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Summary

The goal of this thesis work is the investigation of the heating of X-ray Bright Points
(BPs) in the solar corona by means of three-dimensional magnetohydrodynamics (MHD)
numerical simulation.

• BPs are an important feature of solar coronal heating whose understanding is still
not achieved.

• We used the most advanced observation of BP properties obtained by the Japanese
spacecraft, "Hinode".

• For the numerical simulation we used LINMOD3D numerical simulation model,
which was developed by Büchner (2004a,b) in the group of ’Theory and simulation
of solar system plasmas’, at the Max-Planck-Institute for Solar System Research.
The model contains a compressible and resistive plasma. To obtain the initial mag-
netic field an extrapolation of the observed line-of sight (LOS) component of pho-
tospheric magnetic field is performed. The simulation code was adjusted to include
the observed photospheric magnetic field corresponding an X-ray Bright point (BP)
observed a time by the Hinode spacecraft.

• We consider a rectangular simulation box including the BP region that covers the
solar atmosphere from the photosphere to about 15 Mm inside the solar corona. The
horizontal size corresponds to an area of 46.4 Mm × 46.4 Mm at the solar surface.
The magnetic features associated to this BP are properly covered.

• To investigate the dynamic evolution of the solar atmosphere above a BP, we modi-
fied the boundary conditions according to the solar observations. A local-correlation-
tracking (LCT) was carried out to obtain the plasma velocity at the photosphere.
Using this velocities to perturb the plasma, the location of the current concentra-
tions in the simulation box were found, which coincide with the location of the
observed temperature enhancement in an arc-shaped structure above the main op-
posite photospheric magnetic flux concentration associated to the BP.

• We investigated which role Joule dissipation could play as a heating mechanism
in the MHD modelling of the solar corona. A comparison of the role of different
contributions in the energy (temperature) balance, namely the work done by the
Lorentz force, pressure gradient force and Joule heating, indicated surprisingly the
importance of adiabatic compression for the temperature enhancement in the BP
region. In contrary, the role of Joule dissipation appeared to be rather small. We
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Summary

tested this result for different resistivity models. The results showed that the pres-
sure gradient force is acting more actively than the current dissipation for increasing
the thermal energy, independent of the resistivity model.

• For a better localization of the heating processes we determined the differential flux
tube integrated contributions to the energy balance. This way we could proof that
the temperature enhancements follows the pattern of the energy change rates and the
corresponding forces involved. We came to the conclusion that the upward energy
flow is due to the plasma motion at the footpoints of the coronal magnetic fields,
which energizes the plasma confined in coronal magnetic flux tubes and makes them
rise to the higher corona.

• Moving towards a more realistic model of the coronal heating, we studied the in-
fluence of heat conduction along the magnetic field lines as well as the influence
of radiative losses for the case of optically thin plasmas, on the heat energy and
temperature distribution along coronal magnetic flux tubes. This way we could
get temperature enhancement that are by some thousand Kelvins less than the case
that does not include these two effects. However, The results before and after the
inclusion of heat conduction and radiative cooling are qualitatively similar. This in-
dicates that the dynamic evolution of the plasma is governed by magnetic structure
mainly. Although heat conduction results in downflow of the heat from the upper
atmosphere and therefore, in a less steep temperature gradient in the transition re-
gion. This leads to higher densities at a lower latitude and higher values of heat
would be radiated away. To maintain the coronal temperature an additional heating
source is needed to balance the heat loss mechanisms.
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1 Introduction

1.1 Coronal Bright Point properties and models
Coronal Bright Points (BPs) are small coronal features, (30” − 40”) of locally enhanced
emission in X-ray and EUV seen in the sun. They were first observed in X-rays by Vaiana
et al., (1970) but later also in radio and EUV wavelengths. Their average lifetime, see
Fig. 1.1, varies from 8 hrs determined by X-ray observations by (Golub et al., 1974) and
it goes to 20 hrs in EUV lines (Zhang et al., 2001). Using higher resolution observations
(Scherrer et al., 1979) could show that BPs consist of a some miniature loops at different
temperatures. These bright loops that evolve on timescales of 6 min was shown by
(Ugarte-urra., 2004) that experience intensity oscillations.

BPs are distributed over all latitudes and longitudes of the quite-sun corona, as shown
in Fig. 1.2 taken from (Golub et al., 1974). They appear in both maximum and minimum
of solar activity and are likely to contribute actively to maintaining the coronal tempera-
ture during the solar activity minima.

BPs are known to be closely linked to small scale photospheric magnetic features with
opposite polarities, (Krieger et al., 1971, Brown et al., 2001). The occurrence of BPs
was found to be more likely close to the boundaries of the super-granulation magnetic
network. However approximately one-third of the BPs that appear per day, are due to
emerging bipolar fluxes. The rest is related to magnetic bipoles associated with cancelling
flux, known as Cancelling Magnetic Features (CMFs), Harvey 1985.

First theoretical models of CMFs involving magnetic reconnection was developed by
e.g., Priest et al., 1994, Parnell et al., 1994, Longcope 1998. In the cancelling magnetic
feature model by Priest et al., 1994 two magnetic flux regions of opposite polarity that
are initially not connected, interact through three phases, namely:

• Pre-interaction phase

• Interaction phase

• Cancellation phase

These phases are depicted in a two-dimensional image, (see Fig. 1.3 taken from Priest
et al., 1994). They correspond to the occurrence of the BP to the reconnection of the
magnetic field associated with two opposite magnetic polarities that are assumed to be
of the same strength and located in a uniform overlying field at photospheric height, (see
Fig. 1.4). The process start with pre-interaction phase at which the two magnetically
unconnected fragments with opposite polarities begin to approach each other until their
opposite directed magnetic fields come into contact at a null point (in an 2D image). In
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Figure 1.1: Number of bright points is shown versus their lifetime. The lifetime distri-
bution is fitted by a Poisson distribution with a mean lifetime of 8 hrs, (Golub et al.,
1974)

the interaction phase the null point start to become an X-point and result in magnetic re-
connection. The X-point then is supposed to rise up from photosphere into the corona and
the local heating of the plasma and the brightening can appear in the from of an X-ray
BP. The BP can last for some hours depending on its associated photospheric driver. The
cancellation phase comes as the strength of the magnetic fragments decreases and the X-
point moves down until it disappears finally in the photosphere, when one or both of the
fragments are completely cancelled. This stage can end up with formation of two hori-
zontal flux tube locating above and below the photosphere, (see bottom panel of Fig. 1.3).
A mathematical model to describe this process in given at Priest et al., 1994, at which
the potential field of the two equal opposite magnetic polarities are initially disconnected.
The poles start to approach slowly, in a way than the overlying field can evolve through
a piecewise configurations. When the poles are in the interaction distance, the null point
form and a vertical current sheet forms that is extended to a certain height, shown by "h"
in the third panel of Fig. 1.4. At this point when the free energy stored in the magnetic
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1.1 Coronal Bright Point properties and models
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Figure 1.2: Latitude distribution of BPs, (from (Golub et al., 1974)).

field lines passes the purely potential limit the excess energy is released via magnetic
reconnection and converted to heat by producing an X-ray BP.

This two dimensional model was extended by Parnell et al., 1994 to a three dimen-
sional case at which the strength of the magnetic fragments where also different. The other
scenario was suggested by Longcope 1998, at which BP was powered by reconnection
along separator field lines rather than an X-point, Fig. 1.5.

Brown et al., 2001 studied the complete lifetime of a BP in more details using the
high resolution observations. They could associate different stages of the evolution of this
BP with different patterns of motion of the positive and negative fragments of a bipole.
These motions include fragmentation and coalescence of the fragments in the early stage
of formation of BP. The correspond the sigmoid phase and twisting of BP at its half life
time to the rotation and translation of the magnetic fragments in the photosphere. The
sigmoid can become unstable when the twist passes a critical degree, and the π-phase of
BP starts then. In the π-phase the structure is converted to smaller loops that fades quickly
and by a large drop of the fluxes associated to the magnetic bipole, the lifetime of the BP is
over. Although this study was done for a sample BP only, the more complicated patterns
of motions of the magnetic fragments for this case can imply the generation of currents
that the usual Joule heating cannot explain them. The energy dissipation in this case takes
place in smaller scales where microphysical considerations are needed to explain the high
values of dissipation.

A numerical study of the cancelling magnetic features (CMEs) was performed using
a two dimensional magnetohydrodynamics (MHD) simulation model by Von Rekowski
B., Parnell C. E., Prist E. R., 2006a, where starting from partly connected bipolar sources
they could follow the process until the cancellation was completed. In Von Rekowski B.,
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1 Introduction
434 CHAPTER 10. MAGNETIC RECONNECTION

Figure 10.18: Stages of the magnetic flux cancellation process: pre-interaction phase of con-
verging flows (top); interaction phase with X-point reconnection and heating of soft X-ray
plasma (middle), and cancellation phase of magnetic flux in photosphere (bottom). Note that
the resulting soft X-ray bright point event precedes the photospheric flux cancellation (Priest et
al. 1994).

found to increase, while the magnetic flux in the following polarity tended to decrease,
by a much smaller amount. So, these events do not support a simple scenario with
(symmetric) magnetic flux cancellation. In another (M2.4) flare, a small sunspot was
observed rapidly to disappear during the flare, which was interpreted as a possible con-
sequence of a magnetic reconnection process with subsequent submergence (Wang et
al. 2002b). In summary, there is a lot of evidence that chromospheric reconnection with
magnetic flux cancellation is the most likely mechanism to explain chromospheric vari-
abilities (UV explosive events, H upflows, spicules, and soft X-ray brightenings), but
this mechanism is probably not the primary driver for larger flares.

Figure 1.3: Three stages of the approach and interaction of the two equal opposite mag-
netic fragments, taken from Priest et al., 1994

Parnell C. E., Prist E. R., 2006b their simulation setup start for two initially disconnected
bipoles, following the theoretical model of Priest et al., 1994, and they consider the case
of unequal sources. A comparison is made there between the dynamically computed mag-
netic fields from the numerical model with the potential field from the converging bipole
sources. A horizontal flow at the base of their simulation can move the inner opposite
polarity magnetic bipolar sources that are footpoints of two coronal loops. This conver-
gence of bipoles drives the system by triggering the cancellation of bipole and coronal
reconnection and leads to coronal heating in the form of an X-ray BP, accompanied by
loop brightening. However, the movement of the magnetic features in their simulation
only includes the a simple pattern, either emerging or cancelling.

The role of the plasma motion to energize the BP in the regions of strongly diverg-
ing magnetic fields was first addressed by (Büchner et al. 2004a,b). Unlike the existing
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Figure 1.4: A model for pre-interaction and interaction phases of two equal poles located
at ±a along the x-axis. The height of current sheet is shown by h in third panel, where
topology is still preserved an no reconnection has taken place, from Priest et al., 1994
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1 Introduction

Figure 1.5: Reconnection along the separator field lines, suggested by Longcope 1998

model of the solar atmosphere at that time which were either static, fitting temporally
and spatially averaged continua and line densities Vernazza et al., 1981 or dynamic but
dynamic but limited to acoustic effects Carlsson & Stein 2002, they could include and in-
vestigate the rotational motions of the opposite polarities for the case which was observed
and discussed in Brown et al., 2001. In a series of 3D MHD numerical simulations that
was followed by (Büchner 2006, Santos & Büchner 2007, 2008) for different BP cases,
they could investigated the role of the horizontal plasma motion in photosphere and chro-
mosphere and found it essential for magnetic coupling between photosphere and corona.
Using the observational photospheric magnetic field and the plasma motion in their resis-
tive MHD model (LINMOD3D) they could obtain the electric currents at the same posi-
tion as the EUV BP. In order to derive the horizontal velocity field due to plasma motion,
local-correlation-tracking (LCT) method (November & Simon 1988) was applied to the
line-of-sight (LOS) component of the photospheric magnetic field. The idea of the LCT
method is to find the displacement that maximizes the spatially localized cross-correlation
between two subsequently obtained magnetograms separated by a sampling time delay τ
that is smaller than the lifetime of tracers in the scene. For this sake the spatially localized
cross correlation function C(δ, r) can be defined as follows to be integrated over the full
area of the images:

C(δ, r) =

∫
S

Jt(ε − δ2)Jt+τ(ε +
δ

2
)W(r − ε)dε (1.1)

It includes the intensity images Jt(ε) and Jt+τ(ε) at two instances of time and a win-
dow function W(r) that defines the spatial resolution of the vector displace determination,
with r representing the center of the function and δ for the two-dimensional displacement
between the images. The spatially localized cross correlation function C(δ, r) is higher
for the motions that lead to evolutionary changes between the images. Calculating C(δ, r)
for different displacement δ, one can find the displacement that maximizes the cross cor-
relation:

∂C(δ, r)
∂δ

|δ=∆(r)= 0 (1.2)

By dividing the displacement ∆(r) by the time interval τ the velocity can be derived. It
should be noted that the proper results of LCT requires significant contrast between the
patterns. Further details can be find in Santos et al., 2006 and also, where different
methods of deriving the horizontal velocities have been compared.

12



1.2 Modelings of the coronal heating

Another aspect that was taken into account in the numerical model of Büchner et al.
2004a,b was the inclusion of anomalous resistivity, which is essential for moving toward
a more realistic modelings. This way one can can couple the microphysical effect of the
enhanced localized resistivity into a more global, large-scale MHD model. Before going
into more details of their model which is the base of the present work, let us have a brief
look at the different models of treating solar corona.

1.2 Modelings of the coronal heating

There are two main categories of theoretical models of the extra ordinary strong coronal
heating trying to explain the very high temperature of the outer atmosphere by orders
of magnitude than the solar surface temperature. In both classes of models energy is
transported from below the surface via the photospheric motions of the magnetic fields
footpoints into the corona. Classification of the relevant models are according to the way
the photospheric driver and the corona are coupled or, more precisely, according to the
timescales of the electromagnetical response of the corona to the photospheric driver.
Magnetic tension propagates along the magnetic field lines with the Alfven speed vA. If
the motions at the coronal footpoints of the photospheric magnetic field moves at time
scales (much) faster than the Alfven transit time along a coronal loop then the coronal
loops do not have enough time to adjust, they will see an alternating current, which is
the characteristic of an AC (alternating current) heating by propagating magnetohydro-
dynamic waves. In the opposite case, when the changes due to the photospheric driver
are slow, the loop can adjust to the changing boundary condition in a quasi-static way,
leading to DC (direct current) models with quasi-static currents in the corona, (Aschwan-
den 2001). An image of the topological dissipation of twisted magnetic flux tubes is
shown in Fig. 1.6, (from Parker 1972, 1983). In Parker’s model the braiding of field lines
due random motions of the photospheric footpoints causes the formation of topological
discontinuities through which dissipation by magnetic reconnection is expected.

The challenge for both classes of models is mainly to describe properly the energy and
current dissipation, (see e.g., Aschwanden 2001, De Moortel et al., 2008). Obviously, the
scales at which energy dissipation should happen are beyond the MHD scales. Kinetic
effects that are significant at these scales should be taken into account in the framework
of a global MHD picture. In this regard one can refer to Parker 1972, where incapability
of the classical Joule dissipation of the quasi-static current in the DC model was figured
out. In this case the dissipation requires the inclusion of the anomalous resistivity, i.e.,
a feature of the locally small scale physics, see (Birn & Priest 2007, Büchner & Elkina
2006a,b).

In DC models various ways of dissipation including, e.g., Joule dissipation of cur-
rents, magnetic reconnection, current cascading and viscous turbulence. In AC models
heating can be due to e.g., Alfvenic resonances, resonance absorption, phases mixing,
current layer thinning and plasma turbulence. Acoustic heating models suggest heating
by compressional waves, and velocity filtration models are based on the influence of the
gravitational potential field in the corona on a postulated non-Maxwellian chromospheric
velocity distribution. A list of different models with variant way of current dissipation is
shown in Fig. 1.8, (from Aschwanden 2001).

