shear (cf. Fig. 2.1).

shorter than their tilted counterparts. The presence of a tilt angle α = 0.5λ0 prolongs the
lifetimes, particularly so at higher latitudes: because the opposite polarities have different
angular velocities, they gradually separate so that the neutral line at the interface for flux
cancellation shortens (see Fig. 2.3).

2.3.1.2 Larger starspots and the formation of polar spots

Larger BMRs have systematically longer lifetimes owing to a larger initial area. Fig. 2.7
shows the lifetimes, for 40◦ emergence latitude, of BMRs with initial area equal to or
larger than in the reference case presented above. The presence of a tilt (filled circles)
leads to polarity separation by differential rotation, thus reducing the cancellation rate
and leading to longer lifetimes, particularly so for very large BMRs. This is illustrated
in Fig. 2.8, which shows BMRs of initial area fractions (area covered by the BMR as a
fraction of the stellar surface area) 0.008 and 0.12 shortly before completely falling below
the threshold. For non-zero tilt (α > 0), the follower polarity of the large BMR forms a
polar cap after about 6 months (panel c). Its nearly circular shape decelerates its diffusive
spreading because the shear can no longer reduce its effective length scale. For the non-
tilted case (α > 0), however, the two polarities rotate with the same speed and spiral
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Figure 2.6: Lifetime of BMRs as a function of the emergence latitude, for three differential
rotation (surface shear) profiles: solar shear (diamonds), the minimum observed shear for
AB Dor (crosses), and the maximum observed shear for AB Dor (asterisks). (a) for the
tilt angle relation α = 0.5λ0. (b) α = 0.

towards the rotational pole through the action of the meridional flow, leading to enhanced
flux cancellation at the elongated neutral line.

Fig. 2.9 shows the evolution of area for the sample of tilted BMRs that were given in
Fig. 2.7. The area is normalised to its initial value for each simulation. Note the sudden
decrease in the decay rate for the largest three BMRs in the sample. This change occurs
when the maximum field strength of one polarity, the preceding one in the present case,
falls below the threshold value. The effect can also be seen in Fig. 2.8c: the preceding
polarity region already fell below the threshold when it had been stretched in the azimuthal
direction by the strong differential rotation. On the other hand, after the formation of a
polar cap of the follower polarity, the only remaining “area” of interest is the slowly
diffusing polar cap. This sudden decrease in the decay rate becomes more abrupt for larger
BMRs because the polar spot has a larger length scale and is confined by the meridional
flow, which leads to a slower decay.

2.3.2 A subgiant star (HR 1099)

In a subgiant star like the active component of the binary system HR 1099 with a radius
of 3.3 R�, lifetimes for the same initial area fractions as in the case of a 1 R� star are much
longer. This is expected for two reasons: firstly, surface differential rotation is weaker in
the case of HR 1099 (see Fig. 2.1), and secondly, the characteristic decay time τl of the
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2.3 Starspots as bipolar magnetic regions

Figure 2.7: Variation of BMR lifetime as a function of initial size. The initial angular radii
of each pole of the BMR are β0 = 4◦, 8◦, 12◦, 16◦, 20◦, and the initial separation between
the poles satisfies the relation Δβ = 2.5β0. Open circles denote the case with tilt angle
α = 0, filled circles with α = 0.5λ0.

eigensolution of the diffusion equation is given by

τl =
R2
�

ηl(l + 1)
, (2.7)

so that for features of the size corresponding to the spherical harmonic degree l, τl scales
with R2

�. The larger the radius of the star, the longer the lifetime of regions with the same
area fraction. The presence of large-scale flows modifies the simple quadratic dependence
of decay time on the stellar radius in Eq. (2.7), and prevents us from simply rescaling. We
substitute the radius of the active component of HR 1099 (3.3 R�), its observed differential
rotation rate, (Δω = 1.21 deg day−1), and the solar-like meridional flow (Eq. 2.5) into the
flux transport simulation. The imposed BMR emerges at a latitude of 40◦; its initial
fractional area is 0.008 (323 square degrees), and the tilt angle is 20◦. The resulting
lifetime is about 290 days (≈ 9.5 months), which must be compared to the value of 55 days
(≈ 2 months) for R = R� for the same fractional area and the solar differential rotation
profile. Scaling with R2

� would give 55 × 3.32 ≈ 600 days (1.6 years). The difference
between the calculated lifetime and the diffusion time scale is due mainly to the surface
differential rotation, which reduces the characteristic length scales of the BMR. Therefore,
the rate of diffusion increases with time, compared to the constant rate in the absence of
large-scale flows.

For a BMR of the same size, but starting at λ0 = 70◦, the evolution with the same
transport parameters leads to a lifetime of about 2 years, as shown in Fig. 2.10. Therefore,
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Figure 2.8: Magnetic field distributions for relatively small (a,b) and very large (c,d)
BMRs (area fractions 0.008 and 0.12 of the stellar surface area), emerged at 40◦ with
tilt (a,c) and without tilt (b,d). The snapshots for each of the four cases represent the
moment shortly before the peak field strength falls below the threshold. The number of
days since the bipole emerged is given in each frame. Colours and contours are the same
as in Fig. 2.3. Non-zero tilt yields longer lifetimes, particularly so for a very large BMR
which eventually forms a polar cap (panel c).

the long lifetimes of polar spots on RS CVn-type active stars can possibly be related to
the low rate of shear at the polar regions of (sub)giant stars and a poleward-decelerating
meridional flow, particularly if the BMRs emerge at high latitudes and are strongly tilted.

2.3.3 Emergence of multiple bipoles

We have shown in Sec. 2.3.1.2 that when a polar cap of one polarity is developed, its decay
is significantly slower than for the lower latitudes. The example case shown in Fig. 2.8c
yields a lifetime of about 7 months. Now, in the course of its evolution, we let six more
bipoles of fractional area 0.03 to emerge at a latitude of 60◦, at random longitudes and
random times within a period of 500 days (1.4 years). This high-latitude temporary "ac-
tivity belt" extends the lifetime of the polar spot to about 2.4 years (see the animation at
http://www.solar-system-school.de/alumni/isik_movies/dwarf.mpg). The
enhancement of lifetime by means of newly emerging bipoles does not depend on when
the random emergence period begins within the lifetime of the already existing polar
BMR.

In the case of the subgiant star of Sec. 2.3.2, the lifetime of a polar spot is a factor
of about (R�/R�)2 longer than the one having the same fractional area on a solar-radius
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Figure 2.9: Comparison of the variations of area with time for tilted BMRs of different
sizes, all emerged at λ0 ≈ 40◦. The area values normalised to the initial values indicated in
the legend (in units of the solar surface area). As the initial size increases, a rapid change
in the decay rate in the late phase of the evolution results from the fact that the preceding
polarity region falls below the detection threshold and the follower polarity, being closer
to the rotational pole, lives longer. The larger the initial size, the larger is the polar cap
formed by the follower polarity region.

star. The lifetime of a unipolar polar cap of fractional area 0.004 (β0 = 4◦) is about 3
years on the subgiant star, compared to about 0.3 years on the dwarf. Random emer-
gence of six bipoles of fractional area 0.03 during 500 days (1.4 years) at λ0=60◦ pro-
longs the lifetime of the polar spot to about 10 years (see the supplementary animation at
http://www.solar-system-school.de/alumni/isik_movies/subgiant.mpg).

2.4 Structure of starspots

It is not known whether the observed starspots are monolithic structures or conglomer-
ates of smaller spots. In addition, the only general information available regarding their
evolution are lifetime estimates, indicating values of less than one month at mid-latitudes
of rapid rotators (Hussain 2002). Here we compare different possible configurations for
starspots or starspot groups of sizes comparable to those observed at mid-latitudes of rapid
rotators. Sunspots and their clusters with relatively long lifetimes are unipolar features.
Therefore, in contrast to the BMR simulations presented above, we now consider starspots
to be unipolar regions, with the other polarity placed on the opposite hemisphere, in or-
der to conserve the total flux on the surface. We also assume that the diffusion rate of a
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Figure 2.10: Evolution of a polar BMR with β = 4◦,Δβ = 10◦, starting at λ0 = 70◦

on a star with a radius of 3.3R�. The effects of weak differential rotation (Δω =
1.21 mrad day−1) and the same meridional flow profile and magnetic diffusivity as in
the solar case are considered. The large stellar radius and the weak surface shear at high
latitudes of the star lead to a lifetime of about two years. Since the meridional flow ceases
at 75◦, The BMR is not completely drifted up to the rotational pole.

starspot is reduced compared to the case of a BMR, which consists of spots, plages, and
ephemeral regions. The reason is that the strong and coherent magnetic fields in a starspot
can suppress convection, as in the case of sunspots. This effect is represented in our sim-
ulations by choosing a magnetic diffusivity that is much lower than the value adopted
for BMR evolution. The observed decay rates of sunspots correspond to a diffusivity of
10-50 km2 s−1 (Martínez Pillet et al. 1993). We adopt a value of η = 50 km2 s−1 for the
starspot simulations. In the following, we describe simulated scenarios in the presence
and absence of large-scale flows in order to discriminate between the effects; we consider
monolithic and cluster structures as well as two BMR-like models to compare their evo-
lution. All configurations harbour the same amount of total magnetic flux (1.52 × 1022

Mx). The cases are described in Table 2.1.

The threshold field strength which determines the observable flux is taken to be 0.14
times the initial peak field strength. Fig. 2.11 shows the evolution of magnetic flux at a
field strength above the threshold, normalised to its initial value. In case 1, the flux decays
nearly linearly in time, while for case 2 (the same monolithic spot, but with large-scale
flows) the decay is not linear in time, because the surface shear and the meridional flow
modify the length scale of the spot. For large-spot cluster cases, with and without flows
(cases 3 & 4), the initial decay is much faster than in the other cases: the conglomerate
structure contains smaller flux elements, which diffuse faster than the group as a whole.
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2.4 Structure of starspots

Table 2.1: Configurations for starspots
Configuration Fractional area Large-scale flowsa η (km2 s−1)

Monolithic spot 0.005 − 50
Monolithic spot & flows 0.005 + 50

Cluster of large spots 0.006 − 50
Cluster of large spots & flows 0.006 + 50

Cluster of small spotsb 0.05c + 50
Passive BMRd 0.05 + 600

aSolar-like differential rotation and meridional flow (− if absent, + if present).
bThe spots are not individually followed, but represented by a weak (25 G) unipolar

magnetic field under the influence of large-scale flows.
cIncluding both magnetic and non-magnetic regions
dA completely passive flux distribution, similar to the BMR simulations shown in Sect. 2.3.

Figure 2.11: Evolution of magnetic flux of the area above the threshold field strength of
0.14B0 normalised to the initial value (∼ 1022 Mx), for six different flux configurations,
all of which are started at λ0 = 50◦ (see main text).

The situation is shown in Fig. 2.12: For case 3, once the spots coalesce to a more diffuse
patch, the effective length scale becomes larger so that the decay rate is reduced and the
subsequent evolution takes place largely with the same rate as for the circular, monolithic
region (case 1). When flows are introduced (case 4), the cluster of large spots decays
much faster owing to the decrease of length scale by differential rotation. For cases 5 & 6,
the evolutions are similar to each other, since they differ only in magnetic diffusivity. In
general, the effect of flows for the cases 2 and 4-6 leads to shorter lifetimes and nonlinear
flux decay (for field strength above the threshold), whereas the lack of flows leads to
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2 Magnetic flux transport on active cool stars: starspot lifetimes

Figure 2.12: Magnetic field evolution for a cluster of unipolar magnetic regions, with
η = 50 km2 s−1 (cases 3 & 4). (a) The initial field distribution, (b) the field distribution 30
days after the emergence, without large-scale flows (case 2), (c) the field distribution 30
days after the emergence, with solar-like large-scale flows (case 3).

longer lifetimes and linear decay for the cases 1 and 3.

The linear decay of flux for the monolithic spot without flows can be understood
through a simple analytical model. Consider the diffusion of a scalar field B, which is
initially distributed with axial symmetry on a plane. For simplicity we neglect the curved
surface on the sphere, which is appropriate as long as Rspot � R�. We write the diffusion
equation in cylindrical polar coordinates (r, θ, z) for an axisymmetric field of strength B
along the z-direction as

∂B
∂t
= η

(
∂2B
∂r2
+

1
r
∂B
∂r

)
, (2.8)

where η is the magnetic diffusivity. Assuming an initial field with a Gaussian profile,

B(r, t = 0) = B0 exp

(−r2

R2
0

)
, (2.9)

a self-similar solution of the following form can be written as

B(r, t) =
Φ0T

πR2(t)
exp

( −r2

R2(t)

)
. (2.10)

Here Φ0T =
∫ ∞

0

∫ 2π

0
B(r, 0)rdθdr = πR2

0B0 is the total magnetic flux as the conserved
quantity and R(t) = (4ηt + R2

0)1/2 represents the characteristic length scale, which varies
with time, so that the diffusion time-scale η/R2(t) also is a function of time. Integrating
the flux density of the area with field strength above a threshold level f (taken as 0.14 in
our simulations), we find the time-dependent flux above the threshold as

Φ(t) = Φ0

(
1 − 4 fηt

(1 − f ) R2
0

)
, (2.11)
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Figure 2.13: Radial profiles of magnetic flux density in the course of diffusion, for the
numerical simulation (left), and the analytical solution (right). Dashed lines denote the
threshold level which is used to define the boundary of the unipolar region. Asterisks show
the values of the initial field distribution in the numerical solution and the continuous line
shows the Gaussian fit.

where Φ0 = Φ0T(1 − f ) is the initial value. The linear decrease of the flux in Eq. (2.11)
is reproduced in the numerical simulation of the monolithic spot case 1 in Fig. 2.11. A
comparison of the analytically and numerically calculated profiles is shown in Fig. 2.13.
Taking the initial characteristic radius R0 as the width σ of the initial Gaussian profile
of the numerical simulation, the lifetime of the enclosed region is 1623 days (about 1.5
diffusion time scales) from Eq. 2.11, in good agreement with the numerical simulation for
ηr = 0.