13



1 Introduction9.3. DC HEATING MODELS 365

Figure 9.5: Topology of magnetic fluxtubes that are twisted by random walk footpoint motion
(left; Parker 1972), leading to a state where fluxtubes are wound among its neighbors (right;
Parker 1983).

of the magnetic stress energy of a field line with longitudinal field and
transverse component ,

and estimated an energy build-up rate of (erg cm s ), based on
G, km s , cm, and assuming that dissipation is sufficiently

slow that magnetic reconnection does not begin to destroy until it has accumulated
random motion stress for 1 day. The manifestation of such sporadic dissipation events
of tangential discontinuities in the coronal magnetic field in the form of tiny magnetic
reconnection events is then thought to be detectable as nanoflares in the soft X-ray
corona, whenever the twist angle

exceeds some critical angle. Parker (1988) estimates, for a critical angle given by a
moderate twist of , corresponding to , that the typical energy of
such a nanoflare would be

based on km, (km s ), s, km, and
G. Thus, the amount of released energy per dissipation event is about nine

orders of magnitude smaller than in the largest flares, which defines the term nanoflare.
There are several variants of random stressing models. A spatial random walk of

footpoints produces random twisting of individual fluxtubes and leads to a stochastic

Figure 1.6: Illustration of the twisting of the magnetic flux tubes due to the random mo-
tions of the footpoints in the left panel Parker (1972) and a later stage at which the flux
tubes are wound among its neighbours Parker (1983).362 CHAPTER 9. CORONAL HEATING
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Figure 9.3: Categories of DC (left panels) and AC models (right panels), subdivided into coro-
nal (top row) and chromospheric versions (bottom row). The greytones demarcate high-density
regions (chromosphere and transition region) (Aschwanden 2002b).

theoretical models, coronal heating is a multi-stage process, which can be conceptually
organized in a scheme with 8 steps, as illustrated in Fig. 9.2: the initial energy comes
from a mechanical driver (a), which has an electromagnetic coupling (b) to the loca-
tion of magnetic energy storage (c). At some point, a magnetic instability and loss of
equilibrium (d) occurs, with possible energy transport (e), before plasma heating (f)
starts. The resulting overpressure forces plasma flows (g), which become trapped (h)
in coronal loops, where they are eventually observed. Various coronal heating models
cover only an incomplete subset of these steps, so that these concepts first have to be
combined with specific geometric and physically quantified models of coronal struc-
tures before they can be applied or fitted to observations. Therefore, observational tests
of theoretical heating models are still in their infancy.

An aspect of over-riding importance for modeling coronal heating is the treat-
ment of a realistic chromospheric and transition region boundary. This is visualized
in Fig. 9.3 for some standard models. Early versions of coronal heating models usually
approximate a coronal loop with a uniform fluxtube (Fig. 9.3, top row), which pro-
duces a more or less uniform energy dissipation for stressing of magnetic field lines
and has rather large dissipation lengths for Alfvén waves. In other words, these highly
idealized models produce an almost uniform heating function that stands in stark con-
trast to the observations. Recent, more realistic, models include gravity and the density
and temperature structure of the chromosphere/transition region at the lower bound-
ary (Fig. 9.3, bottom row), which changes the resulting heating function drastically.
Typically, the heating rate is much more concentrated near the footpoints, because of

Figure 1.7: Main categories of DC and AC models (left and right panels, respectively).
The top row refers to corona while the bottom row corresponds to chromosphere with
darker regions at the base indicating the higher densities, (taken from Aschwanden 2002).
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1.2 Modelings of the coronal heating

Progress in the theoretical and numerical models of coronal heating has been made
by moving towards more realistic modelling of solar transition region and chromosphere.
Considering more realistic scale heights, density and temperature profiles in the lower
layers of the solar atmosphere lead to a heating which is more concentrated around the
footpoints and in the vicinity of the large density and temperature gradients in the transi-
tion region, (see lower panel of Fig. 1.7 in comparison to the upper panel).

Fig. 1.9 from Schrijver et al., 2000 illustrates how our picture from different layers
of the solar atmosphere has changed from the gravitationally stratified layers in 1950s
(left panel), moving to 1980s with some more details from the chromosphere (middle
panel) and fully inhomogeneous current picture at which considering more dynamical
processes has mixed up the boundaries of these layers. The dynamic processes involved
are, e.g., heated upflows, cooling downflows, intermittent heating (ε), nonthermal electron
beams (e), field line motions and reconnections, emission from hot plasma, absorption and
scattering in cool plasma, acoustic waves and shocks. Deviation from the gravitational

1.8. PLASMA- PARAMETER OF THE SOLAR CORONA 29
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Figure 1.22: Plasma in the solar atmosphere for two assumed field strengths, 100 G and 2500
G. In the inner corona ( ), magnetic pressure generally dominates static gas pressure.
As with all plots of physical quantities against height, a broad spatial and temporal average is
implied (Gary, 2001).

Table 1.1: The plasma- parameter in the solar atmosphere.

Parameter Photosphere Cool corona Hot corona Outer corona
Electron density (cm )
Temperature (K)
Pressure (dyne cm 0.3 0.9 0.02
Magnetic field (G) 500 10 10 0.1
Plasma- parameter 14 0.07 0.2 7

different locations of the solar corona thus strongly depends on the employed magnetic
field model, in particular because the magnetic field strength is the least known
physical parameter in the corona, while the density and temperature can readily
be measured in EUV and soft X-rays for structures with good contrast to the coronal
background. A comprehensive model of the plasma- parameter has been built by Gary
(2001), using a large number of physical parameters quoted in the literature, resulting
in a well-constrained range of -values for any given height, , shown as a grey
zone in Fig. 1.22. One conclusion of Gary (2001) is that even in coronal heights of

high -values above unity can occur, which might be responsible for the
dynamics of cusp regions (Fig. 1.23) or overpressure near the apices of large loops seen
with TRACE.

Table 1.1: Plasma-β in the solar atmosphere, Aschwanden (2001)

stratification and the radial density profile is a result of magnetical structuring of the solar
atmosphere. A useful factor to measure the magnetic confinement of a region is plasma-
β, the ratio between the thermal pressure and the magnetic pressure. At regions with
high values of plasma-β, the particles are energetic enough to cross magnetic field lines.
Typical values of plasma-β as well as electron density, temperature, etc., are given for four
layers of the solar atmosphere from photosphere to the outer corona, in Table. 1.1, (from
Aschwanden 2001). The averaged value of β versus height is illustrated in Fig. 1.10
based on a model by Gary, G. A., 1974. The Figure shows that in the inner corona
(R . 0.2R�) magnetic pressure generally dominates the plasma pressure. The small value
of β the solar corona implies that this region is highly magnetically structured. This
lead to the idea modelling the corona by subdividing it into separate magnetic flux tubes
isolated from each other at 1980s, (middle panel on Fig. 1.9). This picture was modified
after the high resolution images were available from observations showing that the by the
various dynamic processes that are going on, including the chromospheric heated upflows
and the downward coolings, the corona is quite dynamic. An observational evidence
in this regard was given by Solanki et al., 2003, showing the coexistence of the cool
and hot material in the chromosphere. Therefore for using EUV and X-ray fluxes for
modelling of the corona, one should impose some statistical distribution of flux tubes
along any line-of-sight. One challenging aspect for a proper modelling of the corona
in connection with the transition region and chromosphere is their deviation from the
Local Thermodynamic Equilibrium (LTE). Consequently, one would need to consider
the full statistical equilibrium equations. Hydro-radiation simulations was carried out
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Table 9.2: Coronal heating models (adapted from Mandrini et al. 2000).

Physical process References
1. DC stressing and reconnection models:

Stress-induced reconnection Sturrock & Uchida (1981)
Parker (1983, 1988); Berger (1991, 1993)
Galsgaard & Nordlund (1997)

Stress-induced current cascade Van Ballegooijen (1986)
Hendrix et al. (1996)
Galsgaard & Nordlund (1996)
Gudiksen & Nordlund (2002)

Stress-induced turbulence Heyvaerts & Priest (1992)
Einaudi et al. (1996a,b)
Inverarity & Priest (1995a)
Dmitruk & Gomez (1997)
Milano et al. (1997, 1999); Aly & Amari (1997)

2. AC wave heating models:
Alfvénic resonance Hollweg (1985, 1991)
Resonant absorption Ionson (1978, 1982, 1983), Mok (1987))

Davila (1987), Poedts et al. (1989)
Goossens et al. (1992, 1995)
Steinolfson & Davila (1993)
Ofman & Davila (1994); Ofman et al. (1994, 1995)
Erdélyi & Goossens (1994, 1995, 1996)
Halberstadt & Goedbloed (1995a,b)
Ruderman et al. (1997)
Bélien et al. (1999)

Phase mixing Heyvaerts & Priest (1983)
Parker (1991); Poedts et al. (1997)
De Moortel et al. (1999, 2000a)

Current layers Galsgaard & Nordlund (1996)
MHD turbulence Inverarity & Priest (1995b)

Matthaeus et al. (1999)
Dmitruk et al. (2001, 2002)

Cyclotron resonance Hollweg (1986), Hollweg & Johnson (1988)
Isenberg (1990), Cranmer et al. (1999a)
Tu & Marsch (1997, 2001a,b)
Marsch & Tu (1997a,b,2001)

3. Acoustic heating: Schatzman (1949)
Acoustic waves Kuperus, Ionson, & Spicer (1981)

4. Chromospheric reconnection: Litvinenko (1999a)
Longcope & Kankelborg (1999)
Furusawa & Sakai (2000)
Sakai et al. (2000a,b, 2001a,b)
Brown et al. (2000)
Tarbell et al. (1999)
Ryutova et al. (2001)
Sturrock (1999)

5. Velocity filtration: Scudder (1992a,b; 1994)

Figure 1.8: list of different models with variant way of current dissipation is shown in
Fig. 1.8, Aschwanden (2001).
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Figure 1.17: Cartoon of geometric concepts of the solar corona: gravitationally stratified layers
in the 1950s (left), vertical fluxtubes with chromospheric canopies in the 1980s (middle), and
a fully inhomogeneous mixing of photospheric, chromospheric, and coronal zones by dynamic
processes such as heated upflows, cooling downflows, intermittent heating ( ), nonthermal elec-
tron beams ( ), field line motions and reconnections, emission from hot plasma, absorption and
scattering in cool plasma, acoustic waves, and shocks (right) (Schrijver, 2001b).

Given these geometrical concepts, we can partition the solar corona into open-
field and closed-field regions, as shown in Fig. 1.14. Because the 3D magnetic field
is space-filling, every location can be associated with a particular magnetic field line.
Depending on the desired spatial resolution of a geometric model, each domain of the
corona can further be subdivided into magnetic fluxtubes with a certain cross-sectional
area, each one representing an isolated “mini-atmosphere”, having its own gravita-
tional stratification and hydrostatic pressure balance, constrained by different densities
and temperatures at the lower boundary. This breakdown of the inhomogeneous at-
mosphere into separate fluxtubes simplifies the magneto-hydrostatics into 1D transport
processes. Measurements of the flux in EUV or soft X-rays, which is an optically
thin emission, however, involves various contributions from different fluxtubes along a
line-of-sight, requiring the knowledge of the statistical distribution of fluxtubes. EUV
and soft X-ray data can therefore only be modeled in terms of multi-fluxtube or multi-
temperature concepts.

Figure 1.9: Evolution of solar corona models: Gravitationally stratified layers in the 1950s
(left), vertical flux tubes from the chromosphere in the 1980s (middle) and a mixing of
photospheric, chromospheric and corona zones due to different dynamical processes, (As-
chwanden 2001, Schrijver et al., 2000)

for instance by Carlsson & Stein 1992 in 1D self-consistent radiation hydrodynamic
model which was later extended to 3D Carlsson & Stein 2002, as is necessary for a
proper description of processes like mode conversion, reflection and refraction of waves.
A critical quantity for mode conversion is the angle between the magnetic field and the
velocity polarization, which determines the transition of the photospheric acoustic, fast
modes to acoustic, slow mode wave propagating along the magnetic field. However, the
Non-LTE 3D radiative MHD simulations and a detailed coupling of the radiation field
and matter in the chromosphere are too complex to be solved in general. Therefore,
some problem dependent approximations are needed to bring the complexity to tractable
levels, (see Carlsson & Stein 2003). The computational domain in this case should be
optically thin for all frequencies at the top boundary and optically thick at the bottom
boundary. The main steps to get a consistent solution in 1D are to start from LTE radiative
in the hydrostatic equilibrium and move gradually from LTE to non-LTE by switching
collisional radiation. Gradually, the radiation in the energy equation can be turn on and
then incoming radiation fields can be considered.
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Figure 1.22: Plasma in the solar atmosphere for two assumed field strengths, 100 G and 2500
G. In the inner corona ( ), magnetic pressure generally dominates static gas pressure.
As with all plots of physical quantities against height, a broad spatial and temporal average is
implied (Gary, 2001).

Table 1.1: The plasma- parameter in the solar atmosphere.

Parameter Photosphere Cool corona Hot corona Outer corona
Electron density (cm )
Temperature (K)
Pressure (dyne cm 0.3 0.9 0.02
Magnetic field (G) 500 10 10 0.1
Plasma- parameter 14 0.07 0.2 7

different locations of the solar corona thus strongly depends on the employed magnetic
field model, in particular because the magnetic field strength is the least known
physical parameter in the corona, while the density and temperature can readily
be measured in EUV and soft X-rays for structures with good contrast to the coronal
background. A comprehensive model of the plasma- parameter has been built by Gary
(2001), using a large number of physical parameters quoted in the literature, resulting
in a well-constrained range of -values for any given height, , shown as a grey
zone in Fig. 1.22. One conclusion of Gary (2001) is that even in coronal heights of

high -values above unity can occur, which might be responsible for the
dynamics of cusp regions (Fig. 1.23) or overpressure near the apices of large loops seen
with TRACE.

Figure 1.10: The values of plasma-β at different heights is shown based on a model by
Gary, G. A., 1974 for two different magnetic field strengths of 100G and 2500G. Is shows
the regions with β > 1 can occur even in the coronal heights

The linking between observations and the theoretical modelling is indeed crucial for
both sides. It helps to give sights for further designment of the observational instruments
as well as to examine the capability of the theoretical models in reproducing observations.
However, The physical parameters provided by theoretical models are are often different
from the quantities that are provided from observations. In using the inversion of the
observed data for deducing the usual parameters of theoretical models one has to deal
with the problem of non-unique solutions. The direct interpretation of the observations
is also challenging because of e.g., the unknown filling factor (the ratio between volume
radiating in certain emission line to the total volume). A more reliable approach is to
calculate observable parameters like intensities or Doppler shifts from theoretical models
and compare them directly to the observations. De Moortel et al., 2008 have reviewed
the role of this so called ’forward modelling’ approach on the development of the coronal
heating problem. It has been stated there that strong correlation between the brightness
of corona emission and the strength of the magnetic filed has been indeed justified with
a wide ranges of evidences. Regarding the proper modelling of solar corona, since the
conduction and radiation energy losses has been estimated to of the order of 104 Wm−2

in active regions, the adequate model for this problem would need to supply this energy.
There are observational evidences for both of the two main classification of the coronal
heating problem, namely AC and Dc models. For the AC model, there are recent ground
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1.2 Modelings of the coronal heating

and space-based observations that can detect coronal waves but the corresponding energy
fluxes re far below the required values for corona, Tomczyk S et al., 2007. Neither the
transverse displacements of spicules observed by Hinode/SOT (De Pontieu B et al., 2007)
nor the transverse oscillations of filamentary structures in prominences (Okamoto et al.,
2007) were sufficient to heat the corona. Although the wave heating can be an strong
candidate for open field regions, it is probably less viable for closed regions with shorter
Alfven times (De Moortel et al., 2008). In contrary In the DC model the Poynting flux of
energy:

F =
1
µ

BvBhVph (1.3)

with Bv and Bh the vertical and horizontal components of the magnetic field, respectively,
is sufficient for heating when the typical values of coronal magnetic field Bv = 0.01 T
and the photospheric footpoints velocity Vph = 1kms−1 are used, providing that Bhorizontal

is least 10 percent of the Bvertical. This constraint for switching on the dissipation has to
be considered in the modelling to provide the sufficient localized energy dissipation by
reconnection, (see, e.g., Priest & Forbes 2000). One approach toward deducing the right
parameters for a heating model that reproduce the observations is to create the coronal
magnetic extrapolation based on the photospheric magnetic field (obtained from Zeeman
splitting of spectral lines - since the coronal magnetic fields can not be measured directly,
unless in low temporal and spatial resolution using for example Hanle effect, Faraday
rotation, Stokes polarimetry in infrared, etc.,). Using different heating scales in terms
of field strength and loop lengths, εh BαLβ, Warren & Winebarger, 2006 tested various
heating models to find the α and β with which the volumetric heating result in images
that matches the actual images best. Fig. 1.11 shows the images of one of the active
regions that they used for this study (AR 7997 on 1996 November 26th) taken from Solar
and Heliospheric Observatory (SOHO) / EUV Imaging Telescope (EIT) and SOHO /

Yohkoh Soft X-ray Telescope (SXT). The result of Potential field extrapolation is used for
simulations with different volumetric heating models α = 1, β = 0, 1, 2. The comparison
shows that the best agreement between the observations and simulations suggest a heating
model that scales a εh B̄/L, where B̄ is the magnetic field strength along a field line
with the length of L, and they found this heating model consistent with the field-braiding
reconnection model suggested by Parker 1983 illustrated in Fig. 1.6.

Another approach in the framework of the advanced 3D MHD simulation was made
by Gudiksen & Nordlund 2006, carrying on ab initio model of coronal heating at which
the heating of corona is provided through the slow braiding of the magnetic field lines
by photospheric footpoint motions. The idea was followed by Peter et al., 2004, 2006
where they calculate intensity and Doppler shifts and provide diagnostics which can be
compare to the both imaging and spectroscopic observations and this comparison has
shown a remarkable agreement. In a further step in the PhD thesis of S. Bingert using a
randomly distributed heating function they could reproduce a Nanoflare distribution result
in a hot corona. In the Nanoflare heating model which was proposed by Parker 1988,
many small scale heating events are assumed to produce the adequate heat for the corona.
The less frequent large-scale heating events like solar flares for coronal mass injections
can indeed release much more energy ones they happen, but even then with the thermal
conduction restricted mainly along the magnetic field lines due to small coronal plasma-β,
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1 IntroductionFig. 4.—Selected field lines from the potential field extrapolation of AR 7999 observed on 1996 November 26. The chromospheric sections of the field lines are
shown in red, and the coronal sections are shown in blue. Only one of every three field lines is shown.

Fig. 5.—Synthetic SXT AlMg and EIT 171 8 images for AR 7997. Images for the � ¼ 1, � ¼ 0, 1, and 2 cases are shown. The images are displayed with the
same scalings used in Fig. 1. Note that the synthetic images have not been convolved with the instrumental point-spread functions.Figure 1.11: Synthetic SXT AlMg and EIT 171 A images for AR 7997 on 1996 November
26th are shown, as well as the images for the cases with α = 1, β = 0, 1 and 2. The case
with α = beta = 1 fits the real images best, Taken from Warren & Winebarger, (2006).

they are unlikely to be sufficient to maintain coronal temperature. The sufficiency of the
heat provided by small scale event would depend on the steepness of the spectrum of the
frequency of their occurrence versus energy, Hudson 1991. There are some observational
evidences for some small-scale events at the energy ranges of the nanoflares, which are
found at the bottom of the energy and temperature scales, (see, e.g., Aschwanden 2001).
These observed tiny nanoflares coincide with the relevant theoretical DC models (for
example Parker 1988) if the magnetic dissipation happen in the height of the transition
region. About 95 percent of photospheric magnetic fluxes are estimated to close at this
height, which give a high chance for occurrence of EUV Nanoflares.

1.3 The scope of this work

We performed a 3D MHD simulation model to investigate the physical processes involved
in the dynamical evolution of the solar atmosphere plasma in the region of a X-ray coro-
nal bright point (BP), observed by Hinode/XRT telescope on 19 December 2006. The
velocities of the photospheric deriver are deduced by applying the Local-Correlation-
Tracking(LCT) method to the photospheric line-of sight (LOS) components of the mag-
netic field, provided by SOHO/MDI magnetograms. The simulation box is extended from
photosphere to corona, so that it includes the motions of the footpoints of magnetic field
lines as well as the resulting braidening of field lines as they arrive in the coronal heights
or more likely, when the close in some lower altitudes. Therefore the theoretical DC
model suggested by Parker 1972 has been followed, where the complex magnetic struc-
tures that is the hosting the different geometries for current dissipation have been ruled out
by magnetic field photospheric footpoint motions. These motions pump up the adequate
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1.3 The scope of this work

heating energy for heating the corona through the Poynting flux at the base. The coupling
of the neutral gas and the plasma is being adjusted though a collision profile, so that if
is efficient only in the regions with higher values of plasma-β, or the regions below the
transition region heights. More details about the model can be find in the next Chapter.
In the third Chapter, we are addressing the importance of Joule heating as heating mech-
anism for the corona, as is used in a similar 3D model by for example Peter et al., 2004,
2006 and PhD thesis of S. Bingert. We used resistivity values that were by many order
of magnitudes higher than the classical values of Spitzer resistivity. This makes sense as
far as this re-scaling compensate the lower values of currents, concerning the large scales
of MHD simulation. However even these very hight resistivity values were found to be
adequate for increasing the temperature. The resulting Joule dissipation was even less
efficient than the adiabatic compression in heating the plasma. Therefore, in using unreal-
istic high values of resistivity to get a hot corona that maintain the temperature one should
have in mind that it an artificial way to cover the contribution of the heating mechanism
that we are not considering in such a models properly.

In should be added here that the a certain switch for turning on an additionally high
resistivity was used in the model to provide microphysics involve in dissipation in small
scales. This way we could couple kinetic effects in a global MHD model, Although, it did
not change the fact that the Joule dissipation had a minor effect to heat the plasma com-
paring to the adiabatic heating for example. The other issue was considering two heating
mechanism in the model. In the energy equation the classical heat conduction in parallel
to magnetic field lines was included, which is a reasonable assumption for a highly ion-
ized plasma that can move freely only along the magnetic field lines. The heat conduction
coefficient is taken as it is obtained by Spitzer 1962. Another loss mechanism added to
the model is the radiative cooling. There are a number of atomic processes involved in
coronal emission in X-ray and EUV, namely induced absorption, stimulated and spon-
taneous emission, photo-ionization, 2-body and 3-body recombination, auto-ionization,
Thomson scattering, free-free emission (Bremsstrahlung) and absorption, collisional ex-
citation, de-excitation and ionization. For a review of the contribution of these processes
in different temperature and line emissions see for example Aschwanden 2001. It is more
practical to use a radiative function that sums up all the line intensities in different tem-
perature ranges . The radiative loss function that we used for this sake was calculated by
Rosner et al., 1978. There are more recent version of this calculation, given for example
by Cook et al., 1989, where the difference is mainly due to different assumptions in the
elemental abundances. A comprehensive code that contains all the known line transition
is CHIANTI code, (see for example, Landi et al., 2006). CHIANTI atomic database for
spectroscopic diagnostics of astrophysical plasmas and can be use for calculation of more
precise versions of radiative loss function. Although this would not change the dynamic
evolution of the system that we study here.

In a series of 2D MHD simulations for the case of coronal BP, Von Rekowski B.,
Parnell C. E., Prist E. R., 2006a,b, Rekowski et al., 2008 investigated the physical conse-
quences of different thermodynamical models, For example comparison of an isothermal
model with a model that let the temperature evolve in time. The test the effect of in-
clusion of different combination of the following mechanism: adiabatic heating/cooling,
viscous and Joule heating, radiation and thermal conduction along the magnetic field
lines. Considering different boundary conditions, they emphasis that the inclusion of the
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heat conduction can avoid unrealistic high values of coronal temperatures. They specify
there the inclusion of an additional term to mimic the background coronal heating which
is not properly understood yet. It should be noted here that have not included any un-
known source of background heating in the model, aiming at investigation of the physical
processes that are certainly acting in the dynamical evolution of the system, rather than
creating a hot corona with heating terms which are not well justified. Hence the only
heating source in this case would be the Joule dissipation of the electrical currents that
are created due to the footpoint motions of the magnetic bipoles of opposite polarities
correspond to this BP. The chosen BP is magnetically rather weak however, and there-
fore would not create a Poynting flux that is sufficient for a hot corona and to keep it at
high temperatures. In the absence of any other heating source in the simulation box and
while the two loss terms, radiative cooling and heat conduction- are acting, one can ex-
pect a drop in temperature profile which is the case in Chapter 4. Let us summarize our
approach by listing the required steps for performing the simulation:

• Choosing a specific bright point

– Taking magnetogram (MDI image) of this BP

– Filtering the data using Fourier Filter with 8 modes

– Extrapolation of the magnetic field to obtain the full components of magnetic
vector

• Set of the MHD equations

– Normalization of equations and the transport coefficients (e.g., for resistivity,
heat conduction and radiative loss)

– Setting the initial conditions and profile (e.g., for collision frequency, density,
etc.)

– Applying the boundary condition

• Inserting the result of LCT method through a number of vortices that reproduce the
same motion

• Deducing the physical parameters using the result of MHD simulation

Depending on the case, one can choose to switch on or off any of the heating and loss
terms, namely Joule dissipation, radiative losses and heat conduction. The same in valid
for different choices of resistivity model and coefficient, consequently.
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2 The MHD model

Magnetohydrodynamic (MHD) is a fluid model of plasma derived from the Vlosov-
Maxwell system. The current form of the MHD equations has been derived by Lundquist
1952, while the invention of MHD is attributed to Alfven, 1947, who performed a lin-
earized analysis of coupled hydrodynamic and non-relativistic Maxwell’s equations. The
following assumptions has been made in the framework of MHD: non-relativistic fluid
with v � c; validity of the charge neutrality ωpeτ � 1, (which implies that the oscil-
lations in plasma density are slow so that the electron motion can maintain the charge
neutrality); length scales greater than the ion gyroradius L � v/Ωi; and mean free path
between the collisions smaller than the length scale of system L.

2.1 MHD equations
The set of MHD equations that are used in the MHD code are as follows:

∂ρ

∂t
= −∇ · ρu (2.1)

∂ρu
∂t

= −∇ · ρuu − ∇p + j × B − νρ(u − u0) (2.2)

= −∇ · [ρuu + (p +
B2

2µ0
) − BB

µ0
] − νρ(u − u0)

∂B
∂t

= ∇ × (u × B − ηj) (2.3)

∂p
∂t

= −∇ · pu − (γ − 1)p∇ · u + (γ − 1)S (2.4)

together with Ohm’s and Ampère’s laws:

E = −u × B + ηj (2.5)
∇ × B = µ0j (2.6)

Here ρ, u, B are plasma density, velocity and magnetic field, respectively. Plasma tem-
perature (T) is related to plasma pressure (p) via the ideal gas law for a fully ionized
plasma:

p = 2nκBT

Neutral gas density and velocity are denoted by ρ0 and u0. The ions and electrons are
assumed to have the same temperature, which explains the factor 2 in the equation of
state. The neutral gas is coupled to plasma via the collision term in momentum equation,
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2 The MHD model

νρ(u−u0), where ν represents the collision frequency. The vertical profile of the collision
frequency is chosen in a way that the plasma-neutral gas coupling has the maximum value
in photosphere and vanishes in the solar coronal, as shown in Fig. 2.1. So for the height
below ztr, which is the location of the transition region, i.e., boundary between solar
chromosphere and corona, we have:

µ(z) = µ0(1 − z
ztr

)

where µ0 is the collision frequency at photosphere. Above the transition region it decays
quickly with height:

µ(z) = e−
z

4ztr

FIGURE 3.3 - Example of the collision frequency vertical profile used in the MHD model to couple the back-
ground neutral gas with the plasma.

3.4 Boundary conditions

The boundary conditions tell us how the variables behave at the system frontiers. They

should be defined in a way that the MHD equations remain invariant under the transforma-

tion of the MHD variables. The simulation box has 6 boundaries: four lateral boundaries,

the bottom boundary and the top boundary.

First, the boundary conditions in the x-y plane will be discussed. In this discussion the

system boundaries are considered to be at x = [0, Lx] and y =
[
− Ly

2
, +Ly

2

]
. The symmetry

conditions are considered at x = 0 for a plane z = const. The case where point (line)

mirroring (at x = 0) with respect to x = y = 0 is used will be discussed. This boundary

condition has the following characteristics: x → −x, y → −y, z → z, ∂x → −∂x, ∂y → −∂y

and ∂z → ∂z. This set of boundary conditions implies a line symmetry along the line

x = y = 0.

The variables can be transformed in two different ways:

• Symmetric transformation

f(−x, y, z) = f(x, y, z) (3.24)

94

Figure 2.1: The vertical profile of collision frequency that was used as initial condition in
our simulation model.

The source term, S, in the energy equation includes:

S = η j2 − ∇ · q − Lr (2.7)

where η is the resistivity coefficient, (see next subsection). Heat conduction is considered
only for electrons and along the magnetic field:

∇.q = ∇‖ · (κ‖∇‖T ) (2.8)
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2.2 Resistivity models

with the classical Spitzer-value for κ‖:

κ‖ = 1.8.10−10 T 5/2

lnΛ
Wm−1K−1 (2.9)

which gives the typical values of κ‖ ≈ 10−11T 5/2 with a Coulomb logarithm of lnΛ ≈ 20.
Across the magnetic field the conduction is mainly due to ions and by some order of
magnitudes lower.

The radiative loss function for the optically thin layers of solar atmosphere (chromo-
sphere and corona) has the form:

Lr = nenn Q(T ) (2.10)
with Q(T ) = χTα W/m3 (2.11)

where ne is the electron density and nn the density of protons, Priest 1982. For the case of
fully ionized plasma nn = ne. Note that the given Q(T) is an analytical approximation for
temperature evaluation of radiative loss function, which sums up all the line contribution
radiations in different temperature intervals. The coefficients χ & α have been calculated
by many authors, while here they are taken from Rosner et al., 1978. There the approxi-
mation is made by a powerlaw parameterization for certain temperature intervals, as listed
in table. 2.1. The Analytic fit of Rosner et al., 1978 is shown in Fig. 2.2 with solid line,
which has a maximum around 105 K. Note that the difference in the various calculations
of this function is mainly a result of different assumptions in the elemental abundances.

Figure 2.2: radiative loss function Q(T) derived by different authors. The analytic fit of
Rosner et al., (1978) is shown with the solid line. The plot is taken from Priest 1982.

2.2 Resistivity models
The magnetic resistivity (η) used in the model is composed of a constant background
resistivity (η0) and current dependent anomalous resistivity (ηe f f ). The classical Spitzer
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2 The MHD model

Table 2.1: Temperature variation of χ & α , (Rosner et al., (1978))
Rang of T α χ

4.4.103 − 8.0.103K 11.7 1.26.10−83

8.103 − 1.2.104K 6.15 4.93.10−62

104.3 − 104.6K 0 10−34.85

104.6 − 104.9K 2 10−44

104.9 − 105.4K 0 10−34.2

105.4 − 105.75K -2 10−23.4

105.75 − 106.3K 0 10−34.94

106.3 − 107K -2/3 10−30.73

(1962) resistivity due to binary collisions is used as a background resistivity and has
density and temperature dependence:

η0 =
ν0

ε0 ω2
pe

(2.12)

(2.13)

where the collision frequency can be obtained from:

ν0 =
ne4LnΛT−

3
2

16πε2
0m

1
2
e K

3
2
B

(2.14)

(2.15)

and the plasma frequency is given by:

ωpe =

√
ne2

ε0me
(2.16)

However, There is a possibility in the model for taking into account an additional re-
sistivity term, which switches on locally when a certain criteria is satisfied. The resistivity
models we have used are as follows.