2.5 Discussion

We have made numerical simulations of the surface transport of bipolar magnetic regions
and starspots in various configurations, all regarded as purely radial magnetic fields with
Gaussian initial profiles. Lifetimes calculated here are for isolated bipolar regions and
unipolar spots or spot groups. In general, emergence of other bipoles at or around the lo-
cation of an existing bipolar region can lead to a complete change of the spot distribution,
which can be interpreted as the disappearance of a spot. This means that the real lifetimes
should be lower to some extent which is determined by the emergence rate of BMRs.
The estimated lifetimes of mid-latitude BMRs are in accordance with the estimated decay
time of stellar active regions based on Ca II H & K observations (Donahue et al. 1997)
and Doppler imaging of rapid rotators (Barnes et al. 1998, Hussain 2002, Kővári et al.
2004). Very low correlations between observations recorded a month apart set an upper
limit for the lifetimes of low- to mid-latitude magnetic regions on rapid rotators (see Hus-
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2 Magnetic flux transport on active cool stars: starspot lifetimes

sain 2002). When considered together with our simulations (assuming that the transport
parameters for a rapidly rotating G-K dwarf are similar to the solar values), the observed
lifetimes of 1 month also set an upper limit on the sizes of BMRs to be 10◦-20◦ in angular
diameter, or about 1% of the total surface area for a star with R = R�. Our simulations
for such a star indicate that the differential rotation within the observed range of values
for AB Dor does not have a very significant effect on BMR lifetimes. Varying the surface
shear or the emergence latitude changes the lifetimes by less than a month. We note that
the simulations which were run without the meridional flow has shown that the absence
of such a flow shortens the lifetime of a high-latitude BMR by only a few days. There-
fore, the meridional flow does not disturb the above mentioned result. The differences in
lifetimes for different emergence latitudes are caused by the flow pattern on the surface:

1. Stronger surface shear in mid-latitudes leads to lifetimes that are about 20 days
(≈ 30%) shorter than those for low (10◦) and high (60◦) latitudes.

2. The sign and the amplitude of the gradient of the meridional flow velocity also has
an effect upon lifetimes. The presence of a diverging flow at low latitudes and a
converging flow at high latitudes leads to shorter and longer lifetimes, respectively.
In addition, meridional flow advects low-latitude BMRs to regions with stronger
shear, thus the lifetime is shortened. It also advects the mid-latitude BMRs to higher
latitudes with weaker shear, and this prolongs the lifetime. For instance, the lifetime
of a BMR emerged at 60◦ latitude is 15 days longer than the one emerged at 30◦

latitude. This is the case for both of the AB Dor surface shear values. Hence, high-
latitude BMRs live longer than low-latitude ones, even when the local surface shear
is the same. In our model, this is caused only by the meridional flow.

BMRs which are larger than those discussed above live longer, and this tendency is
substantially increased when a tilt angle according to the relation α = 0.5λ0 is assumed.
For instance, a polar cap forms about six months after the emergence at 40◦ of a BMR
initially covering 12% of the stellar surface. Once such a “polar spot” is formed, it will
not be significantly affected by differential rotation because of its roughly circular shape
and circumpolar boundaries. When there are more BMRs with the same polarity orien-
tation, emerging at e.g. 60◦ latitude, we have shown that the lifetime of the polar spot is
prolonged significantly.

For (sub)giant stars we find that BMRs emerging at high latitudes can persist as polar
spots for more than 2 years. This is caused by the large radius of the star and the merid-
ional flow pattern, which is assumed to be decelerating with latitude for 37◦ < λ < 75◦.
Furthermore, during the evolution of a polar cap, emergence of new BMRs at high lati-
tudes may inject fresh flux of follower polarity and this can lead to a longer persistence of
the polar cap. This can possibly explain the observed polar spots with very long lifetimes
(cf. Hussain 2002).

In summary, we suggest that the observed long lifetimes for polar spots in both dwarf
and giant stars are likely to be caused by

1. high-latitude emergence of BMRs, as indicated by the numerical simulations of
rising flux tubes (Schüssler et al. 1996, Granzer et al. 2000),

2. supply of follower-polarity flux by transport from mid-latitudes,
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3. weak differential rotation near the poles, and its inefficiency in disrupting polar
magnetic regions,

4. the possibility of small turbulent magnetic diffusivity, owing to larger supergranules
in subgiant atmospheres.

The possibility (2) has been considered by Schrijver and Title (2001), whose simulations
show the formation of a unipolar ring of spots surrounding an opposite-polarity polar cap
on a highly active solar analogue. Process (1) was also studied in the simulations by
Mackay et al. (2004), resulting in the intermingling of opposite polarity regions near the
poles, owing to emergence at high-latitudes and an assumed meridional flow amplitude
about 10 times larger than the solar value.

It is not obvious how to describe starspots and spot clusters in the framework of a
linear surface flux transport model. Extrapolations of spot areas to stars more active
than the Sun (Solanki and Unruh 2004) indicate that a large fraction of the observed
starspots are smaller than the resolution limits of Doppler imaging maps and thus might
be missed on existing reconstructions. These authors further suggest that, provided the
spot areas are lognormally distributed, it is likely that the observed spots on RS CVn stars
are actually conglomerates of smaller spots. Our simulations of starspots indicate that a
large monolithic spot (case 1 in Sec. 2.4) and a similar-sized cluster of large spots (case
3) have similar lifetimes. Thus they do not favour either of the two configurations. In the
cases 1 and 3, the magnetic flux of the region above the threshold field strength decreases
linearly with time. We have demonstrated that this is a natural consequence of the two-
dimensional diffusion of a scalar quantity with a Gaussian initial profile, when a region
above the detection threshold of the quantity is considered.

We have treated the configuration and transport of a unipolar spot/cluster in a number
of other ways, all chosen such that the total flux is kept the same. As a variant of case
3, we considered the effects of solar-like differential rotation and meridional flow on a
cluster of large spots (case 4). The resulting lifetime turned out to be strongly reduced
in comparison to the case without large-scale flows. In the initial phase, the individual
spots expand rapidly because of their relatively small sizes. After their coalescence, the
general evolution pattern becomes similar to that of the case 2, in which the evolution of
a monolithic spot is studied in the presence of large-scale flows. Furthermore, we have
considered a region (case 5) with an area about 10 times larger than a monolithic spot
having the same magnetic flux. This is a very simple representation of a cluster of small
starspots on a large area. This configuration has an intermediate lifetime, between that
of the large-spot cluster with flows (case 4) and of the one without flows (case 3). In
summary, the numerical simulations presented in Sec. 2.4 indicate that the lifetime of a
unipolar spot or spot cluster can differ by a factor of about 2.5 depending on the assumed
initial flux configuration and the effects of large-scale flows.

Hall and Henry (1994) give lifetimes for starspots of various angular sizes based on
their photometric light curve analysis. We compared their lifetime estimates with the re-
sults of our simulations. We have selected the main sequence G-K type single and binary
stars (5 stars/systems in total) from their sample. In Fig. 2.14 we give the comparison.
Both sets of data are roughly consistent with each other. Hall and Henry (1994) sug-
gested two “laws” for starspot lifetimes, based on long-term photometric observations on
a sample of active main sequence, subgiant, and giant stars of spectral types G, K, M. For
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2 Magnetic flux transport on active cool stars: starspot lifetimes

Figure 2.14: Comparison of lifetime estimates of our simulations for different areas with
photometric results of Hall and Henry (1994).

very large spots, they assume that the lifetime is determined by shearing due to differential
rotation, such that the spot lifetime is assumed to be inversely proportional to spot radius
and differential rotation coefficient. In the second relation, the lifetime is proportional to
spot radius and stellar radius; it is thought to apply for relatively small spots which have
lifetimes shorter than the disruption time scale of differential rotation. Since they do not
give error bars for spot sizes and lifetimes, we only take the data at the face value. Their
plots are logarithmic in both axes and the stellar sample covers stars with very different
radii and starspots probably at different latitudes (the data do not include information on
the latitudes of the spots). Different stellar radii can cause a spread in lifetimes to within
an order of magnitude, considering the R2

�- dependence mentioned in Sec. 2.3.2 and the
weaker surface shear. Sources of error in the area calculation based on brightness changes
can also include the fact that there is not only one big starspot but a cluster of spots with
different sizes and lifetimes. Moreover, another spot might emerge within the lifetime of
the other, which would cause errors in both the area and the lifetime. As a result, one
cannot necessarily assume an individual coherent structure that is having such a lifetime.
According to the test models made by Eker (1999), a photometric signal with an ampli-
tude of about 0.15 mag, for light curves which are accurate by ±0.005 mag in brightness
and by ±0.005 in the linear limb-darkening coefficient, the uncertainty of the spot size is
comparable to the size itself.
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We suggest that if the observed wave-like distortion in light curves can be caused by
large spot conglomerates, differential rotation can disperse the group of relatively small
spots over a large area so that the initial photometric signal (wave-like distortion seen
in the light curves) would cease, but the individual spots can still survive without being
detected, having lifetimes proportional to sizes. Emergence of new spots may compli-
cate the situation even further. Taking into account the fact that unique solutions of spot
distributions using light curves are in many cases not possible, the rotational modulation
of activity indicators as well as the patches in Doppler maps can indicate different sub-
structures for spot configurations such as those considered in the simulations in Sect. 2.4.

Vogt et al. (1999), using Doppler images of HR 1099 spanning 11 years, showed that
the “migrating photometric wave” is not caused simply by longitudinal migration of spots
on a differentially rotating star but rather to changes in the spatial distribution of a few
spots that emerge and then disappear, at the same mean longitude. The same authors also
tracked two long-lived spots and showed that they emerged at mid-latitudes and migrated
upwards to merge with the polar spot. They report a weak but anti-solar differential ro-
tation (poles rotating more rapidly than the equator), contrary to our model assuming a
solar-like differential rotation. However, one can obtain a long lifetime provided that the
magnetic flux concentrates in a circular polar cap of radial field, regardless of the strength
and the pattern of differential rotation. Our simulations also indicate that additional flux
from tilted BMRs emerging at mid-latitudes can always be transported by the merid-
ional flow to feed the polar cap flux. In Sec. 2.3 we have shown that a large tilted BMR
emerging at an intermediate latitude is transported by meridional flows and a solar-like
differential rotation to form a polar spot. We have also shown that the follower-polarity
flux from tilted BMRs emerging randomly in time and longitude, at mid- to high latitudes
can feed an already existing polar spot with additional flux.

The simulations of surface magnetic flux transport presented in this chapter let us
draw the following conclusions.

• The lifetime of a single, isolated bipolar magnetic region on a rapidly rotating star
of solar radius is of the order of a few months, depending on the emergence latitude
and the strength of surface shear.

• The combined effects of diffusion and high emergence frequency are responsible for
the short lifetimes of starspots and stellar magnetic regions at low and mid-latitudes.

• Polar spots originate from the follower polarities of single or multiple tilted bipolar
regions, emerging at mid- or high latitudes. A polar spot can be maintained by
high-latitude emergence of new bipoles having the same polarity orientation.

• Polar caps of evolved stars have lifetimes proportional to R2
�. For low-latitude re-

gions, shorter lifetimes result from an increase of the diffusion rate due to differen-
tial rotation.

• We find no clear indication as to whether large starspots are monolithic or clusters
of smaller spots. The flux decay strongly depends on the details of the interaction
between surface magnetic fields and large-scale flows, and the nature of turbulent
diffusion.
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3 Effects of external flows on thin
magnetic flux tubes

The spatio-temporal organisation of solar magnetic field at large scales requires a mecha-
nism for the generation, storage, and emergence of magnetic flux. In the present chapter, I
will consider some aspects of magnetic flux storage in the overshoot region at the bottom
of the solar convection zone. The central problem is whether magnetic flux tubes with
field strengths on the order of 104 − 105 G can be stored under the influence of external
flows in the overshoot region, for times of the order of a few years. For the storage of such
flux tubes which contain fluxes comparable to large bipolar magnetic regions on the Sun
(∼ 1022 Mx), the entire convection zone and the radiative core are not suitable locations.
The reasons can be summarised in the following points:

1. Consider a horizontal magnetic flux tube in the superadiabatically stratified con-
vection zone. If it is in thermal equilibrium with the surroundings, it suffers a net
upward buoyancy force owing to the lateral pressure balance. Even if the tube is ini-
tially not buoyant (i.e., when it is cooler than its surroundings), the superadiabatic
temperature gradient of the ambient medium would lead to a convectively unstable
state. For instance, when an external perturbation drags a flux tube upward, the
entropy difference between inside and outside the tube increases, owing to the neg-
ative entropy gradient of the ambient medium. Because of the excess entropy of the
medium inside, the tube continues to rise.

2. In the upper parts of the radiative core, even though a strong toroidal field may, in
principle, be generated by velocity shear, it cannot escape, because of the highly
stable stratification. Therefore, it is not likely to be responsible for the formation of
magnetic regions on the surface.

The most likely location for the flux storage is the overshoot region below the convec-
tion zone, where the subadiabatic stratification and overshooting convective downdrafts
may compensate for the magnetic buoyancy for a time comparable with the cycle length.
Furthermore, a toroidal flux tube can reach a mechanical equilibrium as a consequence of
its buoyant rise and the magnetic tension force leading to poleward drift (Moreno-Insertis
et al. 1992). In mechanical equilibrium, the tube has neutral buoyancy, so the curvature
force is balanced by the Coriolis force induced by a prograde flow along the tube, relative
to the rest frame of the ambient medium.

Ferriz-Mas and Schüssler (1995) have studied the linear stability of thin toroidal mag-
netic flux tubes at the bottom of the solar convection zone with arbitrary field strength
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and latitude, under the effects of nonaxisymmetric linear perturbations. They have ob-
tained the stability properties of flux tubes as a function of latitude, field strength, and
the location in the convective overshoot region (see Fig. 3.7). Toroidal flux tubes located
in the overshoot region are subject to undulatory (Parker-type) instabilities with growth
times (e-folding time) of less than one year, for B � 105 G. This indicates that, in the
linear regime, flux tubes with field strengths on the order of 104 G may be stored in the
overshoot region for sufficiently long times in the course of the dynamo cycle. The time
that it takes for the velocity shear in the solar tachocline to wind up the poloidal magnetic
field into a toroidal (azimuthal) field is on the order of a few years. Parker-unstable tubes
with growth times longer than this time may contribute to the magnetic flux reservoir in
the overshoot region.

There may be other possibilities which may lead to rising flux tubes at times shorter
than one year. Apart from the case of linear (first order) perturbations discussed above,
finite perturbations caused by external flows may introduce nonlinear effects, which may
lead to flux tube eruption. The reason is that, while the stratification of the overshoot
region is subadiabatic (∇ < ∇ad) and stable to convection, the superadiabaticity, δ =
∇−∇ad, increases by about 5 orders of magnitude from the lower boundary (δ ∼ −9 ·10−2)
to the upper boundary (δ ∼ −5 · 10−7) of the overshoot region, according to the model
of Skaley and Stix (1991). Caligari et al. (1998) have investigated the effect of a local
upflow on a linearly stable flux tube in mechanical equilibrium near the bottom of the
overshoot region. They found that an upflow with velocities between 20-50 m s−1 and a
flux tube with an initial field strength of 104 G, can trigger a nonlinear Parker instability,
in the form of a rising loop, which reaches up to the surface within one year. At the
first stages of its evolution, the loop reaches a state of dynamical force equilibrium. A
subsequent downflow along the tube increases buoyancy at the top of the loop, so that
it continues to rise. Because the drag force per unit volume of the tube exerted by the
initial upflow is inversely proportional to the tube radius, a thinner tube is more likely to
erupt, provided that the radial extent of the upflow is comparable with the local pressure
scale height. For a magnetic field strength of 6 · 104 G, which is about half the critical
value for linear Parker instability, the buoyancy force overcomes the magnetic curvature
force, by means of a downflow from the crest of the loop, leading to an eruption within
one year. However, the authors estimate an average upflow velocity using the model by
van Ballegooijen (1982), and it is about an order of magnitude less than the velocities that
they found for the nonlinear Parker instability. This indicates that convective flows are
not likely to trigger eruption within one year for linearly stable flux tubes in the overshoot
region.