In order to involve microphysical effects, (e.g., magnetic reconnection), in a MHD
model, one can use an anomalous resistivity at the locations where current carrier velocity
exceeds electron thermal velocity, (Roussev et al., 2002, Büchner & Elkina 2006a). This
resistivity then can be added to the uniform resistivity, η0, in this way:

η = η0 +

0, if|uccv| < ucrit

ηe f f ( |uccv |
ucrit
− 1) if|uccv| ≥ ucrit

(2.17)

So that when the current carrier velocity, uccv, (which is current density over charge
density), exceeds a certain limit, ucrit, there will be an additional term for resistivity. Here
ηe f f is the normalized value of this resistivity that in terms of an effective collision rate
can be written as , (Büchner & Elkina 2006a):

ηe f f =
νe f f

ε0 ω2
pe

(2.18)
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where the effective collision frequency is calculated using ion plasma frequency:

νe f f =
ω2

pi

2π
(2.19)

In the other resistivity model by Neukrich et al. 1997, a certain value of current
density was directly used to switch on an additional resistivity as follows:

η = η0 +

0, i f | j| < jcrit

η0( | j|jcrit
− 1)2 i f | j| ≥ jcrit

(2.20)

So for the current densities above jcrit, there will be a quadratic increase in resistivity with
the excess current density. This model however, has not been successful in predicting
the right locations of the finite resistivity, Büchner 2006. Therefore, we used current
density dependent resistivity only to study the effect of choosing different threshold for
switching on resistivity and to compare the consequent changes in the dynamics of the
system. Another possibility is of course to use only the collisional Spitzer-type resistivity.

2.3 Normalization values
In order to reduce the numerical errors that normally appear when large numbers are in-
volved in the calculation, a set of normalization values where chosen based on the typical
values of these quantities in solar atmosphere.

A list of the chosen normalization values and the resulting plasma quantities are col-
lected in table. 3.1. It can be seen from the table that magnetic field is normalized to
B0 = 1G = 10−4T , plasma density to n0 = 2.1015 , which is the density of protons in
the corona just above the transition region, mass density to ρ0 = mpn0, and length scale
to L0 = 500km. Using this values, one can obtain vA0 = B0/

√
µ0 mi N0 = 50 km/s for

Alfven speed and τA0 = L0/ vA0 = 10 s for Alfven time. The inverse of the Alfven time
1/τA0 is then used to normalize collision frequency. Magnetic pressure P0 = B2

0/2µ0 =

4.10−3 J/m2 was chosen to normalize plasma pressure. Assuming same temperature for
electrons and ions, we have p = nκB(Te + Ti) = 2nκBT and T0 = P0/2n0κB = 7.2.104 K.

2.3.1 Transport coefficients
The proper normalization values for the transport coefficients that appear in the source
term of the energy equation need to be derived as well. The energy equation that we used,
(as it was mentioned already), has the form:

∂p
∂t

= −∇ · pu − (γ − 1)p∇ · u + (γ − 1)S

With the source term:
S = η j2 − ∇‖.(κ‖∇‖T ) − nnnχTα

Using the ˆ symbol for showing normalized values, we have:

∂p̂
∂t̂

= −∇̂ · p̂û − (γ − 1)p̂∇̂ · û + (γ − 1)
τA0

p0
S (2.21)
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2 The MHD model

Table 2.2: Normalization values.

Variable Normalization value

magnetic field B0 = 1G = 10−4 T

density N0 = 2.1015m−3

lenght L0 = 500 km

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pressure P0 =
B2

0
2µ0

= 4.10−3 J/m2

temperature T0 = P0
2 n0 κB

= 7.2.104 K

Alfven speed vA0 = B0√
µ0 mi N0

= 50 km/s

Alfven time τA0 = L0/ vA0 = 10 s

thermal velocity vth0 = vA0/
√

2 = 35.36 km/s

current density j0 = B0
µ0L0

electric field E0 = vA0B0

resistivity η0 = µ0L0vA0

So that the source term will be:

Ŝ =
2µ0L0

B2
0vA0

(η j2 − ∇‖.(κ‖∇‖T ) − nnnχTα) (2.22)

Now the individual terms can be normalized:

2µ0L0

B2
0vA0

η j2 =
2µ0L0

B2
0vA0

.
µ0L0B2

0vA0

(µ0L2
0)

η̂ ĵ2 = 2η̂ ĵ2 (2.23)

2µ0L0

B2
0vA0
∇‖.(κ‖∇‖T ) =

2µ0L0

B2
0vA0

p0

2n0κBL2
0

∇̂‖.(κ‖∇̂‖T̂ ) =
1

2vA0n0κBL0
∇̂‖.(κ‖∇̂‖T̂ ) (2.24)

2µ0L0

B2
0vA0

nnnχTα =
2µ0L0

B2
0vA0

n2
0n̂n̂nχ(T0T̂ )α =

2n0L0

mpv3
A0

n̂n̂nχ(T0T̂ )α (2.25)

which implies the following normalization for the transport coefficients, (so that the en-
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ergy equation stays invariant):

κ̂‖ =
10−11T

5
2

0

2vA0n0κBL0
T̂

5
2 =

10−11.(7.2.104)5/2

50.103 4.10−3 500.103 T̂
5
2 = 0.01T̂

5
2 (2.26)

χ̂ =
2n0L0

mpv3
A0

Tα
0 χ =

2.2.1015.500.103

1.67.10−27 503.109 Tα
0 χ = 9.6.1033Tα

0 χ (2.27)

Note that the value of χ0 depends on the range of temperature and the value of α,
consequently.

2.3.2 Normalized equations
The normalized set of MHD equation using the specified normalization values are as
follows:

∂ρ

∂t
= −∇ · ρu − µ(ρ − ρ0) (2.28)

∂ρu
∂t

= −∇ · ρuu − 1
2
∇p + j × B − µρ(u − u0) (2.29)

= −∇ · [ρuu +
1
2

(p + B2) − BB] − µρ(u − u0)

∂B
∂t

= ∇ × (u × B − ηj) (2.30)

∂p
∂t

= −∇ · pu − (γ − 1)p∇ · u (2.31)

+(γ − 1){2ηj2 − 0.01∇‖.(κ‖∇‖T ) − 1034nnnχ(T0T )α)}

Note that below the transition region the ionization/recombination and friction fre-
quencies are large in comparison with the typical Alfven times. Therefore as far as these
frequencies are chosen large enough below corona to keep the plasma density, velocity
close to equilibrium or neutral values, the details of their choice in evolution of the solar
magnetic structure is not significant.

In the energy equation one can replace pressure by the variable h = (p/2)1/γ to obtain
a continuity equation for the internal energy in the absence of the source terms:

∂h
∂t

= −∇ · hu − (γ − 1)
γ

h1−γ{2ηj2 − 0.01∇‖.(κ‖∇‖T ) − 1034nnnχ(T0T )α} (2.32)

2.4 Initial conditions
The initial mass density profile would need to mimics the height stratification observed
in the solar atmosphere. Here we have used a profile according to the observational VAL
model, Vernazza et al., 1981. The plasma density in solar photosphere was chosen to
be a 100 times larger than the coronal density. The density profile in the model has been
formulated as follows,
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2 The MHD model

ρ(z) =
1
2
ρph(

tanh(z + ztr − 1) − tanh(z + ztr + 1)
tanh(ztr − 1)

) + ρc (2.33)

where ρph and ρc are photospheric and coronal density, ( and ρph = 100ρc). The height
of the transition region is given by ztr. The initial density profile is shown in Fig. 2.3.

FIGURE 3.1 - Example of the density vertical profile used as initial condition in the MHD model.

FIGURE 3.2 - Example of the temperature vertical profile used as initial condition in the MHD model.

92

Figure 2.3: The vertical profile of density that was used as initial condition in our simula-
tion model.

The plasma is assumed to be initially in a hydrostatic equilibrium, which gives an
initially constant pressure. This constant value for the initial pressure here is P0 = 1,
which was chosen to be equal to the plasma beta in the model. From the definition for
plasma beta we have,

β =
plasmapressure

magneticpressure
→ µ0n0κT

B2
0

(2.34)

that is the initial magnetic pressure for the model as well. Using the equation of
state, the initial temperature profile can then be obtained from the density profile, which
is shown in Fig. 2.4. Gravity was not included in the model. Therefore the rate at which
mass density drops at later times is much slower than in reality. The profile of the colli-
sion frequency below and above the height of the transition region was already shown in
Fig. 2.1. This frequency couples plasma and neutral gas below the transition region. The
neutral velocity is chosen to satisfy ∇ · un = 0. For the plasma coupled to neutral gas this
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2.4 Initial conditions

FIGURE 3.1 - Example of the density vertical profile used as initial condition in the MHD model.

FIGURE 3.2 - Example of the temperature vertical profile used as initial condition in the MHD model.
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Figure 2.4: The vertical profile of initial temperature in our simulation model.

implies dρ/dt = 0 which avoids unrealistic density perturbations. The neutral velocity
un is dependent in x and y, and is constant along z. It is derived from a potential using
un = ∇ × (Uez) with

U = u0/ cosh(
x − y + c0

L0
)/ cosh(

x + y + c1

L1
) (2.35)

Magnitudes of the velocity scale with u0/L0 and u1/L1. In the model up to 3 vortices
are used to mimic approximately the observed motion of different polarity regions. The
neutral motion is effective only below the transition region, where neutral density and
collision frequency are large.

For the initial magnetic field the potential field extrapolation is applied to the Fourier
decomposed normal field component of the magnetic field taken from the MDI-observation.
The 3D magnetic configuration can be obtained by extrapolation that is needed as the ini-
tial condition of the simulation code. The normal field component is related to (Bx, By)
through ∇ · B = 0 and ∇ × B = 0, and the required full symmetry boundary condition for
MHD simulation is satisfied.
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2 The MHD model

2.5 Boundary conditions
The simulation box has 6 boundaries: 4 lateral, 1 top and 1 bottom boundaries. In the
(x-y) plane the system boundaries are at x = [0, Lx] and y = [−Ly/2, Ly/2]. At the lower
boundary the normal velocity is set to be zero, while the tangential velocity is taken from
the neutral motion. The normal magnetic field fulfilled the ∇ · B = 0 and the horizontal
components, Bx and By are computed from Bz via ∇ × B = 0. For the upper boundary
the normal derivatives are set to zero, (symmetric condition). For a plane with constant z
symmetric boundary condition is used at x = 0. For MHD simulation the transformationA. Otto et al.: Force-free magnetic field extrapolation for MHD boundary conditions in simulations of the solar atmosphere 315

Table 2. Transformation properties for the transformation x̃ = −x, ỹ =
−y, and z̃ = z.

Quantity Set a) Set b)
ρ, p, η (s) (s)
ux, uy (a) (a)

uz (s) (s)
Bx, By (s) (a)

Bz (a) (s)
jx, jy (s) (a)

jz (a) (s)

suitable for the MHD equations satisfying the force-free condi-
tion. In the following we will employ the transformation set “b”
for the magnetic field extrapolation. Note that while for MHD
models the symmetry set (a) is equally suitable but is lost if
the Hall term is included in Ohm’s law. The boundary condition
has some implications regarding a preconditioning of the initial
magnetic field. The symmetry also applies to the plane x = 0,
i.e., Bz(0,−y, z) = Bz(0, y, z) such that the magnetic field along
the z axis must be symmetric with respect to y = 0 which can be
obtained through

Bprecond
z (0, y, z) =

1
2

(Bz(0, y, z) + Bz(0,−y, z)) . (6)

Applying this boundary condition to each boundary along x
and y also implies that all corner point must have the same value
for Bz

Bcorner
z =

1
4

∑
i=corners

B(i)
z . (7)

In addition the solution will produce a magnetic field where the
z axis (and the corresponding midpoint lines for the other bound-
aries are magnetic field lines because the symmetry along these
lines implies Bx,By = 0. However, this preconditioning appears
acceptable compared to method by Seehafer (1978) which re-
quires Bz = 0 on all x and y boundary planes.

2.2. Line symmetry and fourier expansion

In the x, y plane we assume an expansion for Bz with base func-
tions of the form

Ψmn = c1 sin
πm
Lx

x sin
πn
Ly
y + c2 sin

πm
Lx

x cos
πn
Ly
y

+c3 cos
πm
Lx

x sin
πn
Ly
y + c4 cos

πm
Lx

x cos
πn
Ly
y (8)

in a system 0 < x < Lx, −Ly/2 < y < Ly/2 as illustrated in Fig. 1.
The line symmetry conditions are

Ψmn (−x,−y) = Ψmn (x, y) at x = xmin = 0

Ψmn (Lx + x,−y) = Ψmn (Lx − x, y) at x = xmax = Lx

Ψmn

(
Lx

2
− x,−Ly

2
− y
)
= Ψmn

(
Lx

2
+ x,−Ly

2
+ y

)
at y = ymin = −Ly

2

Ψmn

(
Lx

2
− x,

Ly
2
− y
)
= Ψmn

(
Lx

2
+ x,

Ly
2
+ y

)
at y = ymax =

Ly
2
·

x

y

-x1
Lx

Ly/2

-y1

Δx

ΔxΔy

Δy

-Ly/2

y1

x1

Fig. 1. Illustration of the geometry of line symmetry.

Applying the symmetry conditions to the expansion yields the
base functions

Ψmn = c1 sin
πm
Lx

x sin
πn
Ly
y + c2 cos

πm
Lx

x cos
πn
Ly
y (9)

with m, n both even or m, n both odd for the expansion in x and y.

2.3. Solution to the force free condition

The solution is found similar to the work by Seehafer using an
expansion in the form:

Bz,αβ = c1 exp
(
−λαβz

)
sinαx sin βy

+c2 exp
(
−λαβz

)
cosαx cos βy (10)

and

Bxαβ = exp
(
−λαβz

)
(c1x sinαx cos βy + c2x cosαx sin βy) (11)

Byαβ = exp
(
−λαβz

) (
c1y sinαx cos βy + c2y cosαx sin βy

)
. (12)

Applying the force free condition allows to formulate the general
solution which satisfies the line symmetric boundary conditions.

Bx =
∑

m,n odd

c1mn

κ2 + λ2
mn

exp (−λmnz) (βnκ sinαmx cos βny

−αmλmn cosαmx sin βny)

+
∑

m,n odd

c2mn

κ2 + λ2
mn

exp (−λmnz) (αmλmn sinαmx cos βny

−βnκ cosαmx sin βny) (13)

By = −
∑

m,n odd

c1mn

κ2 + λ2
mn

exp (−λmnz) (βnλmn sinαmx cos βny

+αmκ cosαm x sin βny)

+
∑

m,n odd

c2mn

κ2 + λ2
mn

exp (−λmnz) (αmκ sinαm x cos βny

+βnλmn cosαmx sin βny) (14)

Bz =
∑

m,n odd

c1mn exp (−λmnz) sinαmx sin βny

+
∑

m,n odd

c2mn exp (−λmnz) cosαm x cos βny (15)

Figure 2.5: Illustration of the geometry of line symmetry, (Otto et al., 2007)

of the MHD variables need to be in a way that the MHD equations can remain invariant.
There are two ways of transforming each variable, symmetric f(−x, y, z) = f(x, y, z) or an-
tisymmetric g(−x, y, z) = −g(x, y, z). Positive define variables must transform symmetric,
e.g., density, pressure and resistivity. Our chosen boundary condition has the following
characteristics:

x→ −x, y→ −y, z→ −z
∂x → ∂−x, ∂y → ∂−y, ∂z → ∂−z

Which implies a line symmetry along x = Lx/2 and y = 0, Fig. 2.5. A proper set of
transformations that maintain the invariance of the equations can be as follows:

• Symmetric transformation for:
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ρ, p, η, uz, Bz, jz

• Antisymmetric transformation for:

ux, uy, Bx, By, jx, jy

A comprehensive description of the proper boundary condition can be found in Otto et
al., 2007.