Schüssler and Ferriz Mas (2007) have made a linear stability analysis to investigate the
effect of flows perpendicular to the axis of a horizontal thin flux tube, which was chosen
to be in equilibrium in the lack of external flows. They found monotonic and oscillatory
instabilities for flow velocities on the order of the Alfvén velocity, and for wavelengths
(along the flux tube) much smaller than those found in the case of linear Parker instability
(in which external flows are not taken into account). They found two effects of the external
flows which cause instabilities: 1) perturbations of the external pressure stratification by
the inertial force (which is caused by the tube carrying material around it), 2) changes
of the hydrodynamic drag force in the course of the displacement of the tube from its
equilibrium position.
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Holzwarth et al. (2007) have studied the effects of field-aligned flows for a horizontal
flux tube in the overshoot region. When the drag force is taken into account in terms
of a Stokes-type friction, which is linear in perpendicular velocity, they found that field-
aligned flows above a critical speed lead to overstability of transverse waves propagating
along the tube. They found that this friction-induced instability can develop for arbitrarily
small flow speeds near the limit of Parker instability.

The studies mentioned above indicate that fluid flows in and around flux tubes have
to be considered when discussing magnetic flux storage in the overshoot layer. A critical
question in this respect is whether an external flow within the expected range of convective
velocities may eventually lead to a buoyancy instability of the flux tube with a growth time
on the order of less than a few years. This chapter is devoted to an extensive investigation
concerning the effects of external flows on thin toroidal flux tubes is needed in order to
quantify the effects of flows in the region where magnetic flux is stored for the operation
of the dynamo.

In the following, I will consider the deformation of toroidal flux tubes subject to per-
pendicular flows, in order to derive relations between the properties of the tube, the flow,
and the resulting displacement (Sect. 3.1). The relations provide information about how
much the flux tube would be dragged by a perpendicular flow with a given velocity dis-
tribution. In Sect. 3.2, I present numerical simulations which show that nonlinear Parker
instability can be trigerred when the perturbation amplitude is larger than a critical level.
The growth time of both the nonlinear and friction-induced instabilities are proportional
to the amplitude of the initial perturbation. Finally, I will investigate the behaviour of the
friction-induced instability (Holzwarth et al. 2007) in the nonlinear regime by numerical
simulations (Sect. 3.2). I will determine an approximate value for the velocity of the per-
pendicular flow, which allows for the storage of the flux tube for a few years before the
instabilities develop.

3.1 Deformation of flux tubes by perpendicular flows

In this section, I discuss the stationary equilibrium properties of toroidal flux tubes which
are deformed by perpendicular flows. The aim is to study under which conditions the
deformation becomes large enough, so that parts of the flux tube would enter radiative
and/or convective zones. If the flux tube hits the radiative core, a slingshot-like effect may
occur, in which the trough of the tube becomes highly buoyant and is ejected upwards.
If a part of the tube enters the convection zone, the crest of the tube may be destabilised
owing to relatively large superadiabaticity. The goal here is to test these possibilities
(Sect. 3.1.1-3.1.2). In addition, the question of how much a flux tube is displaced from its
equilibrium position by the external flows as a function of magnetic flux will be consid-
ered in Sect. 3.1.3.

I consider a toroidal flux tube located in the convective overshoot region between the
convection zone and the radiative interior. For the stratification of the ambient medium,
a model convection zone developed by Skaley and Stix (1991) is considered, which uses
a non-local treatment of convection as described by Shaviv and Salpeter (1973). In the
model, the overshoot region extends about 104 km below the base of the convection zone,
which is defined as the depth at which the convective energy flux becomes zero (changes
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its sign), at about r = 512 Mm (see Sect. 1.4). In the present chapter, the terms “bottom”,
“middle”, “top” of the overshoot region are used to refer to the radial positions at, respec-
tively, 2000, 5000, and 8000 km above the lower boundary of the overshoot region, which
is at the radius of r = 502 Mm (∼ 0.72R�).

In order to determine the conditions under which a deformed flux tube reaches the
convective or radiative zones, I consider an azimuthally periodic flow perpendicular to
each mass element of the flux ring. In the following, I will derive relations between the
flow velocity amplitude and the maximum displacement of the tube from its equilibrium
state, corresponding to ranges of values for the tube thickness, magnetic flux density, and
the azimuthal wavenumber in case of an azimuthally periodic flow.

A general linear stability analysis of thin magnetic flux tubes of toroidal geometry
at the bottom of solar convection zone was done by Ferriz-Mas and Schüssler (1993)
for the equatorial plane and by Ferriz-Mas and Schüssler (1995) for tubes outside the
equatorial plane. They take the equations for mass conservation, magnetic induction,
momentum, and the condition for lateral pressure balance for a thin flux tube and apply to
them first-order perturbations in the Lagrangian reference frame. The resulting equations
are linearised. Since the ratio of gas pressure p to magnetic pressure B2/8π, called β, is
much larger than unity in the lower convection zone, the equations are rewritten in the
limit β � 1. Rigid internal rotation is assumed for the Sun. I first consider a toroidal flux
tube in the equatorial plane, and then the more general case outside the equatorial plane.
I use a frame of reference rotating with the angular velocity of the flux tube in stationary
equilibrium, Ω, whereas the angular velocity of the external medium is Ωe.

For stationary equilibrium of a flux ring in the equatorial plane, the azimuthal and
latitudinal components of the momentum equation vanish identically. Assuming neutral
buoyancy1, the radial component yields

B2
0

4πR0
− ρi0r0(Ω2 −Ω2

e0) = 0, (3.1)

where R0 is the distance from the solar rotation axis, ρ the density, r the distance to the
centre of the Sun. The index i stands for the quantities inside the flux tube, while e stands
for the external values. “0” means the equilibrium value for a given quantity. Eq. 3.1
shows that the magnetic curvature force and rotationally induced forces must balance
each other, requiring Ω � Ωe0.

I consider the drag force per unit volume exerted by a steady flow of velocity �⊥
perpendicular to a straight cylinder,

FD = −CD
ρe0�

2
⊥

πRt
, (3.2)

where CD is the hydrodynamic drag coefficient which is taken to be unity (because of
the assumed cylindrical shape of the flux tube and the high Reynolds number) (Batchelor
1967), ρe0 is the equilibrium value of the external density, and Rt is the cross-sectional
radius of the tube.

1This condition is strictly required for the mechanical equilibrium of a flux tube outside the equatorial
plane.
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3.1.1 Flux tubes in the equatorial plane

In order to obtain relations between the flow velocity and the resulting displacement, I
consider the linearised equations of motion for perturbations (ξR, ξφ, ξλ), where R is the
distance from the rotation axis, φ is the longitude, and λ is the latitude. Here, only radial
and azimuthal components (perturbations in the (R, φ) plane) are considered, because the
equation for the latitudinal component is decoupled in the equatorial plane. Following
Ferriz-Mas and Schüssler (1993), the linearised equations of motion for the perturbations
in the (R, φ) plane read

τ2
(
ξ̈R − 2Ωξ̇φ

)
= 2 f 2∂

2ξR

∂φ2
0

− 4 f

(
f − 1

2γ

)
∂ξφ

∂φ0
+ TξR, (3.3)

τ2
(
ξ̈φ + 2Ωξ̇R

)
= 2 f 2∂

2ξφ

∂φ2
0

+ 4 f

(
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2γ

)
∂ξR
∂φ0
, (3.4)

where

T = 2(σ − 1) f 2 +
4
γ

f − 2
γ

(
1
γ
− 1

2

)
+ βδ + τ2(σ − 1)(Ω2

e0 −Ω2), (3.5)
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(
βHp

g0

)1/2

=
√

2
Hp

�A
, (3.6)

f ≡ Hp

R0
=

pi0

g0ρi0R0
, (3.7)

β ≡ 8πpi0

B2
0

. (3.8)

The meanings of the various symbols in the above equations are as follows. Hp is the lo-
cal pressure scale height, δ is the superadiabaticity, pi0 and ρi0 are the equilibrium values
for the pressure and density inside the tube, respectively, r0 is the spherical radial position
of the equilibrium tube, Ω and Ωe0 are, respectively, the angular velocities of the plasma
in the tube and the external medium, �A is the Alfvén velocity, B0 is the magnetic field
strength and g0 the gravitational acceleration with a radial dependence g ∝ r σ, where σ
is taken to be −2, which means that the small contribution of the mass inside the con-
vection zone is neglected. I consider a deformation of the flux tube by the drag force,
Eq. (3.2), owing to a perpendicular flow with a velocity amplitude �⊥, assuming that a
force balance (dynamical equilibrium) results, which can be described by the stationary
parts of Eqs. (3.3)-(3.4). The resulting equations of motion for stationary equilibrium
(steady state) in the (R, φ) plane read

2 f 2∂
2ξR

∂φ2
0

− 4 f

(
f − 1

2γ

)
∂ξφ

∂φ0
+ TξR =

−τ2�2⊥
πRt

(3.9)

2 f 2∂
2ξφ

∂φ2
0

+ 4 f

(
f − 1

2γ

)
∂ξR
∂φ0

= 0, (3.10)
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3 Effects of external flows on thin magnetic flux tubes

Figure 3.1: Drag-induced downward displacement (in units of the local pressure scale
height) as a function of the downflow velocity at the bottom of the overshoot region (con-
tinuous line) and at the middle of the region (dashed line), respectively. The pressure
scale height is about 55 Mm.

where the drag force has been multiplied by the factor τ2/ρe0 for consistency with the
non-dimensionalisation of Eqs. (3.3)-(3.4). Because the drag force applies only in the
direction normal to the axis of the flux tube, it only appears in the equation for the radial
component (Eq. 3.9). Eqs. (3.9-3.10) correspond to the stationary equilibrium in which
the drag force is balanced by the magnetic curvature force.

Axisymmetric perturbation. Consider a toroidal flux tube in the overshoot region,
located in the equatorial plane. The simplest case is a perturbation caused by an axisym-
metric downflow (towards the centre of the star). This is rather unlikely to be the case in
the Sun, but will provide a rough estimate for the displacement of the tube as a function of
flow velocity. For axisymmetric displacements, Eq. (3.10) vanishes and Eq. (3.9) yields

ρe0�
2
⊥

πRt
= Tξr. (3.11)

Fig. 3.1 shows the relation between the perturbation ξr and the velocity �⊥, for Rt = 103 km
at the middle and the bottom of the overshoot region, respectively. Overshoot velocities
between 1-30 m s−1 (van Ballegooijen 1982, Skaley and Stix 1991) lead to displacements
up to the order of 10−3 − 10−2 Hp (55-550 km).

Nonaxisymmetric perturbations. Now I consider sinusoidal perturbations applied
to toroidal flux tubes in the overshoot region. Suppose that the perturbation and its driver,
the drag force have the form

[ξ,FD] = [ξ̂, F̂D] exp(imφ0), (3.12)
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3.1 Deformation of flux tubes by perpendicular flows

where F̂D = ρe0�
2
⊥/πRt.

Substitution of Eq. (3.12) into Eqs. (3.9)-(3.10) leads to the system

⎛⎜⎜⎜⎜⎜⎝ 2 f 2m2 − T 4 f
(
f − 1

2γ

)
im

4 f
(
f − 1

2γ

)
im −2 f 2m2

⎞⎟⎟⎟⎟⎟⎠︸���������������������������������������︷︷���������������������������������������︸
(
ξ̂r
ξ̂φ

)
=

(
τ2�2⊥/πRt

0

)
(3.13)

A

with the solution

ξ̂r =
−1

detA
2 f 2m2τ

2�2⊥
πRt

(3.14)

ξ̂φ =
−1

detA
4 f

(
f − 1

2γ

)
im
τ2�2⊥
πRt

(3.15)

I take the perturbations as in Eq. (3.12), with complex amplitudes and use Eqs. (3.14)-
(3.15) and obtain

�e(ξr) =

[
−(detA)−12 f 2m2τ

2�2⊥
πRt

]
cos(mφ) (3.16)

�e(ξφ) =

[
−(detA)−14 f

(
f − 1

2γ

)
m
τ2�2⊥
πRt

]
sin(mφ). (3.17)

The resultant displacement vectors are shown in Fig. 3.2 for a flux tube at the bottom of
the overshoot region, for m = 5, where �⊥ is taken as 14 m s−1 from the non-local mixing
length model by Skaley and Stix (1991). The amplitude of the azimuthal displacement is
smaller than the radial one by a factor

|ξφ|
|ξr| =

∣∣∣∣∣∣ 1m
(
2 − 1
γ f

)∣∣∣∣∣∣ � 0.68. (3.18)

Because the phase difference between the radial and azimuthal displacements is π/2, the
maximum azimuthal displacement occurs at the nodes of the radial displacement. There-
fore, the azimuthal perturbation does not lead to a significant change in the positions of
the crests and troughs of the flux tube.

3.1.2 Flux tubes outside the equatorial plane

The corresponding equations for a stationary flux ring at an arbitrary latitude λ0, in the
limit of β � 1 (see Ferriz-Mas and Schüssler 1995, Sect. 4.1), deformed by the drag force
FD read:

2 f 2∂
2ξR

∂φ2
0

+Cφ
∂ξφ

∂φ0
+CRξR +Czξz = − τ

2

ρe0
FD cos λ0, (3.19)

2 f 2 c2
T

v2
a

∂2ξφ

∂φ2
0

+ AR
∂ξR
∂φ0
+ Az
∂ξz
∂ξφ

= 0, (3.20)
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3 Effects of external flows on thin magnetic flux tubes

Figure 3.2: Geometry of the axis of a perturbed flux tube in the equatorial plane, in a state
of stationary equilibrium between the drag force exerted by the periodic flow and the
magnetic curvature and buoyancy forces. ξr = 0 is the original position of the flux tube.
Arrows denote the displacement of the mass elements of the tube due to the flow-induced
deformation.

2 f 2∂
2ξz

∂φ2
0

+ Dφ
∂ξφ

∂φ0
+ DRξR + Dzξz = − τ

2

ρe0
FD sin λ0, (3.21)
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Dφ = −Az, DR = Cz, Dz = Δ sin2 λ0,

Δ = βδ − 2
γ

(
1
γ
− 1

2

)
.