2.6 Simulation properties
The set of MHD equations are solved using the second order Leapfrog scheme, which has
very low numerical dissipation. A small dissipation is switched on if oscillations develop
on the grid scale. Second order derivatives are treated using the Dufort-Frankel method
which allows very small resistivity. A divergence cleaning procedure is applied to the

FIGURE 4.3 - Horizontal velocity used as boundary condition of the model to approximate the velocity pattern
obtained for the interval 16:00 UT - 16:30 UT (left panel), 16:30 UT - 17:00 UT (central panel)
and 17:00 UT - 17:30 UT (right panel). The arrows show the horizontal velocity. The maximum
value of the horizontal velocity is given on the top left of each panel in terms of the Alfvén
velocity (vA = 5×104 m/s). The X and Y axis are in terms of the characteristic length scale
(L0 = 5× 105 m) and they cover the same area displayed in the MDI image of Fig.4.1.

FIGURE 4.4 - Illustration showing the size of the simulation box used to study the evolution of plasma and
magnetic field over the region associated to the BP of 2006 January 19.

discretized using a non-equidistant cartesian grid in the z direction with dimensions of

(128, 128, 65) grid points. The grid has maximum resolution on the bottom of the simu-

lation box and the resolution decreases with height. The initial density and temperature

profile try to mimic the observed density and temperature in the Sun’s atmosphere (Chap-

ter three, initial conditions). The initial three-dimensional magnetic field inside this box

is obtained from a potential extrapolation of the filtered LOS photospheric magnetogram

measured at 16:00 UT, as shown in Figure 4.5.

4.2 Results and discussion

We perform three simulation runs using the velocity patterns showed in Fig. ??. The

simulation starts always from the same initial condition. The difference from one simula-
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Figure 2.6: Our simulation box.

magnetic field. In this way the ∇ · B = 0 condition is satisfied for the initial magnetic
field, which avoids the appearance of the related non-physical forces. The simulation box
is shown in Fig. 2.6. In (x-y) plane it covers the horizontal square area of 46.4 × 46.4
Mm2. In vertical direction it extends to 15.45 Mm, towards the corona. The grids are
equidistant in x and y, but non-equidistant in the z direction. In this way the nonuniform
grid in z direction was chosen to have the highest resolution at the height of transition
region, which corresponds to ∆z = 160 km, Fig. 2.7.

2.7 Diagnostic methods
Most of the physical parameters can be diagnosed at any cut through the 3D simulation
box. Theses parameters are including plasma density, pressure and temperature, current
densities parallel and perpendicular to the magnetic field lines, 3 components of electric
and magnetic fields, resistivity, etc. They can also be integrated in z direction (vertically)
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2 The MHD model

FIGURE 3.5 - Example of how the step size in the vertical direction (z direction) used in the nonuniform grid
can vary. In this example the maximum resolution is 0.3L0 on the base of the simulation box.

and interpolated in the non-equidistant grid.

99

Figure 2.7: The height profile of the step size dz is shown with the lowest values at the
base of the box.

in the box. Temporal of the theses parameters can be investigated as well. This way for
example one can follow how energies are developing over time.

Another way to have better understanding of the dynamic evolution of the system is
to trace the physical parameters along the magnetic field lines. For this sake, starting
from a chosen horizontal plane, one can perform volume integral of the quantities along
the magnetic field lines. The cross-section of theses differential flux tubes volumes are
changing proportional to the inverse magnetic fields, V =

∫
B−1ds, where ds indicates the

step size along the field line). This way the flux conservation in a flux tube is guaranteed
with the large values of correspond to field line rising high into the corona or hitting
regions of vanishing magnetic field.
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3 About the relative importance of
compressional heating and current
dissipation for the formation of
coronal X-ray Bright Points

The mechanisms of coronal heating are not well understood. A particular object for study-
ing heating processes are coronal bright points (further abbreviated BPs). Due to the in-
creasing accuracy of observations our knowledge about BP has greatly advanced from the
time of their discovery in soft X-ray images (Vaiana et al., 1970). According to X-ray and
EUV observations the linear size of BPs is on average about 30-40 arcsec with, typically,
an embedded bright core of about 5-10 arcsec (Madjarska et al., 2003). The average
lifetime of X-ray BPs is about 8 hours (Golub et al., 1974) and 20 hours for EUV BPs
(Zhang et al., 2001).

For a long time it has been known that BPs are associated with small bipolar magnetic
features in the photosphere (e.g., Krieger et al., 1971, Brown et al., 2001). About one
third of BPs lie over emerging regions of magnetic flux, while the rest of them lie above
moving magnetic features. This was a base for the "cancelling magnetic feature" (CMF)
model Priest et al., (1994). Lifetime and energy release of BPs are known to be closely
related to the different phases of the motion of this photospheric magnetic feature (Brown
et al., 2001).

First theories were mainly addressing the topology of the magnetic field below BPs
(e.g., Parnell et al., 1994, Longcope 1998). Using higher resolution and cadence ob-
servations of BP’s intensity and taking into account a more comprehensive patterns of
motion in particular in regions with highly divergent magnetic field, (Brown et al., 2001)
could associate different patterns of motion of the solar photospheric magnetic features to
different stages of a BP evolution.

The plasma motion in the regions of strong magnetic field was first included by Büch-
ner (2004a,b) in their three-dimensional numerical resistive MHD model using their 3D
numerical simulation model, LINMOD3D. The latter considers dissipation of currents
generated by plasma motion in photosphere on time scales longer than an Alfven time
as a one of the heating processes in the solar corona Parker (1972). In their model
they took into account current dissipation due to anomalous resistivity (Büchner & Elkina
2006a,b) that causes Joule heating. Since LINMOD3D considers the compressibility of
the plasma, the resulting heating could be due also to compressional effects. Later on
two-dimensional MHD simulation studies were carried out by (von Rekowski B., Parnell
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3 About the relative importance of compressional heating and current dissipation for
the formation of coronal X-ray Bright Points

C. E., Prist E. R., 2006a,b, Rekowski et al., 2008). These authors used an analytical
initial equilibrium and imposed a magnetic flux footpoint motion to model coronal bright
point heating as being due to cancelling magnetic features. To obtain the desired heating
rate they used an enhanced resistivity for which the values were above the theoretically
justifiable resistivity. This raises the general question of the energy budget and energy
conversion in solar flux tubes. Even with low resistivity, current simulations are unable
to resolve the diffusion regions for reconnection and thus overestimate Joule heating. It is
also unresolved unresolved how much heating is caused by pressure gradient forces.

To clarify this question we continued the work of Büchner et al. (2004a,b,c), Büchner
(2006, 2007), Santos & Büchner (2007, 2008). These authors demonstrated the formation
of localized current sheets in and above the transition region at the position of a EUV BPs
as a result of photospheric plasma motion. This study is extending their results through a
systematic study of the energy conversion and budget in magnetic flux tubes. The investi-
gation uses the 3D simulation model LINMOD3d to simulate the solar atmosphere in the
region of an X-ray BP observed by the Hinode spacecraft on 19 December 2006 between
22.17 UT and 22.22 UT.

In section 3.1 we briefly review the main features of the numerical simulation model
LINMOD3d. In section 3.2 we describe the specific simulation setup used in our study
and section 3.3 provides some simulation results for the chosen BP data. In section 3.4
we present results of energy budget analysis by investigating the role of different forces
and in section 3.5 we summarize and discuss our results.

3.1 Simulation model
Our simulation model uses the approach of the LINMOD3d code (Büchner et al. 2004a,b,c).
This means that the initial magnetic field is obtained by extrapolating the observed photo-
spheric line-of sight (LOS) magnetic fields. The initial plasma distribution is non-uniform
containing a dense and cool chromosphere as well as the transition to a rarefied and hot
corona. The photospheric driving is switched on by coupling the chromospheric plasma
with a moving background neutral gas. Some details of our code have been given briefly
in the following subsection.

3.1.1 Equations
In our study we solve the following set of MHD equations:

∂ρ

∂t
= −~∇ · ρ~u (3.1)

∂ρ~u
∂t

= −~∇ · ρ~u~u − ~∇p + ~j × ~B − νρ(~u − ~u0) (3.2)

∂~B
∂t

= ~∇ × (~u × ~B − η~j) (3.3)

∂p
∂t

= −~∇ · p~u − (γ − 1)p~∇ · ~u + (γ − 1)η j2 (3.4)

where ρ and ~u are plasma density and velocity, ~B is the magnetic field and P is the
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thermal pressure. A plasma-neutral gas coupling in photosphere and chromosphere is in-
cluded through the collision term in the momentum equation, where ~u0 denotes the neutral
gas velocity. The neutral gas serves as a frictional background to communication photo-
spheric footpoint motion to the plasma and magnetic field through frictional interaction.
It also leads to a reflection of coronal Alfvén waves back to the corona from the transition
region, so that the influence of coronal Alfvén waves can be neglected at the photospheric
boundary. In order to set the plasma in motion a number of incompressible flow eddies is
used according to observed horizontal drifts in the photosphere ∇ · u0 = 0 is imposed via
the neutral gas, where u0 is dependent in x and y. It is constant along z and derived from
a potential using u0 = ∇ × (Uez), with

U = u00/ cosh
(

x − y + c0

L0

)
/ cosh

(
x + y + c1

L1

)
(3.5)

Note that the contour lines of this function are streamlines of the flow. The magnitudes
of velocity scale with u00/L0 and u00/L1, chosen in accordance with the observed plasma
motion in the photosphere. In our simulation we approximated the observed motion by
three vortices with amplitudes of the velocity u00 equal to 5.5, 5 and 2 km/s, respectively.
The values of c0, L0, c1 and L1 are 9, 6, 51 and 6 Mm for the first vortex 5, 6, 28 and 6 Mm
for the second and 19, 7, 38 and 7 Mm for the third vortex. The height-dependent collision
frequency ν is chosen to be sufficiently large only below the transition region. This way
the plasma is forced to move, dragged by the neutral gas, in the model chromosphere but
not above the transition region. This way the horizontal motion generates a Poynting flux
into the corona. On the other hand the collision frequency is chosen in a way that coronal
Alfvén waves are properly reflected while wave perturbations in the chromosphere are
heavily damped by the frictional interaction with the neutral background. Our choice of
equations means that in this study we do not consider energy losses due to radiation and
heat conduction and we also excluded the action of the solar gravitation in this study. The
system of equations is closed by Ohm’s and Ampère’s laws and the temperature is defined
via the ideal gas law for a fully ionized plasma:

~E = −~u × ~B + η~j (3.6)
~∇ × ~B = µ0~j (3.7)

p = 2nκBT (3.8)

The value of the resistivity η is varied in accordance with three models described in
subsection 3.1.3. The MHD equations are discretized by means of a second order weakly
dissipative Leapfrog scheme. Due to stability reasons the induction equation is discretized
using Dufort-Frankel scheme, Potter (1973).

3.1.2 Simulation box and normalization
The lower boundary of the simulation box is a horizontal square in the photosphere sized
46.4×46.4 Mm2. The simulation box extends 15.45 Mm toward the corona. A nonuniform
grid in the z direction supplies the proper resolution of the transition layer, where the grid
distance ∆z corresponds to 160 km, Büchner et al. (2004a). This corresponds to 64 grid
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points in z direction, while in the x, y plane a 128 × 128 grid are used. We solve for
dimensionless variables that are normalized to natural scales as listed in table. 3.1. Note
that the maximum imposed velocity of the neutral gas is smaller than 5 km/s while the
typical (normalizing) electron thermal velocity is vthe = 1470 km/s and the Alfvén speed
is vA = 50 km/s. Hence, one can be certain that the inserted neutral gas motion is gentle,
sub-Alfvénic and sub-slow velocities.

3.1.3 Resistivity models
In order to verify the influence of different resistivity models on the BP plasma heating we
solved the equations for the same initial and boundary conditions but varying the resistiv-
ity model. The resistivity η can be expressed via an effective collision frequency µ as η =

µ

ε0 ω
2
pe

, where ωpe is the electron plasma frequency (ωpe =
√

ne2/ε0me). In our model we
always apply a constant physically justified background resistivity η0 which exceeds ex-
ceeds the numerical resistivity. It is appropriate to chose for effective collision frequency
of the background resistivity the Spitzer (1962) value µ = (ne4LnΛT−

3
2 /16πε2

0m
1
2
e K

3
2
B ).

Based on the typical plasma parameters of our model we chose for the collision-driven
background resistivity η0 = 10−4 (in normalized units). In two models we switched on
additional, anomalous, resistivity in places where either the current density of the current
carrier velocity (uccv determined as the current density divided by the charge density) ex-
ceeds a physically justified thresholds of micro-instabilities.
In the first resistivity model anomalous resistivity is switched on when the current car-
rier velocity (uccv exceeds a critical velocity (Roussev et al., 2002, Büchner & Elkina
2006a,b)

η = η0 +

0, if |uccv| < ucrit

ηe f f

( |uccv |
ucrit
− 1

)
, if |uccv| ≥ ucrit

(3.9)

A natural choice for the threshold velocity is the electron thermal velocity vthe, in our
for the normalizing quantities 1470 km/s or to 5.8.10−4 in normalized units. In the first
resistivity model we chose 5.10−2 to follow the ideal evolution of the plasma as long as
possible. The additional term for resistivity can be estimated e.g., for a nonlinear ion-
acoustic instability (Büchner & Elkina 2006a) as

ηe f f =
µe f f

ε0 ω2
pe

=
ωpi

ε0 ω2
pe

(3.10)

Here ωpi denotes plasma ion frequency (ωpi =
√

ne2/ε0mi). For the typical parameters of
our simulation this estimate would reveal η = 2.5, i.e. a magnetic Reynolds number of less
than unity. In this case many current sheets would immediately diffuse away. On the the
other hand, since the plasma β is relatively large for our simulation parameters obliquely
propagating waves would be present in the spectrum of the micro-turbulence. In this case
the estimate of the effective collision frequency has to take into account lower-hybrid
waves (Silin & Büchner 2005). For our normalizing values this results in ηe f f = 0.03.

In a second model calculation we considered a current density dependent resistivity
used before, e.g., by Neukrich et al. (1997), in which the resistivity increases even
stronger (quadratic dependence) after the current density exceeds a critical value jcrit:
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3.1 Simulation model

Table 3.1: Normalization values.

Variable Normalization value

density N0 = 2.1015m−3

lenght L0 = 500 km

magnetic field B0 = 1G = 10−4 T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pressure P0 =
B2

0
2µ0

= 4 × 10−3 J/m2

temperature T0 = P0
2 n0 κB

= 7.2 × 104 K

Alfvén velocity vA0 = B0√
µ0 mi N0

= 50 km/s

time τ0 = L0/ vA0 = 10 s

η = η0 +

0, i f | j| < jcrit

ηe f f (
| j|
jcrit
− 1)2 i f | j| ≥ jcrit

(3.11)

The critical current density is related to critical velocity via jcrit = e ne ucrit. Here we will
report the results of our simulations obtained according to the second model for which we
chose a threshold as low as jcrit = 0.69 in order to discuss the consequences of an early
switch on of additional, anomalous resistivity. For comparison we solved the problem
also by assuming for a third model a constant enhanced uniform resistivity as usually
done in global MHD simulations.

Concerning the values of the chosen ηe f f one should note that the width of the actual
current sheets in which turbulence effectively operates is of the order of the ion inertial
scale di = c

ωpi
. This scale cannot be resolved in any realistic 3D MHD simulation of the

solar corona. In order to introduce micro-turbulent anomalous resistivity the threshold
velocity (- current density) has to up-scaled to the actual resolution of the simulation by a
factor of 5.104. By the same reason the resistive electric field builds up in very (perhaps
di-) thin current sheets. To consider the correct values of the electric field on the much
coarser MHD-simulation grid anomalous resistivity used in the simulation has also to be
scaled up by the above scaling factor. This approach allows to consider the correct amount
of Joule heating.