(3.23)

Consider a flow along the spherical radial direction, applied to a flux tube located at
latitude λ0. Applying the ansatz Eq. (3.12) to Eqs. (3.19)-(3.21), one obtains

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
CR − 2 f 2m2 imCφ Cz

imAR −2 f 2m2c2
T/v

2
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3.1 Deformation of flux tubes by perpendicular flows

This equation can be solved in a straightforward way using Cramer’s rule. The solution is

ξ̂R =
τ2m2
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Substituting the complex amplitudes (3.25)-(3.27) in the respective components of the
ansatz Eq. (3.12) and using Euler’s identity, the components of the displacement read

ξR = ξ̂R cos(mφ0),

ξφ = −�m(ξ̂φ) sin(mφ0),

ξz = ξ̂z cos(mφ0). (3.28)

Again, there is a phase difference of π/2 between the azimuthal displacement ξφ and
the spherical radial displacement ξr = (ξ2

R + ξ
2
z )1/2. As a result, the radial position of

the tube crest is not affected significantly by the azimuthal displacements, similar to the
case of an equatorial flux tube in Sect. 3.1.1. Fig. 3.3 shows ξr as a function of φ,
using Eqs. (3.28), evaluated at three depths in the overshoot region. The values for the
convective velocity are taken from a non-local mixing length model (Skaley and Stix
1991). The azimuthal wave number is chosen such that in each case the crests or the
troughs of the perturbed tube would get very close to the boundaries of the overshoot layer,
the extent of which is about 104 km according to the model. Let us call this azimuthal
wave number mcrit and the resulting perturbation the critical perturbation. For m < mcrit

(wavelength larger than a critical value), the magnetic curvature force is smaller than in
the case of the critical perturbation, so that the tube can exceed the boundaries of the
overshoot region.

At the bottom of the overshoot region, relatively low wave numbers (mcrit ∼ 5) cause
the troughs of the tube to touch the highly stable radiative zone. Because of the steep neg-
ative gradient of superadiabaticity (δ) with depth at the interface between the overshoot
layer and radiative zone, the troughs of the tube become highly buoyant. Therefore, when
the flow ceases, the troughs of the tube may start to rise due to strong magnetic buoyancy.

At the middle of the overshoot layer, where the convective flow speed is 26 m s−1,
perturbations with mcrit = 8 are able to drag the tube crests up to the convection zone and
the troughs down to the radiative zone boundary.

At the top of the overshoot region, large wave-number perturbations (mcrit ∼ 15) are
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3 Effects of external flows on thin magnetic flux tubes

Figure 3.3: Geometry of a flux tube deformed by azimuthally periodic flows, at three
initial locations: (from top to bottom of the figure) the top, the middle, and the bottom
of the overshoot region. The latitude is 30◦ and the field strength is 6 · 104 G. The left
vertical axes show the distance from the middle of the overshoot region in kilometers on
the left axis, and in units of local pressure scale height (at r = rmid) on the right axis.
The azimuthal wavenumber is chosen such that the troughs or crests of the tube partially
enters the convective or the radiative zones. The radius of the tube is 1000 km.

able to carry the tube crests up to the convection zone, owing to the relatively large values
for the flow speed (31 m s−1) and superadiabaticity (δ � −5.8 ·10−7). At this location, it is
thus more likely for small-scale loops to form, compared to the deeper parts of the layer.
The corresponding azimuthal extension of such a loop (m ∼ 15) is comparable to that of
a large bipolar magnetic region on the Sun.

One may expect that rapidly rising flux loops can be formed by localised upflows at
the top of the overshoot region. The question is whether such an eruption of a small
part of the flux tube can occur near the top of the overshoot region. In order to test this
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3.1 Deformation of flux tubes by perpendicular flows

Figure 3.4: Stationary equilibria for flux tubes deformed by a radial external flow that
is periodic in azimuth. The magnetic flux density of the tube is B = 6 · 104 G and the
tube radius is Rt = 1000 km. The vertical axes denote the distance of the tube crest from
the middle depth of the overshoot region on the left hand side and in units of the local
pressure scale height at the mid-overshoot region on the right hand side. The horizontal
axis shows the amplitude of the flow velocity. The full lines correspond to a tube at the
bottom of the overshoot region (only downflows considered), the dashed lines to the one
at the middle of the overshoot (up- and downflows), and the dash-dotted line to the top of
the overshoot region (only upflows). The shaded regions indicate the radiative zone at the
bottom and the convection zone at the top.

possibility, I have carried out nonlinear numerical simulations of a flux tube, which is
linearly unstable at the top of the overshoot region. The azimuthal wave number of the
perturbation has been chosen to be m = 15. The simulation has shown that the wave
energy in high modes is gradually transferred into lower-m modes. The tube erupts with
m = 2 mode, which is consistent with the prediction of the linear stability analysis.

In summary, the critical azimuthal wave number required to carry the tube to the
boundaries of the overshoot region, mcrit, decreases with increasing depth. The relation-
ship between ξr, m, and the radial location of the tube is determined by 1) magnetic
curvature force, which increases with m, 2) the convective velocity, which decreases with
depth in the overshoot region.
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3 Effects of external flows on thin magnetic flux tubes

3.1.3 Parameter study

Dependence on the drag velocity and the azimuthal wave number. Fig. 3.4 shows the
variation of r − rmid, the radial distance of the crest of the perturbed tube from the middle
of the overshoot region, as a function of the velocity amplitude of the radial external flow
for various azimuthal wave numbers.

The thickness of the overshoot region in the model corresponds to about 20% of the
local pressure scale height at the middle of the layer. For a flux tube deformed by about
5000 km from the middle of the region, the perturbation is about 10% of the local pressure
scale height. On the other hand, different parts of the flux tube may be subject to signif-
icantly different magnetic buoyancy, because the superadiabaticity changes about three
orders of magnitude between the upper and lower boundaries of the overshoot region. A
larger perturbation is not expected at those depths for the chosen magnetic fluxes, because
the convective velocities in the overshoot region are not expected to be considerably larger
than about 50 m s−1. At the top of the overshoot region, a small-scale deformation (a
high m) can drive the flux tube into the convection zone proper, whereas for the bottom of
the overshoot region, coherent downflows on a rather large scale (m ∼ 5) are required to
push the tube down to the radiative interior. However, the actual depth of penetration into
the radiative zone cannot be estimated in this way, because the superadiabaticity changes
strongly, and thus the linear approach becomes incorrect. In fact, the superadiabaticity
becomes strongly negative so that the stable stratification acts like a solid wall, largely
inhibiting any further downward penetration. I have made thin flux tube simulations for
a downdraft of Gaussian shape with an azimuthal extension corresponding roughly to
the wave number range 10 � m � 20 near the bottom of the overshoot region. The
trough of the flux tube bounces back from the radiative zone boundary. However, be-
cause of the drag force, which is proportional to the square of the rising tube velocity,
it is quickly decelerated already within the overshoot region and its translational kinetic
energy is transformed into MHD waves propagating along the tube.

Dependence on the magnetic field strength and the tube radius. Fig. 3.5 shows the
variation of the maximum displacement of a flux tube as a function of its field strength.
The cross-sectional radius of the flux tube is 103 km, and the amplitude of the azimuthally
periodic perpendicular flow is 14 m s−1 at the bottom, 26 m s−1 at the middle, and 31 m s−1

at the top of the (overshoot) region. As the azimuthal wave number of the flow is in-
creased, the tension force resists the deformation of the tube more strongly, so that the
perturbation decreases. For fields with B > 105 G and perturbations with m > 10, the
deformation of the tube by the flow becomes smaller than 10−3Hp. The corresponding
superadiabaticity difference between the depths of the crests and the troughs is smaller
than 10−7. Therefore, a perturbation amplitude of this order may be chosen when carry-
ing out nonlinear numerical simulations of toroidal thin flux tubes (e.g., in Chapter 4).
In Sect. 3.2, it is shown that for larger perturbations, nonlinear effects can determine the
growth rate of Parker instability. For increasing B and m, the radial displacement de-
creases and eventually becomes less sensitive to the field strength, owing to increasing
magnetic tension force. For m = 20, a perpendicular flow with a speed of 26 m s−1, ap-
plied to a tube with B = 105 G, located at the middle of the overshoot region, displaces it
to an extent of about 5 ·10−3Hp (∼300 km). Concerning the onset of Parker instability, the
results of numerical simulations of toroidal flux tubes (e.g., in Sect. 3.2 and Chapter 4)
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3.1 Deformation of flux tubes by perpendicular flows

Figure 3.5: Stationary equilibria for flux tubes deformed by a radial external flow that
is periodic in azimuth. The radius, the latitude, the initial depth of the flux tubes, and
the vertical axis, and the line styles in the plots are the same as in Fig 3.4. The varied
parameter is the magnetic field strength of the tube (horizontal axis). The tube is subjected
to an azimuthally periodic flow with an amplitude of 10, 26, 31 m s−1 for the bottom,
middle, and top of the overshoot region, respectively. The red dashed lines indicate the
boundaries of the radiation and convection zones.

with perturbation amplitudes ξ̂ � 10−3Hp (55 km) are in overall agreement2 with the
prediction of the linear stability analysis.

Now I set B = 6 · 104 G and �⊥ = 26 m s−1 and vary the tube radius, Rt, as shown in
Fig. 3.6. Because the drag force is inversely proportional to Rt, the dynamics of thicker
tubes is less affected by the external flow. For m = 20, tubes thicker than about 2000 km

2The numerical simulations are made with a superposition of modes between m = 1 and m = 5. How-
ever, the results of simulations do not depend on the choice of the azimuthal mode, say m = 1 or m = 20. In
the latter case, the energy in high-degree modes are transferred to low-degree modes, such that the fastest
growing mode is still m = 1 or m = 2. On the other hand, for ξ̂ � 10−3Hp, nonlinear effects become large
enough to lead to instability even in the linearly stable regime. In other words, the amplitude of pertur-
bations chosen for the numerical simulations corresponds to a disturbance that could indeed be caused by
perpendicular flows with the estimated range of convective speeds in the framework of the mixing length
approximation.
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3 Effects of external flows on thin magnetic flux tubes

Figure 3.6: Same as Fig. 3.5, for B = 6 · 104 G and varying tube radius.

in diameter do not touch the boundaries of the overshoot region. At a first glance, this
indicates that thicker tubes may be stored for longer times than thinner tubes. However,
diameters above 5000 km are not relevant in the present context, because the thin flux tube
approximation is not valid for a tube which has a diameter comparable with the thickness
of the overshoot layer.

3.2 Nonlinear effects caused by finite perturbations

The purpose of this section is to discuss the effects of perturbations beyond the linear
limits and to obtain the velocity of the external flow which allows for the storage of
toroidal magnetic flux tubes in the overshoot region for times on the order of 1000 days.
The linear stability analysis for thin toroidal magnetic flux tubes as carried out by Ferriz-
Mas and Schüssler (1995) gives the growth rate of Parker instability as a function of
latitude and time. Figure 3.7 shows stability diagrams for flux tubes located at the bottom
and the middle of the overshoot region, for the case of rigid rotation.

When carrying out test simulations for thin toroidal magnetic flux tubes in order to
seek an appropriate value for the perturbation amplitude, I realised that for linearly sta-
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Figure 3.7: Stability diagrams for a flux tube in the bottom (left panel) and the middle
(right panel) of the overshoot region. White areas show the linearly stable regime. Con-
tour lines denote the growth time of the undulatory instability, in days. The two thick
contours correspond to 100 and 300 days. The fastest growing mode is m = 1 within the
light-shaded regions, and m = 2 within the dark shaded region.

ble configurations (shown as white regions in Fig. 3.7), initial perturbations which have
a radial extent larger than about 10−3 Hp (∼ 55 km) lead to eruption of the tube in times
of days to weeks. The initial perturbation was periodic in azimuth with a superposition
of modes from m = 1 to m = 5. They were applied in radial, azimuthal, and latitudinal
directions. It turned out that the growth rate of this nonlinear instability depends on the
perturbation amplitude. A possible explanation for the instability is that the initial per-
turbation and the steep radial gradient of superadiabaticity in the overshoot region cause
different parts of the flux ring to experience a significantly different magnetic buoyancy
force, outside the range of validity of the linear analysis. This leads to a buoyancy insta-
bility with the formation of a rising loop. In the following subsections, I will investigate
the dependence of the instability growth time on the perturbation amplitude.

3.2.1 Flux tubes at high latitudes

I have carried out a number of simulations with the following settings: the equilibrium
flux ring is located either at the bottom (with B = 12.6 · 104 G) or at the middle (with B =
8·104 G) of the overshoot region, at a latitude of 58◦. For these values the flux tube is close
to the Parker instability limit, but is stable against linear perturbations (Fig. 3.7). Fig. 3.8
shows the difference Δδ between the superadiabaticities at the depths of the highest (Rmax)
and the lowest (Rmin) parts of the perturbed flux tube, as a function of ΔR = Rmax − Rmin.
The simulations were run without considering the drag force. The perturbations were
applied either with only m = 1, or with a superposition of all modes in the range 1 � m �
5. In both cases, nonlinear Parker instability sets in, because the radial displacement of the
tube is sufficiently large for the crests of the tube to reach a location with a significantly
larger value of δ, leading to a sufficiently high buoyancy at the crests of the tube. In the
first case, the instability is trigerred for ΔR � 1000 km, which corresponds to log(Δδ) �
−5.8. In the second case, it occurs for ΔR � 600 km and log(Δδ) � −6.1.
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3 Effects of external flows on thin magnetic flux tubes

Figure 3.8: Logarithm of the difference Δδ of superadiabaticity between the surroundings
of the top and bottom parts of the flux tube, as a function of the difference in the spherical
r coordinates of the top and bottom parts of the tube. The simulations are run for B0 =

12.6 ·104 G, λ0 = 58◦, at the bottom of the overshoot region, without taking the drag force
into account. m = 1 means that the perturbation was applied with the azimuthal wave
number 1, and m = 1..5 means that perturbations with azimuthal wave numbers from 1 to
5 were superimposed with equal amplitudes.

When the drag force is taken into account in the numerical simulations, one finds in-
stability for all latitudes and field strengths, provided that the field strength is above a
critical value of about 4 ·104 G, which is weakly dependent on latitude (Holzwarth 2002).
The instability is related to the hydrodynamic drag force (in other words, friction) and
the presence of a field-aligned flow. The mechanical equilibrium of a toroidal thin flux
tube requires a relative flow between the internal and external medium (see Eq. 3.1). If
the velocity of this relative flow is larger than a critical value determined by the propaga-
tion velocity of the slowest retrograde eigenmode, it leads to transversal (MHD) waves of
growing amplitude, in the presence of drag force. Figure 3.9 shows the results of simu-
lations carried out for the middle overshoot region, λ = 58◦, and B = 8 · 104 G, taking
into account the drag force and all the 5 azimuthal modes. The growth times have been
estimated by fitting exponential functions to the variation of rtop (radial coordinate of the
highest point of the flux tube) with time. For a given perturbation ΔR, the difference Δδ
between the crest and the trough of a mid-overshoot tube is less than the corresponding
value for the bottom-overshoot region. The reason is the steepening radial gradient of
Δδ when approaching the radiative core. The growth time of the instability decreases
as the perturbation amplitude is increased, as shown in Fig. 3.10, following roughly a
power law. Two effects may be responsible for this dependence: a) Δδ increases with ΔR,
causing a more rapid rise of the tube crest; b) it may be related to the nature of the friction-
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3.2 Nonlinear effects caused by finite perturbations

Figure 3.9: Same as Fig. 3.8, for the middle of the overshoot region, B0 = 8 · 104 G,
m = 1..5 and with the drag force. Numbers indicate the growth time of the instability, in
days.

induced flow instability, because the drag force is taken into account in the simulations
(see Sect. 3.3).