3.1.4 Initial and boundary conditions
We first carried out a potential field extrapolation to the Fourier decomposed normal field
component of the magnetic field taken from the MDI-observation. The resulting 3D mag-
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netic configuration is used as the initial condition of the simulation code. In the potential
field approximation the normal field component is related to (Bx, By) through ∇ · B = 0
and ∇ × B = 0. The initial density and temperature height profiles for the plasma is taken
in accordance with the VAL model that assumes pressure being in a hydrostatic equilib-
rium. The simulation box has 6 boundaries: 4 lateral, 1 top and 1 bottom boundaries. For
the side boundaries a line symmetric boundary condition is used with the line symmetry
with respect to the centers of the sides of the simulation box. For the upper boundary
the derivatives in the normal direction are put to zero. At the lower boundary the normal
velocity is set to be zero, while the tangential velocity is taken from the neutral motion.

3.2 Simulation setup

Our study is based on an X-ray BP observed by the XRT X-ray telescope on board of the
Hinode spacecraft on 19 December 2006. The corresponding X-ray image is shown in
Fig. 3.1. For the initial magnetic field we used the observed line− o f − sight (LOS) com-
ponent of the photospheric magnetic field taken by the Michelson Doppler Interferometer
MDI onboard the Soho spacecraft at 22:17 UT. For that sake data from a field of view
with the horizontal size of 64 × 64 arcsec2 was chosen that properly covers the magnetic
features associated to this BP (insert in Fig. 3.1). Note that we use the LOS component
as the initial normal field component at the lower boundary of our simulation box, the
photosphere, since the BP observation was made close to the center of the solar disc.

Fourier filtering was applied to the LOS component of the magnetic field. By taking
into account only the first eight Fourier modes, details of magnetic field structure smaller
that 6 Mm are neglected. The extension of structures arising from smaller scale magnetic
features would not extend higher up into the corona, they are dissipated at an early stage
of the evolution in the highly collisional chromospheric plasma.

Fig. 3.2 shows a three-dimensional view of the magnetic field extrapolated from the
photospheric boundary for the magnetic field observed at 22:17 UT on December 19,
2006. The blue lines show the magnetic field lines. The color code depicts the LOS
component of the photospheric magnetic field. Magnetic fields directed upward from the
photosphere are colored in red, downward directed in blue.

With the chosen normalization length of L0 = 500 km, the box size in x and y direc-
tion correspond to 92.8 L0 and the z direction extend to 30.9 L0. The photospheric plasma
velocities are obtained by applying the local-correlation-tracking(LCT) method Novem-
ber & Simon (1988) to the Fourier filtered LOS magnetic component of the photospheric
magnetic field observed between 22:17 UT and 22:22 UT. The left panel of Fig. 3.3 shows
the velocity pattern obtained by the LCT method. For the simulation we used incompress-
ible velocity vortices to mimic the observed velocity pattern, as shown in the right panel
of Fig. 3.3. Note that the interval chosen for the simulation starts a few hours after the
time the BP first appeared in the X-ray images and that the bright point continues to glow
a few more hours afterwards. During the whole simulation time interval the relative shear
motion of the two main magnetic flux concentrations of opposite polarity is negligible.
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Figure 3.1: X-ray Image taken from XRT/Hinode on 19 December 2006 at 22:08 UT.
Insert: the LOS component of the photospheric magnetic field in a 64 × 64 arcsec2 hor-
izontal plane taken from MDI/Soho, where white (black) spots correspond to upward
(downward) directed Line-of-sight components of the photospheric magnetic field. The
BP and the related magnetic field feature are indicated in the images.

3.3 Simulation results

The simulation results are first shown in a plane at x = 45.7 (Fig. 3.2), which crossed
through the center of the two main magnetic polarities. The vertical profile of the tem-
perature is shown in Fig. 3.4 for t = 0 (top panel), 80 (middle panel) and 160 s (bottom
panel). In t = 0 we have a height dependent temperature as defined by the initial condi-
tion. At t = 80 s the effects of plasma compression and expansion, together with Joule
heating, shape the temperature profile. An arc of hot plasma is formed above the two op-
posite magnetic polarities. The increase in temperature in this layer is approximately 0.5
in normalized units, what corresponds to 36000 K. The region that is located just below it,
however, experiences some drop in temperature. At t = 160 s the arc of hot plasma leaves
the simulation box and we are left with a corona in which the differences in temperature
can reach one orders of magnitudes.
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Figure 3.2: Potential magnetic field extrapolated from the filtered MDI magnetograms
and used as initial configuration for the magnetic field in our simulation. The blue lines
show the magnetic field lines. The color code depicts the LOS component of the magnetic
field. Note that axes here are in terms of grid points, 64 in z direction and 128×128 in x,y
plane. This corresponds to 15.45 Mm at z direction and 46.4 Mm at x and y directions.

Fig. 3.5 shows the parallel and perpendicular components of the current with respect
to the magnetic field direction at t = 80 and t = 160s. It can be seen that enhanced current
flows coincide well with the temperature increase. This would lead to an interpretation of
the heating as being due to current dissipation only. However, as shown later, adiabatic
heating can have an important contribution to temperature increase.

3.4 Energy balance

Let us now diagnose the different contributions to plasma heating in the BP region. First,
in subsection 3.4.1, we discuss the overall global heating. In subsection 3.4.2 the depen-
dence on the resistivity model is presented. Finally, the flux-tube heating is analyzed in
subsection 3.4.3.

3.4.1 Global effect of current dissipation and compression

In order to understand the relative contribution of current dissipation and plasma com-
pression to the coronal plasma heating in the BP region it is appropriate to analyze the
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3.4 Energy balance

Figure 3.3: Horizontal plasma velocities in the photosphere. Left panel: velocities ob-
tained by applying LCT technique to MDI magnetograms between 22:17 and 22:22 UT.
The right panel shows the vortices that are used to approximate this motion in the simu-
lation. The panels are showing the region that covers the two main magnetic flux concen-
trations with approximately 3.6 Mm width and 10.87 Mm height.

pressure changes rewriting the Eq. 3.4 in terms of a continuity equation for the Tempera-
ture evolution. This leaves two source terms on the right hand side of the equation:

∂T
∂t

+ ~∇ · T~u = −(γ − 1) T ~∇ · ~u + (γ − 1) η j2/ρ (3.12)

Let us first analyze the first case, where an anomalous resistivity is used when the current
carrier velocity exceeds a critical value. Fig. 3.6 shows the resulting distribution of −(γ −
1) T ~∇ · ~u in the vertical diagnostic plane. This way we have a proxy for temperature
changes associated to pressure compression and expansion.

Adiabatic heating has an important role on the formation of the high temperature
arc that propagates upward towards the top boundary. It is also due to expansion that
temperature decreases below this hot arc.

The values of second term in the right hand side of the Eq. 3.12, (γ − 1) η j2/ ρ, is
shown in Fig. 3.7 in the plane x = 45.7 at t = 80s and t = 160s. By comparison with
the compressional part the contribution of the Joule heating appears to be negligible. For
a better comparison the contribution of the two terms in the right hand side of the Eq.
3.12 in the temperature evaluation, the horizontal view is shown at the height of transition
region in two different instance of time, t = 80 s in left and t = 160 s in the right panel of
Fig. 3.8.

In the following, we will analyze in some more detail to what degree compression and
Joule heating contribute to the evolution of the temperature. For this sake and in order
to study the role of the forces involved in the energy conversion process, we performed a
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Figure 3.4: Temperature distribution in the vertical plane at x = 45.7 at the beginning
(upper panel) and at t = 80 s and t = 160 s. Note the temperature in the color bar is
presented in terms of the normalization value, T0 = 7.2 × 104 K. Spatial scale in units of
L0 = 500 km.

volume integration of the time rates of change of kinetic, magnetic and thermal energies
in the simulation box above the chosen Bright Point region. Our approach is similar to
Birn et al., (2009) when they used energy transport equations to analyze the properties of
energy conversions associated with a reconnection process. The contribution of different
terms in the energy transport process can be studied from the following equations:

dεkin

dt
= −1

2

∫
S V

ρu2~u · d~s +

∫
V

(−~u · ∇p + ~u · ~j × ~B)d3v (3.13)

dεmag

dt
= − 1

µ0

∫
S V

(−~u~B2 + (~u · ~B)~B − η~j × ~B) · d~s (3.14)

+

∫
V

(−~u · ~j × ~B − η~j2)d3v

dεth

dt
= − γ

γ − 1

∫
S V

p~u · d~s +

∫
V

(~u · ∇p + η~j2)d3v (3.15)
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Figure 3.5: Parallel and perpendicular components of electrical current at t = 80 s (upper
two panels) and t = 160 s (lower two panels) in the same diagnostic plane as in Fig.4. Note
the enhancement in perpendicular current is located at the same place of the temperature
maximum. Note the electrical current in the color bar is presented in units of J0 = 1.54 ×
10−4 A/m2. Spatial scale in units of L0 = 500 km.

Where εkin, εmag and εth denote kinetic, ρu2/2 , magnetic, ~B2/2µ0, and thermal, P/(γ−
1), energies, respectively. The volume integrals (second term on the right-hand side) in
these equations represent the energy conversion from one form into the another. This en-

45



3 About the relative importance of compressional heating and current dissipation for
the formation of coronal X-ray Bright Points

0 23 46 70 93
0.0

7.7

15.4

23.2

30.9
div-u

 (x=45.7) 

 

z

  
-0.40

-0.11

0.18

0.47

0.76

0 23 46 70 93
y

0.0

7.7

15.4

23.2

30.9
-(gamma-1)*P*div(u) / rho (x=45.7) 

time =   8.0036

z

  
-0.81

-0.47

-0.13

0.22

0.56

0 23 46 70 93
0.0

7.7

15.4

23.2

30.9
div-u

x=

 45.7

z

  
-0.29

-0.14

0.00

0.15

0.30

0 23 46 70 93
y

0.0

7.7

15.4

23.2

30.9
-(gamma-1)*P*div(u) / rho

 

time =  16.0143

z

  
-0.63

-0.29

0.04

0.37

0.70

Figure 3.6: Adiabatic cooling/heating rate after 80 s and 160 s in the plane x = 45.7,
according to the first term in the r.h.s of Eq. 3.12 over density, (−(γ−1)T∇·u < 0). Color
bar is normalized to T0/τ0 = 7.2 × 103 K/s. Spatial scale in units of L0 = 500 km.
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same normalization for the color bar. Spatial scale in units of L0 = 500 km.
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Figure 3.8: Temperature, first and second terms of Eq. 3.12 over density, in the top,
middle and bottom panels, respectively. The result is shown at a horizontal plane in
transition region at two instance of time, t = 80 s in left and t = 160 s in the right panels.
Temperature is normalized to T0 = 7.2 × 104 K. The two other panels are normalized to
T0/τ0 = 7.2 × 103 K/s. Spatial scale in units of L0 = 500 km.
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ergy conversion are explicitly written in terms of the work done by Lorentz force, pressure
gradient force and Joule dissipation, (left panel of Fig. 3.9). Note that the initial spike in
the Lorentz force is in part caused by numerical discretization errors and in part by the
onset of photospheric footpoint motion. The initial oscillations are damped substantially
during, approximately, two Alfvén times, followed by a state of an approximate force
balance. This effect was found to be smaller in a run where footpoint motion was not
included. The initial perturbation has a minor effect on the initial extrapolated magnetic
field, it does not affect the currents and Lorentz forces at a later times.

The surface integrals are also needed to obtain the energy rates, when they indicate
the transport of each of the three form of energies. With the chosen boundary condi-
tion however, the values of these surface integrals are zero at the lower boundary. They
compensate each other through the side boundaries of the simulation box as well. At the
upper boundary however, one needs to consider the contribution of this surface integrals
in the rate of energy transfer. This means E × B, Pu and ρu2u for the transport of mag-
netic, kinetic and thermal energies, respectively. The values of these terms at the upper
boundary are shown in Fig. 3.10. One can see that the contribution due to these terms is
insignificant, so it would be a good approximation to consider only the volume integrals
for the change in the energy rates.

The changes in energy rates are shown in the right panel of Fig. 3.9, the forces re-
sponsible for these changes are depicted in the left panel of the Figure. As one can see
by comparing the two panels the magnetic energy is transferred to kinetic energy almost
completely via the work done by the Lorentz force that accelerates the plasma. It is an
intermediate step however, followed by the work done by pressure gradient force that con-
verts kinetic energy into thermal energy. This decelerates the plasma motion until, finally,
the Lorentz force is balanced. The direct transformation of magnetic energy to thermal
energy (Joule heating) is via Ohmic current dissipation, ηJ2. A comparison of the energy
conversions rates (see Fig. 3.9, right panel) however shows that Joule dissipation plays
a minor role in the energy exchange process while the other contributions are orders of
magnitudes larger. The minor role of Joule heating in comparison to adiabatic process in
the increase of thermal energy was also found for the case of a solar flare by Birn et al.,
(2009), where they explained the compressional heating in two almost simultaneously
steps: acceleration by Lorentz force and deceleration by pressure gradients.

3.4.2 Influence of different resistivity models
The previous calculation was based on an anomalous resistivity model with the current
carrier velocity as a critical value for a local switch-on of additional resistivity. In order
to better understand the influence of the resistivity we performed the simulation also with
two other resistivity models, one that uses a current density dependent resistivity and
another with constant resistivity respectively.

Fig. 3.11 depicts the resulting energy conversion rates and the work done by the in-
volved forces v · J × B, v · ∇P and by η J2, for all the three resistivity models by using
different line styles for the results obtained by using the different resistivity model. The
results obtained for the three cases show that the resistivity model influences the dynam-
ics of the system and the thermal energy rate mainly through the pressure gradient force.
While magnetic and kinetic energy rates of change depend only weakly on the resistivity
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Figure 3.9: The work done by the Lorentz force, pressure gradient force and the Joule
heating power, (top panel). The change of magnetic, thermal and kinetic energy rates,
(bottom panel). Note that the values are measured in units of power, ρ0V2

A0L3
0/τ0 = 1.04×

1014 W.
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Figure 3.10: First term in the right hand side of the Eqs.13-15, (surface integrals) is
shown in the upper boundary of the simulation box after 160 s. Note that the color bars
are measured in units of energy densities over normalized time, ρ0V2

A0L0/τ0 = 4.17 ×
102 W/m2. Spatial scale in units of L0 = 500 km.
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3.4 Energy balance

Figure 3.11: The left panels show the work done by the Lorentz force, pressure gradient
force and the Joule heating power. Energy change rates for three different resistivity mod-
els are shown in right panels. Different lines correspond to anomalous current carrier de-
pendent (dashed), anomalous current dependent (dotted) and constant (solid line) resistiv-
ity models. Note that the values are measured in units of power, ρ0V2

A0L3
0/τ0 = 1.04×1014

W.
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model, the rate of temperature change is significantly influenced. Nevertheless, inde-
pendent on the used resistivity model the heating is due mainly to the work done by the
pressure gradient force. At the same time the contribution of the Joule heating is about
two orders of magnitude smaller (Note the scale of the plots in the top row.) We conclude
that the adiabatic compression is the dominant effect in increasing temperature in the BP
region in all three cases.

3.4.3 Flux tube heating

In order to locate the heating effect better it is appropriate to determine it for individual
flux tubes, integrating along the magnetic field lines instead of taking values averaged
over the whole simulation box as reported in the previous sections. In this integration
one has to take into account the changing cross-section of flux tubes. This can be done
by applying the concept of the differential flux tube volume V =

∫
B−1ds, where ds

indicates the step size along the field line. This way the flux conservation in a flux tube
(Φ = A × B = const.) is taken into account by the proportionally of the cross-section to
B−1. Note that large flux tube volumes correspond to field line rising high into the corona
or hitting regions of vanishing magnetic field. The energy is transported in accordance
with the upward directed Poynting flux E × B, enhanced magnetic tension is carried away
by wave propagation.

For the quantities described in section 3.4.1 the resulting flux tube integrated values
are shown in Fig. 3.12 in the horizontal reference plane just above the transition region.
The values reached indicate once more the negligible role of Joule heating by current
dissipation for the thermal energy change in the bright point region compared to the dom-
inant role of the pressure gradient force. Please note the different range of the plots in
Figure 12 as indicated by the color bar. It also can be seen that the locations at which this
force and also maximum rates of energy changes appear coincide. Furthermore, the same
pattern has formed in the integration result of v · ∇P, v · J × B and the rate of change of
the different kinds of energy. This pattern can clearly be seen in the integration of total
energy along the field lines (Fig. 3.13), which is the sum of the kinetic, magnetic and
thermal energies:

ε = εkin + εmag + εth =

∫
V
{1
2
ρu2 +

1
2µ0

B2 +
p

γ − 1
}d3v

The left panel of Fig. 3.14 shows the result of this integration for temperature and flux
tube volume. The coincidence of the temperature enhancement with the maxima obtained
in the flux tube integrated energy change rates and forces shows that the heat is provided
by the plasma compression due to the Lorentz force.

Enhanced flux tube integrated values follow the same pattern as the BP. This indicates
that the regions of enhanced temperatures correspond to the foot points of field lines
leading to higher altitudes or to regions where the magnetic field vanishes. The plasma
motion across these regions supplies the magnetic energy that is converted to thermal
energy.
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Figure 3.12: Integration along the field lines using the differential flux tube volume con-
cept for the work done by Lorentz force, pressure gradient force and Joule heating, (right
panel, from top to bottom), and the changes in rates of magnetic field change, the thermal
and the kinetic energy, (left panel, from top to bottom) at t = 160s. Note that the color bars
are normalized by power, ρ0V2

A0/τ0 = 8.35 × 10−4 W. Spatial scale in units of L0 = 500
km.
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Figure 3.13: Results of integration along the magnetic field lines using the differential flux
tube volume concept for the normalized total energy(top, left panel) and magnetic(top,
right panel), kinetic(bottom, left panel) and thermal energies(bottom, right panel), at t =

160s. Note that the energies are normalized to ρ0V2
A0 = 8.35 × 10−3 J. Spatial scale in

units of L0 = 500 km.
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3.5 Summary and discussion

We have presented the results of heating processes in the region of an observed X-ray
coronal bright point. In particular we have investigated the importance of the work done
by adiabatic compression in comparison with Joule heating in the course of the dynamic
evolution and heat production near the bright point.

The simulation shows that an arc-shaped structure of enhanced temperature forms that
is 2-4 times hotter than the background plasma. This structure is located above the two
main opposite photospheric magnetic flux concentration. It coincides with the location
where the electrical current densities are maximum. The structures of temperature and
current density enhancements, indeed, coincide.

We further examined the contribution of the Lorentz force, pressure gradient force
and Joule heating performing volume integrals in the simulation box that determine the
magnetic, kinetic and thermal energy change rates for three different resistivity models.
We found that independent on the resistivity model magnetic energy was transformed to
kinetic energy through the work done by Lorentz force. Kinetic energy in turn is converted
to thermal energy due to pressure gradients that balance the Lorentz force.

A comparison of the effect of the three energy conversion through v · J × B, v · ∇P
and η J2 show that adiabatic compression has an important role in temperature increase
in the upper corona. This is not dependent on the resistivity model used in the simulation.

For a better understanding of the heating processes we utilized the concept of differ-
ential flux tube integration of the different contributions along the magnetic field lines. A
quantitative comparison in the horizontal plane, from where the integration starts, shows
that energy conversion rate, total energies and work done by Lorentz and pressure gradi-
ent forces are located in the same flux tubes, also temperature and flux tube volume are
maximum at the same place.
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We conclude that the conversion of magnetic energy to kinetic energy via the work
done by the Lorentz force and from kinetic to thermal energy due to the work done against
the pressure gradient force determine the heating of this bright point. We could show that
plasma compression dominates the heating of the bright point. In contrast, the role of
Joule dissipation appeared to be negligibly small. The temperature enhancement follows
the same pattern. The fact that the pattern obtained by calculating flux volume integrals
coincides with the one of temperature and energy change rates bring us to the conclusion
that plasma motion at the footpoints of the flux tubes carries the energy upward and makes
the flux tubes rise to the higher corona. The magnetic energy is converted to thermal en-
ergy until the plasma compression is balanced by the Lorentz force. In the local, flux-tube
oriented consideration we also could see that the role of the Joule heating in these energy
conversion processes was negligible and the heating of plasma in the bright point region
is basically due to pressure gradient force.

First, the fact that Joule heating is weak in the corona was not entirely unexpected but
it is quantitatively confirmed here. It is worth to remember that the necessary up-scaling
of the resistivity and of the onset condition of micro-turbulent anomalous resistivity to
the resolved by the MHD simulation grid scales does even overestimate the actual Joule
heating. As a result Joule heating cannot be considered a viable process unless there is
a convincing argument that the dissipation regions are volume filling to a much larger
extend than the already large one used in the present model.

Second, the results demonstrate very clearly that compression is an important pro-
cesses in the energy budget. It is not clear in how far compression can contribute to the
overall coronal heating but it is certainly important for the local heating of BPs.

Third, in this context the nature and the consequences of plasma compression are
worth some consideration. In ideal MHD adiabatic compression is reversible. But the
consequent flux tube heating is, however, irreversible due to magnetic reconnection and
other mixing processes. Magnetic reconnection, in particular, changes flux tube identi-
ties (magnetic connectivity) while flux tube entropy conservation requires ideal MHD in
addition to appropriate boundary conditions. Local adiabatic compression becomes irre-
versible also due to other plasma transport processes like heat conduction and radiative
cooling. These aspects will be separately investigated in a subsequent paper. Meanwhile
the results presented here clearly demonstrate that in the overall energy budget plasma
compression (and expansion) can play an important role in the heating of the corona.
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consideration of heat conduction
and radiative loss in the formation of
a coronal X-ray Bright Point

Our goal was to advance the modelling of the solar atmosphere by developing a more
realistic simulation model. This requires the inclusion of additional physical processes
involved in the energy balance of the system in order to give a reasonable picture of the
thermal properties of the solar atmosphere. In comparison to a former work where the
compressional heating and the Joule dissipation were the only heating sources for cre-
ating and maintaining a hot corona, here we add unisotropic heat conduction and the
radiative losses for the optically thin atmosphere into the energy equation. In the up-
per solar atmosphere the coronal plasma is highly magnetically confined (low plasma-β).
Hence the plasma motion across the magnetic field lines is strongly suppressed, and it is
a reasonable assumption to consider heat conduction only along the magnetic field lines.
In a simple 1D model for heat balance in the solar atmosphere, Priest 1982 proposed
a hydrostatic heat balance between a heating function and the losses through heat con-
duction and radiative cooling. To address the importance of a heating mechanism one
can mention that if there were no heat supply the thermal conduction and the losses can
cool down the corona in a few hours or days, (see for example Aschwanden 2001). Us-
ing different assumptions this unknown heat source is entered in some simulation models
in order to get a hot corona which can maintain the heat as well. For example, the 2D
simulation model of (Von Rekowski B., Parnell C. E., Prist E. R., 2006a,b, Rekowski et
al., 2008) explicitly considers an ’unknown’ background heating term for this sake. In
their 3D MHD simulation Peter et al., 2004, 2006 use high values of resistivity to obtain
high Joule dissipation that provides adequate heat to balance the energy losses through
conduction and radiation. In our model so far, however, we did not consider any artificial
heating term. Therefore, with inclusion of the two energy loss mechanism we could ex-
pect a drop of the temperature, when no heating compensates the energy losses. However,
this does not matter since we rather aim at an investigation of the role of individual source
terms, rather than creating a hot corona. In the following, we explain how the parallel
heat conduction and radiative losses were implemented, the way they are predicted to act
and finally we show the changes in the simulation results after inclusion of these terms.

As in Chapter 3 we use the example of a BP observed on 19 December 2006 from a
recent work as a reference case. Now the energy equation is however modified to include
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the radiative losses for the optically thin atmosphere in the temperature range from 103

to 106 K. The classical Spitzer 1962 heat conduction is also included, that conducts back
heat from the upper corona into the lower half of the atmosphere and the contrary for
the upper half. Our simulation box covers the solar atmosphere for the lower boundary
at the photosphere and extends to 15.45 Mm into the corona. Losses through the upper
boundary are not included. As it will be shown in this case of a rather weak BP (|B| < 40
Gauss) the Poyniting flux and the other energy fluxes through the upper boundary are
negligible small, (see Chapter 3, 3.4.1).

Figure 4.1: The temperature profile in the solar atmosphere is shown versus height, with
relative roles of conduction (c), radiation (R) and heating (H). Note that the heat conduc-
tion is positive above the reflexion point of the heat flux function (Ti) and negative below
it. Taken from Priest 1982.

Before presenting the model and the results of simulation, let us review an atmospheric
model proposed by Priest 1982. In this model a thermal equilibrium is assumed at any
location between heating (H), radiative losses (-R) and the divergence of a downwards
conductive flux (C), so that H = C + R. The maximum temperature gradient is located at
the base of the transition region where T ≈ 2 × 104 K. This is due to the high values of
radiation losses (R) at temperatures 104 − 105 K and causes strong temperature gradients
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in the lower transition region. Hence heat is conducted from upper layers downward to
balance the radiative cooling. The maximum heat flux maximum occurs at the inflexion
point of the profile T 7/2, as shown in Fig. 4.1 at Ti, typically about 106. Above this point
however the deposited heating can not be radiated and needs to be transported away by
e.g., solar wind.

In the following section 4.1 first properties of the numerical simulation model LIN-
MOD3D are briefly reviewed. In section 4.2 simulation setup for the chosen case of a BP
data is described. The simulation results can be found in section 4.3 and the consequences
of heat conduction and radiative losses are discussed in 4.4. An analysis of the energy
flows is provided in section 4.5. A flux tube related analysis is given and squashing
factors are calculated in 4.6 and 4.7, respectively. Conclusions are drawn in 4.8.

4.1 The model
For the simulation we used the LINMO3D code (Büchner et al. 2004a,b,c), with line
symmetric side boundary conditions (Otto et al., 2007). There the observed line-of sight
(LOS) component of photospheric magnetic fields was used to perform a potential field
extrapolation and provide the full vector of initial magnetic field for the simulation. The
extrapolation is done in accordance with the requirement of MHD-consistent boundary
condition, Otto et al., (2007). Plasma is assumed to be initially in hydrostatic equilibrium,
which implies a constant initial pressure. The initial mass density profile is chosen based
on the VAL model, Vernazza et al., 1981. The simulation box covers a horizontal square
of 46.4 × 46.4 Mm2 and extends 15.45 Mm toward the corona. The nonuniform grid in
the z goes to ∆z = 160 km to resolve the transition layer. The set of MHD equations used
in the model is given by Eqs.(2.1) - (2.6), (cf., Section 2.1). As described in section 2.1,
neutral gas is coupled to plasma below the height of transition region via collisions. The
source term, S, in the energy equation includes:

S = η j2 − ∇ · q − Lr (4.1)

where η is the resistivity coefficient. In addition to a uniform background resistivity η0

due to binary collisions (Spitzer 1962), an anomalous resistivity can be switched on when
the current carrier velocity (uccv determined as the current density divided by the charge
density) exceeds the electron thermal velocity (Roussev et al., 2002, Büchner & Elkina
2006a,b):

η = η0 +

0, if |uccv| < ucrit

ηe f f

( |uccv |
ucrit
− 1

)
, if |uccv| ≥ ucrit

(4.2)

and ηe f f can be expressed in terms of an effective collision rate as ηe f f =
νe f f

ε0 ω
2
pe

. Heat
conduction, the second term in Eq.4.7, which is considered only for electrons and along
the magnetic field:

∇.q = ∇‖ · (κ‖∇‖T ) (4.3)

with the classical Spitzer-value for κ‖:

κ‖ = 1.8.10−10 T 5/2

lnΛ
Wm−1K−1 (4.4)
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that gives the typical values of κ‖ ≈ 10−11T 5/2 with a Coulomb logarithm of lnΛ ≈ 20.
Across the magnetic field the conduction is mainly due to ions and by some order of
magnitudes lower. The last term in Eq.4.1 is the radiative loss function. For the optically
thin layers of solar atmosphere (chromosphere and corona) it can be expressed as, Priest
1982:

Lr = nenn Q(T ) (4.5)
with Q(T ) = χTα W/m3 (4.6)

where ne is the electron density and nn the density of protons. In the case of fully ionized
plasma nn = ne. The coefficients χ and α are taken from Rosner et al., 1978. There
a approximation by a powerlaw parameterization is given for the relevant temperature
intervals. The analytic fit of Rosner et al., 1978 shows a maximum around 105 K for the
radiative loss function.

4.2 Initial state
As in Chapter 3 we used for this study the X-ray Bright Point observed by XRT/Hinode
spacecraft on 19 December 2006. We applied Fourier filtering to LOS component of
magnetic field, taken from MDI-image of this BP at 22:17 UT, (Fig. 4.2, top panel). Then
a potential field extrapolation was performed to have the full vector of magnetic field in
the domain, (Fig. 4.2, bottom panel). The Bp is located close to the solar disc center and
therefore we could take the LOS magnetic field as the normal component at the lower
boundary of the simulation box. For the side boundaries a line symmetry with respect to
the centers of the sides of the simulation box is used and at the upper boundary the normal
derivatives are put to zero.

The photospheric plasma velocities are obtained by applying the local-correlation-
tracking (LCT) method November & Simon 1988 to the Fourier filtered observed LOS
magnetic components of the photospheric magnetic field, (see Fig. 3.3). The left panel
of Fig. 3.3 shows the velocity arrows obtained by the LCT method. For the simulation
we used incompressible velocity vortices as shown in the right panel of Fig. 3.3. Note
that the interval chosen for the simulation starts a few hours after the time the BP first
appeared in the X-ray images and that the bright point continues to glow a few more
hours afterwards. During the whole simulation time interval the relative shear motion of
the two main magnetic flux concentrations of opposite polarity continued.

4.3 Simulation results
The simulation results presented here are related to two cases: First the effect of heat con-
duction and radiative losses is studied and then it is compared to a reference case where
they are not included. For the reference case that does not include the losses through con-
duction and radiation, Fig. 4.3 shows the temperature profile in a vertical cutting plane
through the 3D simulation box which crosses the two main magnetic polarities. From
top to bottom panel the temperature is shown 40, 80 and 120 s after the simulation was
started. As one can see an arc of plasma with enhanced temperature is formed above the
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Figure 4.2: The Los component of the photospheric magnetic field of the BP observed on
19 December 2006 is shown in a 64 × 64 arcsec2 horizontal plane taken from MDI/Soho
(top panel). White (black) spots correspond to upward (downward) directed Line-of-sight
components of the photospheric magnetic field. Bottom panel is showing the top view
of the 3D potential magnetic field extrapolated from the filtered MDI magnetograms and
used as initial configuration for the magnetic field in our simulation. The color code
depicts the LOS component of the magnetic field. Note that axes here are in terms of grid
points, 64 in z direction and 128 × 128 in x,y plane. This corresponds to 15.45 Mm at z
direction and 46.4 Mm at x and y directions.
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two opposite magnetic polarities. For the same moments of time, the temperature profile
is shown in Fig. 4.4 for the case that considers heat conduction and radiative losses. De-
spite the similar structure of the temperature enhancements in both cases, one can see a
drop in temperature between 0.1−0.5 in normalized units, corresponding to 7.2× 103−104

K. In a similar approach as described in Chapter 3, the continuity equation for the pres-0 23 46 70 93
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Figure 4.3: Temperature distribution is shown for the case without heat conduction and
radiative losses in a vertical cutting plane through the simulation box, at t= 40, 80 and
120 s. Note the temperature in the color bar is presented in terms of the normalization
value, T0 = 7.2 × 104 K. Spatial scale in units of L0 = 500 km.

sure evolution can be used to investigate the relative role of the different terms in the
temperature evolution in the two cases. These terms are current dissipation and plasma
compression, as can be see in the right hand of the equation:

∂p
∂t

+ ~∇ · p~u = −(γ − 1)p~∇ · ~u + (γ − 1)η j2 (4.7)

Using the equation of state for the fully ionized plasma P = 2nκT , and dividing −(γ −
1)p∇·u and (γ−1)η j2 by density, we have the right parameter to study the relative role of
each term in temperature evolution. Fig. 4.5 is showing plasma compression over density
in the same cutting plane used for the previous figures at t=40, 80 and 120 s for the case
that does not include heat conduction and radiative losses. In Fig. 4.6 the temperatures are
shown that are obtained when these two effects are involved. The structure of the regions
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Figure 4.4: Temperature distribution in the case that heat conduction and radiative losses
are included at t=40, 80 and 120 s, same cutting plane as in Fig. 4.4. Note the temperature
in the color bar is presented in terms of the normalization value, T0 = 7.2× 104 K. Spatial
scale in units of L0 = 500 km.

where adiabatic cooling and heating takes place coincide with regions of higher and lower
temperatures, respectively. In the case of inclusion of heat conduction and radiative losses
the compression term is less strong, as expected with the lower temperature maximum
than in case where heat loss mechanisms are not considered. The current dissipation
term over density is shown for the cases, without and with inclusion of heat conduction
and radiative losses in Fig. 4.7 and Fig. 4.8, respectively. In both cases the contribution
of the current dissipation is by an order of magnitude smaller than the compressional
contribution to the heating.