3.2.2 Flux tubes at low latitudes

Next, I present simulations of toroidal flux tubes located at the middle of the overshoot
region, at a latitude of 30◦. For an initial flux density of 7 · 104 G, the tubes are linearly
stable, since the drag force does not appear in the linearised equations of motion. Fig. 3.11
shows the superadiabaticity difference Δδ as a function of the displacement amplitude ΔR,
at the beginning of the simulation, similar to Fig. 3.9. The drag force is taken into account,
and perturbations are applied with 1 � m � 5, having equal contributions. In all the
simulations, flux tubes are unstable, i.e., they form buoyantly rising loops. The growth
time of the instability decreases with increasing ΔR, as in the previous result shown in
Fig. 3.9. I have carried out simulations without the drag force as well, and found no
instability, in contrary to the case in the previous section (Fig. 3.8). In this case, the
dependence of growth time on ΔR (∼ |ξr|) is therefore related to the nature of the friction-
induced instability, rather than to Δδ. Figure 3.12 shows the variation of the growth time
as a function of ΔR. The relation follows a power law, as in the previous case.

I also show in Figs. 3.11 & 3.12 the perpendicular velocity amplitude of the external
flow, as determined by Eqs. (3.25)-(3.27), for m = 5 and |ξr| as given by the range of ΔR
in the plot. For |�⊥| � 10 m s−1, a toroidal flux tube with λ = 30◦, B = 7 · 104 G, and
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Figure 3.10: Growth time as a function of the displacement amplitude, for B = 8 · 104 G,
λ = 58◦, at the middle of the overshoot region.

Rt = 1000 km, can be stably stored in the overshoot region for a few years. However,
this velocity estimate is based on the assumption of a rather well-ordered, azimuthally
periodic flow field, which may not actually be the case in the solar convective overshoot
region.

The simulations presented in the last two sections indicate that the instability with
perturbation-dependent growth rate in the linearly Parker-stable regime is induced mainly
by the hydrodynamic drag. However, at high latitudes nonlinear effects still play a role
in the dynamics of flux tubes subject to finite perturbations. In the next section, I will
further investigate the nature of the friction-induced instability in the nonlinear regime, in
comparison with results of linear stability analysis.

3.3 Nonlinearity of the friction-induced instability

The linear stability analysis of thin horizontal flux tubes including a Stokes-type drag
force per unit volume,

FSt = ρeCStv⊥, (3.29)

where the constant CSt is the Stokes drag coefficient, was carried out by Holzwarth (2002)
and Holzwarth et al. (2007). This substitution was made in order to consider the drag
force in the linearised equations of motion. These studies have shown that the threshold
field strength leading to friction-induced instability is independent of the Stokes drag
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3.3 Nonlinearity of the friction-induced instability

Figure 3.11: Same as in Fig. 3.8, for a flux tube initially located at the middle overshoot
zone and λ = 30◦, with a field strength of 7 · 104 G. The upper horizontal axis shows the
velocity amplitude of the perpendicular flow, which would lead to the displacement ΔR,
with m = 5 and |�⊥|max = 26 m s−1.

coefficient. Considering the actual drag force per unit volume (Eq. 3.2), the Stokes drag
coefficient is of the order

CSt ∼ CD�⊥
πRt
, (3.30)

where the drag coefficient, CD, is of the order of unity, assuming cylindrical geometry
and high Reynolds number. Holzwarth (2002) has estimated the value of CSt by carrying
out numerical simulations of thin flux tubes including the full drag force (Eq. 3.2) and
taking the tube radius to be Rt = 1000 km. He has obtained an average value for CSt

at the initial stages of the simulations. He has also calculated the growth rates of the
instability of flux tubes in the (λ, B) plane, based on the linear stability analysis including
the Stokes drag force (Eq. 3.29). Figure 3.13 shows the growth rates of the friction-
induced instability as a function of the magnetic field strength, for 30◦ latitude at the
middle of the overshoot region, for various values of CSt (data courtesy V. Holzwarth).
The two plateaus where most of the curves merge correspond to Parker-unstable regions
in the linear regime (shaded regions in Fig. 3.7). Thus Fig. 3.13 can be seen as a horizontal
cut through Fig. 3.7 at λ0 = 30◦ (Fig. 3.7 corresponds to CSt = 0).

Fig. 3.14 shows the same latitudinal cut as in Fig. 3.13, with a few curves correspond-
ing to the range 5 · 10−9 � CSt � 1 · 10−7, along with the growth rates from simulations
presented in Sect. 3.2.2. Each set of simulations is made with different values of the per-
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3 Effects of external flows on thin magnetic flux tubes

Figure 3.12: Growth time as a function of the displacement amplitude, B = 7 · 104 G,
λ = 30◦, at the middle of the overshoot region.

Figure 3.13: Results of the linear stability analysis (Holzwarth 2002) for a flux tube at
30◦ latitude, and for the Stokes drag coefficient in the range 7.5 · 10−9 � CSt � 10−5,
CSt increasing towards the top of the plot for the range 6 · 104 � B � 8 · 104 G.

turbation amplitude. The lines of constant CSt are chosen among those in Fig. 3.13, which
give the best fit to the growth rates found in the simulations. The plateaus for which all
the analytical solutions merge correspond to the Parker-unstable regime. The results of
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3.3 Nonlinearity of the friction-induced instability

Figure 3.14: Comparison of the analytical solutions for the growth rate of the friction-
induced instability (lines) with the numerical simulations (symbols) for flux tubes at the
middle of the overshoot region and 30◦ latitude. The initial perturbation amplitude (ξ),
and the Stokes drag coefficient (CSt) are indicated in the legend.

the linear stability analysis match well with the numerical simulations. If one extends
Eq. (3.30) for CSt, it turns out that

CSt ∼ CD�⊥
πRt

∝ |ξr| �e(ω), (3.31)

where |ξr| is the amplitude of the radial perturbation and ω is the eigenfrequency of the
fastest growing unstable wave mode for the case in which the Stokes drag force (Eq. 3.29)
is taken into account in the unperturbed momentum equation. Therefore, for a given value
of �e(ω) (which is fixed for given λ and B), CSt increases with increasing perturbation
amplitude, which is consistent with Fig. 3.14. Recalling the relation between the ve-
locity amplitude of the external flow, �⊥, and the perturbation amplitude, |ξr|, (∼ ΔR;
see Sect. 3.2.2), and taking ξr ∼ 5 · 10−3Hp from the data set with the largest growth
rate (crosses in Fig. 3.14), one finds that the displacement can be caused by a flow with
�⊥ ∼ 1 m s−1 and m = 5 in the middle of the overshoot region (using Eqs. 3.25-3.27).
Using Eq. (3.30), �⊥ = 1 m s−1 corresponds to CSt � 3 · 10−7, which is of the same order
with the value chosen for the full curve in Fig. 3.14. As a result, the two approaches
give the similar results: an external flow with a perpendicular component of 1-10 m s−1

leads to instability with a growth time on the order of 1000 days for a flux tube with the
parameters chosen here. This range of velocities are consistent with the estimates of van
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3 Effects of external flows on thin magnetic flux tubes

Ballegooijen (1982) for the convective velocities in the overshoot region, supporting the
possibility of the storage of magnetic flux tubes containing fluxes on the order of 1021 Mx.

3.4 Summary

In this chapter, the problem of magnetic flux storage in the solar convection zone has been
considered, with regards to the effects of external flows on toroidal magnetic flux tubes.
Analytical solutions for the stationary equilibrium of a flux tube are obtained, and numer-
ical simulations are made in order to test the stability of a given flux tube configuration.
This approach has allowed me to infer the deformation of flux tubes by perpendicular
flows of a given velocity amplitude. Substituting the deformation amplitude, I have done
numerical simulations which show that in the nonlinear regime, linearly stable flux tube
can become unstable. Furthermore, the growth rate of the instability is found to be propor-
tional to the deformation amplitude. Simulations taking the hydrodynamic drag force into
account has shown that the friction-induced instability (Holzwarth 2002, Holzwarth et al.
2007) is the main cause for the perturbation-dependent nonlinear buoyancy instability.
The main results are summarised below.

• An azimuthally periodic external flow perpendicular to the flux tube induces per-
turbations in the (spherical) radial and azimuthal directions. The azimuthal pertur-
bation has a smaller amplitude than the radial one, and their azimuthal phase dif-
ference is π/2. Therefore, azimuthal perturbations induced by perpendicular flows
do not contribute significantly to the final shape of the deformation in stationary
equilibrium.

• Perpendicular flows with an azimuthal wave number of m = 15 and with an ampli-
tude 31 m s−1 can deform flux tubes of 2000 km thickness and B = 6·104 G from the
middle of the overshoot layer up to the convection zone proper. However, numeri-
cal simulations made for linearly stable flux tubes do not lead to instability within
a few thousand days. In the linearly unstable regime, the instability develops, but
the initial deformation pattern with m = 15 is changed to m = 1 or m = 2, in accor-
dance with the results of linear stability analysis. This means that magnetic flux can
be stored within the upper overshoot region within flux tubes with Rt ∼ 1000 km
and field strengths of a few times 104 G for times on the order of a few years in the
course of the dynamo intensification. This is supported by a comparison with the
numerical experiments in Sect. 3.2.2: if the amplitude of the perpendicular velocity
of the external flow is on the order of 10 m s−1, when considered with the simu-
lation results presented in Fig. 3.12, I estimate that flux tubes with a field strength
of a few tesla can be stored for times of the order of a few years in the middle of
the convective overshoot region. This velocity is about a factor of two less than the
value given by the non-local mixing length model of Skaley and Stix (1991).

• Although the actual flow pattern in the overshoot region is unknown, assumption
of an idealised flow has allowed me to obtain scaling relations between the perpen-
dicular velocity, perturbation (deformation) amplitude, magnetic field strength, and
the tube radius. I have obtained the ranges of flow velocity, field strength, and tube

58



3.5 Conclusion

radius for which the tubes stay in the linear regime after a deformation in the over-
shoot region, corresponding to an azimuthal wave number. The problem of whether
they can be stored for a sufficiently long time is considered by the nonlinear simu-
lations.

• The estimate for the Stokes drag parameter, CSt � 3·10−7, indicates that the friction-
induced flux tube instability develops in times of a few years, so that it is possible
for magnetic flux tubes to be stored for sufficiently long times, which is necessary
for the operation of the deep-seated solar dynamo.

3.5 Conclusion

In this systematic study concerning the effects of external flows on thin toroidal magnetic
flux tubes at the base of the solar convection zone, I have found quantitative relations
between the spatial scales of the flow and its subsequent effects. Within the existing
estimates of flow velocities in the overshoot region, flux tubes can be stored for sufficiently
long times for the operation of the dynamo. In particular, relatively fast upflows and
downflows with a relatively small horizontal extent do not disturb the storage of flux
tubes, owing to the magnetic curvature force, which increases with decreasing horizontal
extent of the flow. On the other extreme, in order for relatively slow perpendicular flows to
disrupt the tubes substantially, flows have to be coherently aligned over a large horizontal
(azimuthal) extent, which is not very likely in the overshoot region.

Finally, I have shown that field-aligned flows lead to nonlinear and friction-induced
instabilities with a dependence on the perturbation amplitude. If the flows have a typical
speed of 10 m s−1, toroidal flux tubes with a field strength of 7 · 104 G can be stored in the
middle of the overshoot region for times on the order of a few years.
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4 A coupled model of magnetic flux
generation and transport

The increasing observational knowledge about stellar magnetic activity makes it possible
to use the observed activity patterns to constrain stellar dynamo models (see e.g., Strass-
meier 2005, Schüssler 2005, Holzwarth et al. 2006). On the one hand, most solar and
stellar dynamo models in the literature assume that the latitudinal distribution of toroidal
magnetic fields created in stellar interiors represent also the surface emergence patterns.
However, the agreement between the latitudinal distribution of dynamo-generated field
and the emergence pattern is not self-evident, because a) the stability properties of flux
tubes in the bottom of the convection zone are not uniform and b) rising flux tubes are
deflected towards the poles, owing to the Coriolis force. On the other hand, numerical
simulations of the rise of flux tubes in the convection zone (Caligari et al. 1995) have
successfully reproduced many observed properties of sunspot groups, among which the
tilt angle is of particular importance for surface flux transport models (Baumann et al.
2004) and Babcock-Leighton-type dynamos (Dikpati and Charbonneau 1999). Therefore,
it is now possible to consider in a consistent way the interrelations between the dynamo
mechanism operating in stellar interiors, the transport of toroidal magnetic flux through
the convection zone, and the emerging flux which evolves under the effects of surface
flows. The approach taken here combines models for three processes: 1) the dynamo
operating in the overshoot layer at the bottom of the convection zone, 2) the stability and
rise of magnetic flux tubes through the convection zone, 3) the transport of magnetic flux
on the surface.

4.1 Dynamo model

We consider the generation of magnetic flux in the overshoot layer at the bottom of the
convection zone (at radius r0 � 0.73R�). As a first example, we incorporate a kinematic
αΩ dynamo operating in a thin layer at this radius (Schmitt and Schüssler 1989). The
model is based on the assumption that the radial diffusion of magnetic flux out of the
layer is to some extent compensated by downward flux pumping by convective flows.

4.1.1 Differential rotation and the α-effect

We prescribe the mean velocity field in the thin layer as u = (0, 0,Ω(r, θ)), where Ω
stands for stellar angular rotation rate. The radial shear at the dynamo layer (r = r0),
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4 A coupled model of magnetic flux generation and transport

Figure 4.1: Normalised latitudinal profiles of α and the radial shear Ω′. α0 is assumed to
be negative, because α ·Ω′ < 0 is required for equatorward propagating dynamo waves.

Ω′ = dΩ/dr, is taken in the form

Ω′(θ) = −Ω′0P0
2(cos θ) = −Ω

′
0

2
(3 cos2 θ + 1), (4.1)

which is a suitable approximation to the observed shear profile in the solar tachocline,
with Ω′0 � 10−17 cm−1 s−1 at the equator, θ = π/2, (Schou et al. 1998).

The latitudinal dependence of the α-effect is taken as

α(θ) =

{
α0 sin [π (θ − θ0) / (π/2 − θ0)] : for θ � θ0

0 : for θ < θ0,
(4.2)

where α0 is the amplitude, and θ0 is set to 55◦, which corresponds to the zero crossing
of the function Ω′(θ). The functions α(θ) and Ω′(θ), normalised to their amplitudes, are
shown in Fig. 4.1. The choice of Eq. (4.2) is motivated by an α-effect due to flux tube
instabilities (Ferriz-Mas et al. 1994) or unstable magnetostrophic waves (Schmitt 2003).
For dynamo waves propagating equatorward, one must have αΩ′ < 0. In order to fulfill
this criterion, α0 has been chosen to be negative, because the sign of radial shear in the
solar tachocline is known to be positive at this latitude range.

4.1.2 Dynamo equations

We decompose the axisymmetric mean magnetic field B = (Br, Bθ, Bφ) into a toroidal
component, (0, 0, B(θ)), and a poloidal component described by the vector potential A =
(0, 0, A(θ)) :

B = B(r, θ)eφ + ∇ ×
(
A(r, θ)eφ

)
, (4.3)
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4.1 Dynamo model

where eφ is the unit vector in the azimuthal direction. Following Hoyng et al. (1994), the
radial dependence of A and B is assumed to have the form of a spherical wave with a
certain wavenumber k:

A(r, θ, t) = A(θ, t)
r0

r
exp(ikr)

B(r, θ, t) = B(θ, t)
r0

r
exp(ikr) (4.4)

With this r-dependence, we include to some extent the effect of radial turbulent diffusion.
Having defined the radial dependence, the axisymmetric mean (azimuthally averaged)
magnetic field is considered as a function of the colatitude, θ.

The dynamo equations are obtained by writing the magnetic induction equation in
spherical coordinates in the form of two equations for the poloidal and the toroidal com-
ponents of the magnetic field:

∂B
∂t
= Ω′(θ)

∂

∂θ
(A sin θ) +

η

r2
0

[
1

sin θ
∂

∂θ

(
sin θ
∂B
∂θ

)
− B

sin2 θ
− (kr0)2B

]
, (4.5)

∂A
∂t
= α(θ)B +

η

r2
0

[
1

sin θ
∂

∂θ

(
sin θ
∂A
∂θ

)
− A

sin2 θ
− (kr0)2A

]
, (4.6)

where η is the turbulent magnetic diffusivity, and r0 is the distance of the dynamo layer
from the centre of the star (middle part of the overshoot region at the bottom of the con-
vection zone; r0 = 5.07 · 1010 cm).

We rewrite the dynamo equations in nondimensional form by taking r0 as unit of
length, the diffusion time, r2

0/η, as unit of time, B0 as unit field strength, α0 as the maxi-
mum absolute value of the α-effect, and r0B0 as unit of the vector potential, A0. Using the
same symbols as before for the nondimensional quantities, Eqs. (4.5) and (4.6) transform
into

∂B
∂t
= RΩ

∂

∂θ
(A sin θ) +

1
sin θ

∂

∂θ

(
sin θ
∂B
∂θ

)
−
(

1

sin2 θ
+ (kr0)2

)
B (4.7)

∂A
∂t
= RαB +

1
sin θ

∂

∂θ

(
sin θ
∂A
∂θ

)
−
(

1

sin2 θ
+ (kr0)2

)
A. (4.8)

We take kr0 = 3, so that a quarter of the wavelength of the radial dependence of the
magnetic field corresponds roughly to the thickness of the convection zone.

The system is now described by two dimensionless numbers, namely 1) the Reynolds
number for the α-effect,

Rα =
α0r0

η
, (4.9)

which represents the efficacy of induction by the alpha effect, 2) the Reynolds number for
the radial shear (Ω-effect),

RΩ =
Ω′0r

3
0

η
, (4.10)
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4 A coupled model of magnetic flux generation and transport

which represents the efficacy of induction by the differential rotation.
The parity of the magnetic field is assumed to be dipolar (antisymmetric with respect

to equator). The boundary conditions at the pole and at the equator are then given by

B = A = 0 for θ = 0 (4.11)

B = 0,
∂A sin θ
∂θ

= 0 for θ = π/2. (4.12)

We set the turbulent diffusivity to η � 5.6 · 1011 cm2 s−1, and the maximum strength of
the α-effect to α0 � −22 cm s−1. With this choice of parameters, the fundamental dynamo
mode at the limit of marginal stability1 is obtained with a cycle period of about 22 years.

Eqs. (4.7)-(4.8) with the boundary conditions Eqs. (4.11)-(4.12), are numerically
solved using a finite-difference algorithm.

4.2 Emergence of magnetic flux

We assume that in the dynamo layer, the toroidal magnetic field undergoes magnetic
Rayleigh-Taylor instability, which leads to the formation of magnetic flux tubes (see
Sect. 1.4 and Fan 2001). The flux tubes are subject to the undulatory (Parker) instability
once their field strength exceeds a critical value, Bcr, which is a function of latitude (at a
given depth in the convective overshoot layer). We determine the linear properties and the
subsequent nonlinear evolution of the instability by using the thin flux tube approximation
(see Sect. 1.3), following Ferriz-Mas and Schüssler (1995) and Caligari et al. (1995).

The equation of motion for the material inside a toroidal flux tube, in a reference frame
rotating with angular velocity Ω, can be written as

ρi
Dvi

Dt
= −∇

(
pi +

B2

8π

)
+

(B · ∇)B
4π

+ ρi[g −Ω × (Ω × r)] + 2ρivi×Ω + FD, (4.13)

where D/Dt ≡ ∂/∂t + v · ∇ is the Lagrangian derivative, the subscript i denotes quantities
inside the flux tube, and the terms on the right hand side of the equation are, respectively,
the total pressure force (gas and magnetic), magnetic tension force, effective gravity (in-
cluding the centrifugal force), Coriolis force, and hydrodynamic drag force. For the drag
force we use the expression for a flow past a straight spherical cylinder:

FD = −CD
ρe�⊥v⊥
πRt

, (4.14)

where v⊥ = �⊥v̂⊥ is the perpendicular component of relative velocity of the tube with
respect to the external medium, v̂⊥ is the unit vector along v⊥, CD is the hydrodynamic
drag coefficient which we take as unity (Batchelor 1967), ρe is the density of the external
medium, and Rt is the cross-sectional radius of the tube.

We combine the equation of continuity and the equation of magnetic induction into

1For the dynamo number P = RαRΩ larger than a critical value, the magnetic field is amplified exponen-
tially, and below that value it decays. The marginal stability is obtained for that critical value of P.
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Walén’s equation,

D
Dt

(
B
ρi

)
=

(
B
ρi
· ∇

)
vi. (4.15)

For the energy equation, we assume that the mass elements of the flux tube evolve isen-
tropically (DS/Dt = 0). This is justified because the time scale for heat exchange by
radiation in the deep convection zone is much longer than the time scale of flux tube evo-
lution (Moreno-Insertis 1986). The system of equations is closed by the ideal gas law and
the condition of magnetic flux conservation.

The magnetohydrodynamic equations given above are treated using the thin flux tube
approximation (Spruit 1981), in the form given by Ferriz-Mas and Schüssler (1993). The
flux tube is described as a space curve r(s, t), at time t, where s, the arc length along the
tube, is the Lagrangian coordinate. We consider the orthonormal Frénet basis to define
each element of the curve r(s, t). The unit vectors are et as the one tangent to the tube, en

as the one normal to the tube, and eb binormal to the tube:

et =
∂r
∂s

; en =
1
κ

∂et

∂s
; eb = et × en, (4.16)

where κ = |∂et(t)/∂s| is the local curvature. In this approximation, the magnetohydrody-
namic equations describing thin flux tubes are as follows.

Equation of motion:

ρi
Dv
Dt
· et =

∂

∂s

(
B2

8π

)
+ (Δρgeff + Frot) · et, (4.17)

ρi
Dv
Dt
· en =

B2

4π
κ + (Δρgeff + Frot + FD) · en, (4.18)

ρi
Dv
Dt
· eb = (Δρgeff + Frot + FD) · eb, (4.19)

Walén’s equation (continuity and induction):

D
Dt

(
ρi

B

)
+
ρi

B

[
∂(vi · et)
∂s

− κ(vi · en)

]
= 0, (4.20)

Condition of lateral pressure balance:

pe = pi +
B2

8π
, (4.21)

Energy equation:

Dpi

Dt
=
γpi

ρi

Dρi

Dt
, (4.22)
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where

Δρ = ρi − ρe, (4.23)

geff = g + Ω2R eR, (4.24)

Frot = 2ρi(v ×Ω),+ρi(Ω
2 −Ω2

e)R eR, (4.25)

and eR is the unit vector perpendicular to the axis of stellar rotation.
Eqs. (4.17)-(4.22) are used in the linear stability analysis and in the numerical simu-

lations.

4.2.1 The removal of magnetic flux from the dynamo layer

Magnetic flux is lost from the dynamo layer by means of erupting flux tubes. In order to
determine the number, field strengths, and latitudes of erupting flux tubes, we assign an
eruption probability, p, at a given latitude and time.

The critical field strength for flux eruption is on the order of 105 G for the middle of
the convective overshoot layer. The corresponding magnetic energy density is about 100
times larger than the kinetic energy density of convective motions. We assume that the
shear-generated mean toroidal field, B, fragments into flux tubes of strength BFT, such
that

B = f BFT, (4.26)

where f is the magnetic fill fraction of flux tubes contributing to the mean field. We
assume BFT = 105 G and f = 0.1, so that B � 104 G, which is of the order of the equipar-
tition field strength Beq = (4πρ)1/2�c, where �c is the convective velocity as determined by
using a mixing length model.

Latitudes and number of erupting flux tubes

We assume the emergence rate of flux tubes to be proportional to the mean toroidal field
given by the dynamo model,

Bi j = B(λi, t j), i = 1, ...,N (4.27)

for given latitude, λi, and time, t j. The eruption probability, pi j, of a flux tube at λi and t j

is given by

pi j =
Bi j∑
i Bi j
, (4.28)

assuming that exactly one flux tube emerges at time t j. At every time t j, nj flux tubes
emerge. In order to determine the initial latitudes of flux tubes at the bottom of the con-
vection zone, nj pseudo-random numbers taken from a uniform distribution in the interval
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4.2 Emergence of magnetic flux

Figure 4.2: A sample probability density function, Qi j, as a function of latitude, λi, at a
given time t j. For each erupting flux tube, a pseudo-random number is chosen uniformly
in the interval [0,1] (the vertical axis), say 0.5. The latitude λi at which the flux tube erupts
is then obtained by the mapping shown by the arrows.

[0, 1] are mapped via the probability distribution function (PDF), Qi j, based on pi j:

Qi j =

i∑
k=0

pk j (4.29)

The mapping for a sample PDF is illustrated in Fig. 4.2. nj is set proportional to the total
toroidal flux density,

∑
i Bi j, requiring the total number of erupting tubes per activity cycle

(11 years) to be given by N, so that

nj =

[
N ·

∑
i Bi j∑

i, j Bi j
+ 0.5

]
, (4.30)

where the brackets indicate the largest integer that is smaller than or equal to the expres-
sion they enclose. N is set to 2100, which lead to a value for the total flux emerging over
an activity cycle of the order of 1025 Mx, which is comparable with observations. Fig. 4.3
shows nj as a function of time, with B(λ, t) taken from the solar dynamo model given in
Sect. 4.1.

Field strengths of erupting flux tubes

In order to determine the field strengths of erupting flux tubes, we consider the stability
properties of flux tubes (Ferriz-Mas and Schüssler 1995) in the middle of the overshoot
region (about 5000 km above the upper boundary of the radiative zone), according to
the convection zone model including the overshoot region by Skaley and Stix (1991).
We consider a Sun-like rotation, which is comparable to helioseismic observations (e.g.,
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4 A coupled model of magnetic flux generation and transport

Figure 4.3: Number of flux tubes per time step (7 days), nj, as a function of time. The
dashed line shows the value in brackets of Eq. (4.30), and the full line shows nj.

Figure 4.4: Meridional profile of internal rotation used in the stability analysis and flux
tube simulations. Contours denote angular velocity, normalised to the equatorial value at
the surface.

Schou et al. 1998), namely

Ω(r, θ)
Ω0

= 0.9635 −
[
1 + erf

(
r − r0

d0

)]
·
(
0.0876 cos4 θ + 0.0535 cos2 θ − 0.0182

)
, (4.31)

where Ω0 is the equatorial rotation rate at the surface, and d0 roughly corresponds to the
thickness of the tachocline. Lines of constant angular velocity are shown in Fig. 4.4. This
2D profile is consistent with the 1D profile in Eq. (4.1). We apply the stability criteria
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Figure 4.5: Stability diagram for thin flux tubes in the middle of the overshoot region,
for Sun-like internal differential rotation (given by Eq. 4.31). White regions indicate
stable flux tubes, while shaded areas indicate instability. For light-shaded areas, the fastest
growing mode has azimuthal wave number m = 1, while for dark-shaded areas it is m = 2.
Contours show lines of constant growth times (e-folding times), labelled in units of days.

of Ferriz-Mas and Schüssler (1995) to a model of the solar convection zone including
the overshoot layer (Skaley and Stix 1991). Fig. 4.5 shows the stability diagram, as a
function of flux tube latitude and field strength. Let Bτ(λ) be the field strength of Parker-
unstable flux tubes as a function of latitude, corresponding to a certain growth time, τ,
of the instability. In the course of the amplification of the toroidal magnetic field, we
assume that toroidal flux tubes form out of the magnetic layer. When their field strength
is above a certain threshold, Parker instability sets in with growth time τ. For most of
the stability diagram (Fig. 4.5), τ decreases with increasing field strength. In the αΩ
dynamo model, the toroidal field amplification occurs in the time scale of the rotational
shear in the tachocline, which is about a few years. As long as the growth time of the flux
tube instability is longer than the shearing time scale, the toroidal field can continue to
be amplified. As the field strength reaches a level (of order 105 G), the two time scales
become comparable, so the flux tubes are immediately lost from the layer, limiting further
growth of the dynamo intensification. Moreover, we do not consider tubes with growth
times much longer than the amplification time scale, because they are intensified and thus
have shorter growth rates for the instability. Hence we choose the field strengths of the
flux tubes as given by the curve B200(λ), corresponding to τ = 200 days. Choosing a
growth time longer than this value does not change the results, because the curves of
constant growth time get too close to each other near the stability limit (Fig. 4.5). We
consider the contour line B200(λ) of the main region of instability in Fig. 4.5, which is a
one-valued function of latitude. Taking field strengths corresponding to the closed curves
to the left of the diagram do not lead to a significant difference in the emergence latitudes
and tilt angles (Caligari et al. 1995).

We require that the mean toroidal field must be above 4% of the maximum mean
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field strength generated by the dynamo (equipartition field strength), in order to generate
magnetic flux tubes. We have made this choice in order to avoid having flux tubes at very
high latitudes.

An alternative procedure to determine the latitudes, field strengths, and probabilities
of eruption is given in the Appendix.

4.2.2 The rise of flux loops

Having determined the times of emergence, initial latitudes, and the corresponding field
strengths of the individual flux tubes (Sect. 4.2.1), we simulate the rise of unstable flux
tubes throughout the convection zone. The simulations are made using the code developed
by Moreno-Insertis (1986) and extended to three dimensions and spherical geometry by
Caligari et al. (1995). In the numerical scheme, the flux tube is described by Lagrangian
mass elements. The flux ring is treated as one-dimensional, but the mass elements can
move in three dimensions (see Caligari et al. 1995).

The initial value for the cross-sectional radius of each flux tube is taken to be Rt =

1000 km. For B = 105 G, this corresponds to a magnetic flux of about 3 · 1021 Mx, which
is typical for a bipolar magnetic region (hereafter BMR) of a moderate size on the surface.
The tube radius that we take is large enough for the drag force not to have a significant
effect on the dynamics of rising flux loops (D’Silva and Choudhuri 1993, Caligari et al.
1995). In other words, the dynamics of flux tubes with Rt � 1000 km, with all the other
parameters fixed, are not considerably different. Therefore, our simulations represent also
the dynamics of tubes having more magnetic flux, for a given field strength.

The fastest growing modes of unstable flux tubes have azimuthal wavenumbers m = 1
or m = 2. On the other hand, the angular separation of large BMRs on the Sun corresponds
to much larger azimuthal wavenumbers (m = 10 − 60). A possible resolution to this
discrepancy could be that BMRs dynamically disconnect from their roots at depths of
only a few Mm below the surface soon after the emergence, which limits the longitudinal
separation (Schüssler and Rempel 2005).

In order to determine the emergence latitudes and tilt angles, we use a lookup table
resulting from a large number of simulations for the dynamics of unstable flux tubes. The
table entries are for given initial latitudes and magnetic field strengths. The initial lati-
tudes are in 5◦-steps, and the corresponding field strengths are obtained from the curve
B200(λ), excluding the instability islands (Fig. 4.5). Bilinear interpolation is used to obtain
the emergence latitudes and tilt angles as intermediate values of initial latitude and field
strength. Fig. 4.6 shows a comparison of the dynamo-generated toroidal field (contour
lines) and the surface emergence pattern of rising flux tubes (dots). The overall emer-
gence pattern roughly coincides with the dynamo waves, because the poleward deflection
of rising flux tubes is small for a slow rotator like the Sun. This result is consistent with the
implicit assumption that is often made when interpreting solar dynamo models, namely
that the surface activity pattern reflects the dynamo wave pattern.
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4.3 Surface flux transport

Figure 4.6: Time-latitude diagram of the dynamo-generated mean toroidal magnetic field
B(λ, t) at the bottom of the convection zone (contours) and of the flux loops emerging at
the surface (dots) for a Sun-like star. The dynamo waves and the emergence pattern show
a rather close match.

4.3 Surface flux transport

Emergence times, latitudes and tilt angles obtained in the previous steps determine the
flux input into our surface flux transport simulation through the source term S (λ, φ, t) in
Eq. (2.3). The model is described in the following Sects. 4.3.1-4.3.3. The emergence
longitudes φ are assumed to be randomly distributed.

4.3.1 Treatment of source BMRs

The flux density of an emerging BMR is written in the form

B(λ, φ) = B+(λ, φ) − B−(λ, φ), (4.32)

where λ denotes the stellar latitude and φ the longitude. Following van Ballegooijen
et al. (1998) and Baumann et al. (2004), we assume the unsigned field strength of the two
polarities of a newly emerged BMR to be

B±(λ, φ) = B0 exp

[
−2

[
1 − cos β±(λ, φ)

]
δ2

in

]
. (4.33)

Here, β±(λ, φ) are the heliocentric angles between any given position (λ, φ) and the centre
of the positive and negative polarities, (λ±, φ±). The initial characteristic angular width
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4 A coupled model of magnetic flux generation and transport

Figure 4.7: Time variation of the emerging magnetic flux integrated over the surface, and
summed over 27-day time intervals. The corresponding total unsigned flux density scale
is shown on the right-hand vertical axis.

of each polarity, δin, and the angular separation of the centres of the two poles, Δβ are
related by δin = 0.4Δβ. The maximum field strength B0 is set to 250 G (see the discussion
in Sect. 2.2).

BMRs which are smaller than the grid cell size of the simulations are taken into ac-
count by first considering such regions only at a later stage in their evolution, after having
diffused to an angular width of δ0 = 4◦. The description of the two polarities for such a
BMR is thus given by

B±(λ, φ) = B0

(
δin

δ0

)2

exp

[
−2

[
1 − cos β±(λ, φ)

]
δ2

0

]
. (4.34)

4.3.2 Size distribution and the emerging magnetic flux

The total size of a BMR is related to the heliocentric angular separation of the centres
of the two poles, Δβ, which, in our model, ranges from 3.5◦ to 10◦ with a step width of
0.1◦. The corresponding range of areas is 30-250 square degrees, and the resulting range
of magnetic flux is 2.3 · 1021-3.5 · 1022 Mx. The areas A of the bipolar source regions are
determined randomly with a prescribed number distribution, N(A) ∼ A−2 (Schrijver and
Harvey 1994).

The time series of emerging magnetic flux, summed over 27 days (one full solar ro-
tation), is given in Fig. 4.7. It shows a cyclic variation with a period of about 11 years,
determined by the dynamo model. The range of total unsigned flux density is similar to
the one given by Baumann et al. (2004).
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4.4 Rapidly rotating Sun-like stars

4.3.3 The surface evolution of magnetic flux

We follow the evolution of the surface field, resulting from the emergence of BMRs, as
well as transport and diffusion. As in Chapter 2, we determine the time evolution of the
surface field using the magnetic induction equation in the form

∂B
∂t
= −Ω(λ)

∂B
∂φ
+

1
R� cos λ

∂

∂λ

(
�(λ)B cos λ

)
+Dh(ηh) −Dr(ηr) + S (λ, φ), (4.35)

where Ω is the angular rotation rate as a function of latitude λ (Eq. 2.4), � is the
meridional flow (Eq. 2.5), R� is the stellar radius, Dh is the term for horizontal dif-
fusion with uniform turbulent diffusivity ηh, Dr denotes the radial diffusion term with
uniform radial diffusivity ηr, and S is the source term describing the newly emerg-
ing BMRs (see Eq. 2.3). We consider the same numerical procedure as explained in
Sect. 2.2. All transport parameters listed above are taken the same as in the solar refer-
ence model in Chapter 2. An animation of the evolving surface flux can be found under
http://www.solar-system-school.de/alumni/isik_movies/Bsurf_27d.gif.
The time-latitude diagram of the longitudinal (azimuthal) averages of the signed flux den-
sity is shown in Fig. 4.8a. The values are lower than those found by Baumann et al.
(2004). The reason is that the tilt angles resulting from the rise of flux tubes are sys-
tematically smaller than the latitude dependence assumed by Baumann et al. (2004), but
actually provide a better match to the observations (see Caligari et al. 1995, Fig. 12).
The time variation of the total unsigned flux (and its density) is shown in Fig. 4.8b. For
the evolving surface flux, the activity minima are less marked than for the emerging flux
(Fig. 4.7); this is due to the phase difference of about half a period between the variations
of the polar flux and the flux emerging at low latitudes. Polar fields are naturally built up
by the surface flux transport. At the maximum of BMR emergence, poleward meridional
flow and turbulent diffusion of tilted BMRs lead to a net flux transport towards the poles,
such that the poloidal fields reach a maximum at about the minimum of BMR emergence.

4.4 Rapidly rotating Sun-like stars

We apply the combined model of magnetic flux generation and transport to rapidly rotat-
ing stars, assuming them to have Sun-like internal structure. The only parameter that we
vary is the equatorial rotation rate at the surface, Ω0�. The velocity fields and turbulent
magnetic diffusivities for the dynamo region, the convection zone, and the surface are all
assumed to be the same as in the reference model of the Sun in the previous sections.
The difference between the minimum and maximum angular velocities in the convective
envelope, ΔΩ, is taken to be independent of Ω0�, according to observations of rapidly
rotating cool stars (e.g., Barnes et al. 2005). This corresponds to a decrease of ΔΩ/Ω0�

by a factor Ω0�/Ω0� with respect to the solar value, so that the constants on the right hand
side of Eq. (4.31) are multiplied by Ω0�/Ω0�. Because ΔΩ ≡ Ωeq −Ωpole is kept constant,
the surface flux transport equation (2.3) and thus Eq. (2.4) remains unchanged.

In order to describe the scaling of α, we consider a rising blob of gas with velocity v
and a characteristic length scale l. In the reference frame rotating with Ω�, the Coriolis
is −2Ω� × v. If we think of the rising plume as part of a turbulent fluid, we may assume
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4 A coupled model of magnetic flux generation and transport

Figure 4.8: (a) Time-latitude diagram of the azimuthally averaged strength of the radial
surface magnetic field for the solar model. (b) Time variation of the total unsigned surface
magnetic flux. The values are averaged over 27-day time intervals.

that its velocity correlation with the surroundings vanishes after a time τc. The velocity
induced by the Coriolis acceleration is then on the order Ω��τc. Using the definition of α
from the first-order smoothing approximation of mean-field hydrodynamics (Krause and
Rädler 1980), we obtain

|α| ≈ τc〈v · (∇ × v)〉
≈ τc� ·

(
l−1Ω�τc

)
= Ωl. (4.36)

Since we have taken ΔΩ as independent of Ω�, the Reynolds number for radial shear, RΩ,
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4.4 Rapidly rotating Sun-like stars

Figure 4.9: Stability diagram for the undulatory instability of flux tubes located in a Sun-
like star with Prot = 10 d.

in Eq. (4.10) is unaltered, but the Reynolds number for the α-effect, Rα, is proportional
to Ω�, according to Eq. (4.36). Thus we take the maximum strength of the α-effect, α0,
to be proportional to the stellar equatorial rotation rate, Ω0�. In our dynamo model, the
dynamo cycle period, Pcyc, is then inversely proportional to Ω0�.

The total number of erupting flux tubes per activity cycle, N, is also scaled with Ω0�,
in accordance with the observed relation between rotation rate and the level of magnetic
activity (e.g., Montesinos et al. 2001).

4.4.1 Prot = 10 d

We consider a Sun-like star with a rotation period of 10 d, which corresponds to a rotation
rate of about Ω� = 2.7Ω�. Fig. 4.9 shows the stability diagram of flux tubes located at
the middle of the overshoot region. The critical field strength for Parker instability is
larger than in the solar case: increasing the stellar rotation rate has a stabilising effect on
the flux tubes. With increasing Ω�, angular momentum conservation restricts the tube
displacements to the direction parallel to the rotation axis, so that the magnetic buoyancy
needs to be higher than in a similar situation in the Sun.

In determining the function B200(λ), we exclude the islands of instability seen in
Fig. 4.9, for the same reason explained in Sect. 4.2: we have made test simulations for
rising flux tubes having λ and B corresponding to these ’islands’, and found that the re-
sulting emergence latitudes and tilt angles do not show a significant dependence on field
strength, between the island and the neighbouring part of the main region of instability.

The patterns of toroidal field and the flux emergence are shown in Fig. 4.10. In this
case, the poleward deflection of rising flux tubes is stronger than in the case of the Sun.
The responsible effect is the component of the Coriolis force directed towards the rotation
axis (resulting from a retrograde flow along the flux tube in order to conserve angular
momentum of a rising tube), which is proportional to the rotation rate.
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4 A coupled model of magnetic flux generation and transport

Figure 4.10: Time-latitude diagram of the dynamo-generated mean toroidal magnetic
field at the bottom of the convection zone (contours) and of the flux tubes emerging at the
surface (dots) for a Sun-like star with Prot = 10 d.

Figure 4.11: Time variation of the total emerging magnetic flux, summed over 27-day
time intervals for a Sun-like star with Prot = 10 d.. The corresponding total unsigned flux
density scale is shown on the right-hand vertical axis.

The emerging magnetic flux, summed over one-month intervals is shown in Fig. 4.11.
It shows a cyclic variation with the dynamo period of about 5 years. This is about

half the length of the solar cycle. While the total flux input is about 5 times larger than
in the solar case, the variation between the minimum and maximum emerging flux is
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4.4 Rapidly rotating Sun-like stars

Figure 4.12: (a) Time-latitude diagram of the azimuthally averaged strength of the radial
surface magnetic field for a Sun-like star with Prot = 10 d. (b) Time variation of the total
unsigned surface magnetic flux. The values are averaged over 27-day time intervals.

considerably smaller. This results from the stronger overlapping between consecutive
cycles, which is a consequence of larger dynamo excitation. As shown in Fig. 4.12a, we
have strong polar fields (note the different saturation level of the colour table, as compared
to Fig. 4.8a). This is due to 1) higher emergence rate, 2) larger tilt angles owing to
faster rotation. Larger tilt angles are caused by a larger Coriolis force experienced by
the horizontally expanding crest of the tube. It is evident from the animation2 of the
surface field distribution that, although the flux emerges within a rather restricted latitude
range, strong fields are spread over the entire surface by means of large-scale surface
flows. There are unipolar magnetic regions near the poles and mixed-polarity regions

2http://www.solar-system-school.de/alumni/isik_movies/Bsurf_10d.gif
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4 A coupled model of magnetic flux generation and transport

Figure 4.13: Stability diagram for the undulatory instability of flux tubes located in a
Sun-like star with Prot = 2 d.

emerging at low to middle latitudes. Figure 4.12b shows that the cycle signal introduced
by the underlying dynamo is no longer clearly observable when we consider the evolving
surface magnetic flux. The reasons are 1) a larger degree of overlap between consecutive
cycles owing to a stronger α-effect, and 2) strong polar magnetic fields in antiphase with
the emerging flux.

4.4.2 Prot = 2 d

For a star with a rotation period of two days (Ω� ≈ 13Ω�), the stabilising effect of rotation
is even stronger than in the previous case, as shown in Fig. 4.13. As before, we exclude
the instability islands in determining the field strengths of flux tubes. Simulations of flux
tube rise show that perturbations perpendicular to the rotation axis are largely suppressed,
so the instability develops along the direction parallel to the rotation axis. As a result, an
azimuthal wavenumber of m = 1 corresponds to a precessing flux ring around the rotation
axis. Once a loop is formed, it rises almost parallel to the rotation axis and emerges at a
significantly higher latitude than its original location. The start latitudes are in the range of
roughly 0◦-25◦ and the emergence latitudes at about 23◦-40◦. Fig. 4.14 shows a compar-
ison of the dynamo-generated magnetic field and the distribution of flux tubes emerging
at the surface. It is evident that the poleward deflection of flux tubes causes a significant
difference between the dynamo waves and the pattern of surface emergence. The lack of
emerging tubes in the latitude interval between the equator and |λ| � 23◦ occurs because
flux tubes generated very close to the equator emerge already at this latitude.

For such a rapidly rotating star, the tilt angles of emerging bipolar regions are much
larger (around 35◦) than in the solar case, leading to two latitudinal belts of opposite
magnetic polarity3 Meridional transport of the high-latitude belt leads to strong polar
fields, reaching field strengths up to 30 G, compared to a few gauss for the solar poles. The

3See http://www.solar-system-school.de/alumni/isik_movies/Bsurf_2d.gif.
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4.5 Discussion

Figure 4.14: Time-latitude diagram of the dynamo-generated mean toroidal magnetic
field at the bottom of the convection zone (contours) and of the flux tubes emerging at
the surface (dots) for a Sun-like star with Prot = 2 d. The dots are shown for one-month
intervals. The emergence pattern is completely different from the dynamo wave.

presence of “polar spots” observed in fast rotators can thus be explained by the emergence
and meridional transport of bipolar regions at mid-latitudes with tilt angles as high as 35◦

(see also Schrijver and Title 2001 and Chapter 2).

4.5 Discussion

The dynamo model considered here is a simple example for the kind of dynamo processes
which may be relevant for rapidly rotating cool stars. As a consequence of our assumption
about the scaling of the dynamo strength with rotation (Eq. 4.36), the cycle frequency
increases with Ω�. As the cycle length decreases, it limits the maximum magnetic flux
that can be built up in the polar regions of the surface. Therefore, the polar field strength
does not change considerably as we change the rotation period from 10 d to 2 d, despite
that flux input per cycle is increased by a factor of 5, and the tilt angles become larger.
As a result, the lifetimes of polar magnetic regions on fast rotators might be determined
by the dynamo frequency, rather than by the turbulent diffusion time, as in the case of
isolated bipolar regions (Chapter 2).

The dynamo-generated toroidal field at the base of the convection zone is limited to
low latitudes, between the equator and ±20◦-30◦ in all the three cases. The reason is the
assumed profile of the α-effect (Eq. 4.2 and Fig. 4.1), which is confined to this latitude
range. In the case of the Sun, the assumption was based on the α-effect caused by flux
tube instabilities (Ferriz-Mas et al. 1994) or by magnetostrophic waves (Schmitt 2003).
This was strictly required in our model to have equatorward propagating dynamo waves.
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4 A coupled model of magnetic flux generation and transport

For faster rotating Sun-like stars, we assumed the same Sun-like profiles for both α(θ) and
the radial shear, Ω′(θ). Incorporation of a dynamo model having different spatio-temporal
properties would lead to different results for the evolution of surface magnetic flux.

We find strong polar magnetic regions (cf., Schrijver and Title 2001, Işık et al. 2007)
for rotation periods of 10 d and 2 d, in addition to low- and mid-latitude activity. For
Prot = 10 d, the surface flux transport blurs the periodic signal from the dynamo model.
This indicates that for rapid rotation, a cyclic dynamo may be hidden in a non-cyclic
surface activity, which is caused by the combined effects of the dynamo (cycle overlap-
ping), large tilt angles, and the meridional transport. Furthermore, for Prot = 2 d we have
found that the dynamo wave pattern and the emerging surface flux are completely dif-
ferent, owing to the strong poleward deflection of rising flux tubes by the Coriolis force.
Consequently, the observed activity patterns on the surface may not represent the spatio-
temporal distribution of magnetic field in the deep interior. This means that models of the
deep-seated dynamo for rapidly rotating cool stars should take into account the poleward
deflection of the emerging magnetic flux.

It should be kept in mind that in all the particular results which we have obtained for
rapidly rotating stars, there are two sources of ambiguity:

• For cool stars more active than the Sun, much less is known about the dynamo
mechanism and the various processes of magnetic flux transport. Present observa-
tions do not have the sufficient spatial resolution and time coverage to constrain the
combined models of magnetic field dynamics.

• The value of ηh = 600 km2 s−1 represents the average value of turbulent magnetic
diffusivity at the solar surface and it is consistent with the observations (Wang et al.
1989a). For more active stars, however, we do not know the supergranular flow
pattern, if any, and its coupling with the magnetic structures on the surface.

4.6 Conclusions

We have developed a consistently coupled model of magnetic field generation and trans-
port in the Sun and other cool stars. In the framework of our coupled models of flux
transport, there are two major improvements in comparison to previous studies:

• We determine the cycle properties by an underlying dynamo model, whereas in
previous studies of cyclic surface flux transport either butterfly diagrams were pre-
scribed arbitrarily, or observed emergence patterns were used.

• The tilt angles of emerging regions are not prescribed, but consistently determined
from simulations of rising flux tubes. The results reproduce the observed latitude
dependence and this provides a physical mechanism for the tilt angles of BMRs.

Our investigation shows that the tilt angle of BMRs is a very important quantity both
in slow rotators like the Sun and in rapid rotators, since it strongly affects the evolution
of the surface magnetic flux and the strength of the polar magnetic fields. The strength
of polar fields depends also on the dynamo cycle period, which is determined by the
strength of the α-effect. The assumed linear dependence of the α-effect on the rotation
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4.6 Conclusions

rate limits the maximum polar field strength for stars rotating considerably faster than the
Sun. Regardless of that assumption, for very fast rotating stars, the surface magnetic field
distribution can be very different compared to the toroidal field distribution as determined
from the deep-seated dynamo.
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5 Outlook

A unified model which fully incorporates various physical aspects of the hydromagnetic
dynamo problem for a highly complex system such as the Sun remains to be one of the
unsolved problems of astrophysics, whereas even much less is known about dynamos of
other magnetically active stars.

In the present dissertation, I have first investigated, through numerical simulations,
two aspects of magnetism in cool stars: the effects of large-scale surface flows on mag-
netic regions of cool stars, and the effects of external flows on the storage of magnetic
flux tubes in the deep convective overshoot layer of the Sun.

The effects of large-scale surface flows on the lifetimes of starspots have been revealed
in Chapter 2 and the existence of polar spots have been explained on the basis of surface
flux transport. Further studies on these lines will follow within the framework of the
coupled models of magnetic flux generation and transport (Chapter 4).

The interaction of external flows with magnetic flux tubes in the overshoot region will
be further investigated in an upcoming study, based on the findings presented in Chapter 3.
The nature of the friction-induced instability and its effects on the storage of flux tubes in
the overshoot region will be considered in more detail.

I have developed a combined model of generation, emergence, and surface transport
of stellar magnetic flux (Chapter 4). The model has a significant potential for applications
aiming to understand the structure and evolution of magnetic fields in cool stars. For
instance, different deep-seated dynamo models for stars can be tested with our model in
order to “see” what would happen on the surface and to compare with observations.

As next steps to improve the coupled model of magnetic flux generation and transport,
I plan to quantify the loss of magnetic flux from the dynamo layer in a consistent manner
and consider it in the dynamo equations as a nonlinear term. Furthermore, I intend to
develop a scheme which includes the evolving surface flux into a two dimensional flux
transport dynamo as the source of the poloidal component at the bottom of the convection
zone. There are two goals in this plan: the first is to improve our understanding of the
solar dynamo, and the second is to extend the model to cool stars in wide ranges of mass
and age.
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A An alternative treatment of flux loss

Instead of assuming B(λ, t) given by the dynamo model to determine the eruption prob-
ability of flux tubes, one can also choose the growth rate of Parker instability. When the
field B exceeds a critical value B0(λ), Parker instability sets in, giving rise to an erupting
flux loop. The function B0(λ) is determined by a constant growth time (e-folding time),
which we choose here to be 200 days, for the reasons explained in Chapter 4.

The initial field strength of a flux tube at a certain latitude λ and time t is given by
B(λ, t) from the dynamo model. The critical field strength for the onset of nonlinear flux
loss, B0, is taken to be 105 G in the case of the Sun, which is the average field strength of
the onset of the instability at the location of the dynamo layer. This corresponds to a flux
of about 3 · 1021 Mx, which is a typical value for a small/moderate sized active region on
the Sun.

Dynamo model

In order to characterise the removal of magnetic flux from the dynamo region by erupting
flux tubes, we add the term

B0

τ
f (B/B0)

to the right hand side of Eq. (4.5), following Schmitt and Schüssler (1989). Here, B0 is
the critical mean field strength, above which the flux is lost from the layer, at a rate τ−1.
The function f describes the B-dependence of the flux loss in the form

f

(
B
B0

)
=

⎧⎪⎪⎨⎪⎪⎩ −sgn(B) ·
(

B
B0
− 1

)2
: if B ≥ B0

0 : otherwise.
(A.1)

With this choice of the flux loss function, the dynamo equation for the toroidal field be-
comes nonlinear. The flux loss time scale, τ, actually depends on the amount of magnetic
flux in the storage region. After non-dimensionalisation of the dynamo equations, the
nonlinear term becomes Q · f (B), where Q represents the strength of flux loss. Its value is
set to 400, in order to have a maximum field strength of 2 · 105 G, which yields a growth
time for the undulatory instability of magnetic flux tubes of about 2.2 days. The turbulent
magnetic diffusivity is set to η = 2.5 · 1011 cm2 s−1, such that the dynamo cycle period
becomes 22 years.
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A An alternative treatment of flux loss

Figure A.1: The determination of the growth rate distribution gi j of flux tubes at a certain
time. The contour lines denote the growth rate gi j of the instability (in units of d−1). The
limit growth rate of g0 = 5 · 10−3 d−1, which corresponds to a growth time of 200 days, is
indicated by a thick contour. The blue curve is a snapshot of the magnetic field strength
as a function of latitude. The filled circles indicate sample values of field strength and
latitude for which gi j is determined.

The latitudes and the number of erupting flux tubes

Flux tubes are assumed to emerge with a probability proportional to the growth rate of
the Parker instability, g(λ, t), resulting from the evolution of the toroidal field component
B(λ, t) in the dynamo model.

We determine g(λi, t j) ≡ gi j at timestep t j and latitude interval λi. The domain λi

of gi j is defined by the subdomain of B(λ, t) for which gi j ≥ g0, where g0 is the lower
growth rate limit of 5 · 10−3 d−1, which corresponds to a growth time of 200 days. This
operation establishes a criterion to choose the unstable flux tubes, such that the growth
time of the instability has to be shorter than 200 days. The procedure is illustrated in
Fig. A.1. Snapshots of magnetic field distributions throughout one cycle is shown in
Fig. A.2. The maximum field strength of the cycle is determined by the nonlinear flux loss
by buoyant rise of flux tubes. The resulting function g(λi, t j) is plotted in Fig. A.3, along
with the dynamo contours. The figure shows the correspondence between the strength
of the dynamo-generated toroidal field and the growth rate of undular instabilities of the
associated flux tubes. At time t j, the probability for one flux tube to erupt at the latitude
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Figure A.2: Stability diagram for flux tubes in the reference case, Ω = Ω� (see Fig. 4.5).
Snapshots of the magnetic field distribution B(λ, t) of the dynamo model are overplotted.
B0 = 105 G, Bmax = 2.0B0 and gmax = 0.46/d.

Figure A.3: Growth rate of the Parker instability, g(λ, t) (shown with the colour code), as
a function of latitude and time. Contours show the magnetic field strength, B(λ, t), given
by the dynamo model. The contour levels correspond to 0.2, 0.6, 1.0, 1.4, and 1.8 times
the critical field strength, B0, for the onset of Parker instability.
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Figure A.4: Number of flux tubes per time step (10 days), [nj], as a function of time.

λi is given by

pi j =
gi j∑
i gi j
. (A.2)

At every time step t j, nj pseudo-random numbers with uniform distribution in [0, 1]
are mapped via the probability distribution function (PDF), Qi j, based on pi j:

Qi j =

i∑
k=0

pk j (A.3)

For each flux tube to be generated, a new random number is determined. The number
of flux tubes, nj, to be generated at time step t j (thus the number of random values)
is proportional to the summed growth rates at the same step,

∑
i gi j, requiring the total

number of tubes per activity cycle (11 years) to be given by N, so that

nj =

[
N ·

∑
i gi j∑

i, j gi j
+ 0.5

]
, (A.4)

where the value between brackets is rounded to the largest integer that is smaller than or
equal to the expression they enclose. The number of emerging flux tubes, nj, per time
step (taken as 10 days) is shown as a function of time in Fig. A.4.

Having determined the initial latitudes and field strengths at each time step, the emer-
gence latitudes are obtained with the method described in Sect. 4.2.2. The latitudes before
and after flux tube eruptions are shown in Fig. A.5. The resulting emergence pattern does
not exhibit a marked difference with respect to the corresponding one in Chapter 4, except
that the highest latitude is smaller by about 10◦ in the present case. The difference is how
the link between the dynamo model and the distribution of erupting flux tubes is made in
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Figure A.5: The butterfly diagram showing the initial and the final latitudes of the emerg-
ing flux loops. The beginning of each arrow represents the initial latitude of the flux tube,
and the tip of an arrow indicates the emergence latitude.

the coupled models. The variations of the emerging unsigned magnetic flux and the total
unsigned surface flux at a time are shown in Figs. A.6 and A.7. A comparison with the
corresponding variations in Chapter 4 shows no significant difference between the results
of the two methods.

Application for Prot =10 d

For a star with the same internal structure as the Sun, and rotating 2.6 times faster, we
follow the same procedure as in the reference case above. We assume that increasing the
rotation rate by 2.6 times corresponds to increasing α0 by the same factor. This leads to a
decrease of the dynamo cycle period by about a factor of two. The only other quantity that
is different with respect to the previous case is the critical field strength for the onset of
Parker instability, B0, which is now about 1.5 ·105 G. Because faster rotation rate changes
the stability properties of flux tubes in the overshoot region. Except for the determination
procedure of the initial latitudes and times of eruption, the rest of the method is the same
as described in Sect. 4.4. The stability diagram with a few snaphots of the magnetic
field distribution is given in Fig. A.8. The function g(λi, t j) is plotted along with the
dynamo contours in Fig. A.9. The initial and emergence latitudes of flux tubes are shown
in Fig. A.10. Comparison with the reference case (Fig. A.5) reveals that the poleward
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Figure A.6: Emerging unsigned magnetic flux per month, as a function of time for the
reference case.

Figure A.7: The total unsigned magnetic flux on the surface of the reference star, inte-
grated over 27-day time intervals.

deflection is larger in this case. Finally, in Figs. A.11-A.12, we show the variations of the
emerging and total unsigned magnetic fluxes at the surface.

Comparisons of the figures in this appendix with the corresponding ones in Chapter 4
reveals that the results do not depend significantly on the method chosen to treat the flux
loss from the dynamo layer. In a future study, the nonlinear coupling of the flux loss with
the dynamo will be further developed.
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Figure A.8: Stability diagram for flux tubes in the star with Prot = 10 d (Ω = 2.6 Ω�).
Snapshots of the magnetic field distribution B(λ, t) of the dynamo model are overplotted.
B0 = 1.5 · 105 G, Bmax = 2.0B0 and gmax = 0.52/d.

Figure A.9: Same as Fig. A.3, for the star with Prot =10 d.
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Figure A.10: Same as Fig. A.4 and Fig. A.5, but for the star with Prot =10 d.

Figure A.11: Emerging magnetic flux per month, as a function of time for the case of
Prot = 10 d. The values are integrated over 27-day intervals.
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Figure A.12: The total unsigned magnetic flux on the surface of the star with Prot = 10 d,
averaged over 27-day time intervals.
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