4.4 Effect of the heat conduction and radiative loss

The radiative loss function Q(T ) and the inverse of the cooling time-scale due to radia-
tion 1/dtcool are shown in Fig. 4.9 and Fig. 4.10 respectively, at 40, 80 and 120 s of the
simulation time. In order to estimate of the time rates of radiative loss one way is to use a
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Figure 4.5: Temperature distribution in the case without heat conduction and radiative
losses. Adiabatic cooling/heating rate according to the first term in the r.h.s of Eq. 4.7
over density, (−(γ − 1)p∇ · u/ρ < 0) is shown after 40, 80 and 120 s in the same vertical
plane as temperature. Color bar is normalized to T0/τ0 = 7.2 × 103 K/s. Spatial scale in
units of L0 = 500 km.

reduced version of the energy equation:

∂p
∂t

= −(γ − 1)nenn Q(T )

where Q(T ) = χTα W/m3. Using the equation of state of a fully ionized plasma we get:

1/dtcool = (γ − 1)ne Q(T )/T (4.8)

Therefore the rate at which radiation can cool down the plasma depends on the tem-
perature ranges, as Q(T) changes according to Rosner et al., 1978. The fastest rates of
cooling ranges from 1-3 units in simulation time for the upper atmosphere in the regions
of the loop connecting the two main magnetic polarities. For the lower transition region
or region of the atmosphere where the temperature is lower than the minimum temper-
ature at which radiative loss is efficient, the 1/dtcool goes to zero which corresponds to
infinite cooling time. When radiative cooling and heat conduction are taken into account
in addition to Joule dissipation, the temperature profile is smoothed out as can be seen
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Figure 4.6: Adiabatic cooling / heating rates (first term in the r.h.s of Eq. 4.7 over density),
if heat conduction and radiative losses are taken into account. Physical units are the same
as Fig. 4.5 with the same normalization for the color bar. Spatial scale in units of L0 = 500
km.

in Fig. 4.11. The pressure is related to temperature via the equation of state. For the
current model calculations that not include gravity, the initially constant pressure drops
at the height of the transition region. This results from radiative and conductive loss of
the thermal energy. For a better understanding of the changes in the temperature profile
we compared it with the result of the case that does not include these loss terms. For this
sake in the upper and lower panel of Fig. 4.12 the temperature profiles are shown after
12τAl f ven for the cases without / with radiative loss and heat conduction, respectively. The
parallel and perpendicular components of the electrical currents with respect to the main
magnetic field direction are shown versus height in Fig. 4.13, similar to the temperature
profile after 13τAl f ven for the cases without / with radiative loss and heat conduction in the
upper /lower panels, respectively. As one can see comparing Figs the difference between
the two cases is almost negligible, although the values that are being compare here have
been averaged over (x-y) plane for each height. The difference appears in the resistivity
values so that the profile of η j2, shown by dashed lines in Fig. 4.13 differs for the two
cases.
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0.00Figure 4.7: For the case without heat conduction and radiative losses, adiabatic cool-
ing/heating rates are shown according to the second term in the r.h.s of Eq. 4.7 over
density, (−(γ− 1)p∇ · u/ρ < 0) after 40, 80 and 120 s in the plane x = 45.7. Physical units
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K/s). Spatial scale in units of L0 = 500 km.

4.5 Analysis of the energy transport
In order to understand better the redistribution of energy due to radiative losses and ther-
mal conduction it is appropriate to analyze their time variation. The time variations of
magnetic, kinetic and thermal energies can be obtained, performing the volume integrals
of the energy densities in the simulation box. Fig. 4.14 is showing the integrated energies
versus time for the cases without / with inclusion of heat conduction and radiative losses
in the upper / lower panel. The drop in the thermal energy for the latter case indicates
the strength of the radiative and conductive energy loss. When the existing sources (Joule
dissipation and compressional heating) do not provide adequate heat to compensate the
loss total energy is lost:

ε = εkin + εmag + εth =

∫
V

1
2
ρu2d3v +

∫
V

1
2µ0

B2d3v +

∫
V

p
γ − 1

d3v

where εkin, εmag and εth denote kinetic, magnetic and thermal energies, respectively. A
direct consequence of the dropping thermal energy due to the two heat loss terms is a drop
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Figure 4.8: Adiabatic cooling / heating rate according to the second term in the r.h.s of Eq.
4.7 over density, for the case that includes heat conduction and radiative losses. Physical
units are the same as Fig. 4.7 with the same normalization for the color bar. Spatial scale
in units of L0 = 500 km.

in coronal temperature, (lower panel of Fig. 4.12). Since we focus on the investigation
of the consequences of radiative loss and heat conduction, we did not include any ad-
hoc background heating source to compensate heat losses and to maintain the coronal
temperature. As it was shown in Chapter 3, 3.4 the energy conversion rates depend mainly
on the work done by the Lorentz force, the pressure gradient force and Joule dissipation.
Similar to an approach used by Birn et al., 2009 for the case of a solar flare, we calculate
each of the terms v · ∇P, v · J × B and ηJ2 in the simulation box, depicted in left panel
of Fig. 4.15. The profiles depicted in this Figure show some differences between the top
and bottom panels which correspond (cases without and with inclusion of heat conduction
and radiative losses, respectively). For both cases the model starts with already existing
electrical currents that explains the appearance of the initial large Lorentz forces as soon as
velocity vortices are inserted. Inclusion of the two heat loss mechanism does not change
the dominance of the contribution of the work done by the pressure gradient force over the
effect of Joule dissipation. The influence of resistivity values and consequently, different
values of Joule dissipation, is illustrated by Fig. 4.16. Despite higher values of Joule
dissipation (ηJ2) for the case that include heat conduction and radiative losses (lower
panel) in comparison to the case that does not include these two heat loss effects (upper
panel), in both cases Joule dissipation is many order of magnitudes smaller than the work
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Figure 4.9: Radiative losses function after 40, 80 and 120 s in the same vertical plane as
Fig. 4.8.

done by the pressure gradient force. The energy conversion rates are related to the volume
integrals of the following combinations of v · ∇P, v · J × B and by ηJ2 :

dεkin

dt
−→

∫
V

(−~u · ∇p + ~u · ~j × ~B) d3v (4.9)

dεmag

dt
−→

∫
V

(−~u · ~j × ~B − η~j2) d3v (4.10)

dεth

dt
−→

∫
V

(~u · ∇p + η~j2 + S ) d3v (4.11)

The source term S in the thermal energy change rate (dεth /dt) is either in the case
without heat loss terms just due to Joule dissipation S = ηJ2 or in the case including heat
conduction and radiative losses S = η~j2−∇‖ · (κ‖∇‖T )−0.83 ρ2χTα. The energy rates are
shown in the upper and lower rows of the right panel of Fig. 4.15, respectively. In both
cases thermal energy can increase in two ways, first via a direct exchange with magnetic
energy through the Joule dissipation and at second indirectly from the kinetic energy due
to work done against the pressure gradient force that balances the Lorentz force. In fact,
in both cases the Joule heating is much less powerful than the pressure gradient force v
· ∇P, (left panel of Fig. 4.15). In the case without radiative and conductive heat losses one
would expect that the thermal energy follows a similar pattern as v · ∇P. This is indeed the
case (upper row of this Figure). Lower panel illustrates the strong drop in thermal energy
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Figure 4.10: The inverse of the radiative cooling time-scale 1/dtcool after 40, 80 and 120
s in the same vertical plane as in Fig. 4.9.

due to the heat loss terms. The contribution of heat conduction is depicted versus time in
Fig. 4.17. The heat conduction considerably increases with anomalous resistivity rises,
(see lower panel of Fig. 4.16). At the other moments of time its contribution is on average
less than Joule heating. The radiative cooling Q(T) is defined to be less than 1 (Q(T ) < 1).
In the temperature range of our simulation this value does not exceed 0.57, (see Fig. 4.9).
Since the contribution of radiative losses is proportional to the electron density n2Q(T ),
an efficient heat loss takes place at high density regions. The energy balance in this case
would requires additional heating to compensate the heat loss.

4.6 Analysis of the thermal balance along magnetic flux
tubes

Since the magnetic filed determines the spatial structure of the heat distribution it is ap-
propriate to analyse the results by means of an integration along magnetic flux tubes. For
this sake integration of physical quantities along the magnetic field lines using differential
flux tube volume, (V =

∫
B−1ds, with ds indicating the step size along the field line) has
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Figure 4.11: Horizontaly averaged temperature versus the height shown for every 20 s
interval of the simulation time.

to be carried out, (see Chapter 3, 3.4.3). Large flux tube volumes correspond to field line
rising high into the corona or hitting regions of vanishing magnetic field. We analyze the
Lorentz force, pressure gradient force and Joule dissipation. In Fig. 4.18 the correspond-
ing rates of energy change in the flux tube are depicted by color coding their flux tube
integrated values at the corresponding photospheric footpoints. The plots in the upper
row of the Figure correspond to the case that does not include the heat loss terms and the
lower panels refer to the case with heat conduction and radiative losses. The results are
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Figure 4.12: The averaged temperature profiles are shown versus the normalized height
is shown after 130 s for the cases without / with radiative loss and heat conduction in the
left / right panel, respectively.

Figure 4.13: Parallel (dotted line) and perpendicular (solid line) components of the elec-
trical current with respect to the main magnetic field averaged over the horizontal (x-y)
plane and depicted versus height. The dash-dotted line depicted the Joule heating power,
η j2. The result is shown after 130 s for the cases without / with radiative loss and heat
conduction in the left / right panel, respectively.

projected in a horizontal plane located just above the transition region height, where the
flux tube integration starts. A comparison of the effect of Joule heating with the work
done by pressure gradient force in this way again confirms the minor role of Joule dissi-
pation for changing the thermal energy in the BP region. The major difference between
the two cases appears in the thermal energy rate of change. With heat conduction and ra-
diative losses (depicted in lower right panel of Fig. 4.18) the thermal energy experiences
a much stronger change than the case without these two heat loss terms (see upper right
panel of the same Figure). Apart from the qualitative differences, also the location of the
enhanced flux tube integrated v · ∇P, v · J×B and ηJ2 as well as the rate of the magnetic,
kinetic and thermal energy changes coincide. The results of the integration for the total
energies are depicted in Fig. 4.20 after 60 and 120 s with upper/lower rows referring to the
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Figure 4.14: The profile of magnetic, kinetic and thermal energies are depicted versus
time for the cases without / with inclusion of heat conduction and radiative losses in the
left / right panels.

cases without/with heat conduction and radiative losses. In the case in which these two
heat loss effects have been considered obviously the total energy is smaller and decreases
over time, (compare the left and right panels of the lower row in Fig. 4.20). The result
of the flux tube integration of the different kinds of energy is depicted in Fig. 4.21 (again
with upper/lower rows referring to the cases without/with heat conduction and radiative
losses). It shows that the drop in total energy is mainly due to the smaller thermal energy
compared to the case that includes the two heat loss terms. The magnetic and kinetic en-
ergies on the other hand, are enhanced compared to the case without the heat loss terms,
(upper panel of this Figure). One can notice a very similar pattern in flux tube integrated
forces, energies and energy rate of changes. In particular, thermal energy and the pressure
gradient force are following the very same pattern as the temperature and flux tube volume
in Fig. 4.22. There again the upper/lower rows are referring to the cases without/with heat
conduction and radiative losses. Although inclusion of the two heat loss effects results
in a lower temperature (thermal energy), it does not change the dynamics of the system
which is rather determined by magnetic configuration and plasma velocities. The regions
with enhanced flux tube volume appear at the foot points of flux tubes that have received
enough energy through the Lorentz force to expand into higher altitudes and / or are con-
nected to regions with Separatrix-Like magnetic structures. The plasma compression acts
to balance the enhanced Lorentz force and to increase the temperature (thermal energy)
of the plasma.

4.7 Squashing factor calculations
Let us look at the magnetic geometry of the BP region in some more details. A proper way
to measure the change of the magnetic connectivity is to calculate the squashing factors,
introduced by Titov et al., 2002. Connectivity of the magnetic field lines is a geometrical
property of magnetic configuration. It is are not expected to change much due to the ad-
ditional heat loss terms in the model. The result of the calculation of the squashing factor
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4.7 Squashing factor calculations

Figure 4.15: The work done by pressure gradient force ( v · gradP), Lorentz force ( v
· J × B) and the contribution of Joule dissipation (res.J2), left panels. Upper / lower
panels are correspond to the cases without / with heat conduction and radiative losses.
Right panels: Magnetic, kinetic and thermal energy rates of change. Note that the values
are measured in units of power, ρ0V2

A0L3
0/τ0 = 1.04 × 1014 W.

Figure 4.16: Joule heating function (ηJ2). Left / right panels refer to the cases without /

with heat conduction and radiative loss. The simulation time is given in terms of Alfve
times (here τAl f ven = 10 s).

73



4 The consequences of the consideration of heat conduction and radiative loss in the
formation of a coronal X-ray Bright Point

Figure 4.17: Time evolution of the heat conduction function, according to Eq. 4.3, ∇‖ ·
(κ‖∇‖T ).

for the cases without / with inclusion of heat conduction and radiative loss is depicted in
the upper / lower panels of Fig. 4.23, respectively. Despite some qualitative differences
in the values, the locations with the enhanced squashing factors coincides for two cases
very well. In comparison with result of the flux tube volume integrations (see right panel
of Fig. 4.22), one can see part of the regions with higher change of magnetic connec-
tivity (colorbar is shown in logarithmic units) coincide with the regions with higher flux
tube volume and temperature. Therefore regions of enhanced flux volume that experience
strong changes of the magnetic connectivity are more likely to be associated with stronger
Poynting fluxes and enhanced temperatures.

4.8 Conclusions
We studied the consequences of a more realistic modelling of an observed X-ray coronal
bright point and compared it to a former work. For this sake we include heat conduction
and radiative losses and studied the changes in the energy balance in the BP region due to
these two additional heat loss effects.

Similar to a case where both heat loss effects were neglected (Chapter 3), the source
of heating were mainly adiabatic compression and only to a small amount Joule dissipa-
tion. An arc-shaped structure of enhanced temperature forms hotter than the background
plasma and connecting the two main opposite photospheric magnetic flux concentration.
The heat losses due to conduction and radiation change the temperature profile in two
ways. First they decrease the maximum values of temperature. This is due to mainly,
radiative loss below the chromospheric heights. There due to higher plasma density ra-
diative cooling n2Q(T ) can act more effectively. At second the heat loss decreases temper-
ature gradient in the transition region by conducting heat from upper hot atmosphere to
the lower region where they can be radiated away. This result in a less steep temperature
gradient. The changes in the temperature of the layered solar atmosphere are smoothed
accordingly.
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4.8 Conclusions

Figure 4.18: Flux tube integrated work done by the Lorentz force, pressure gradient force
and Joule heating are depicted in the top, bottom and middle panels, respectively. The
left/right rows are referring to the cases without/with heat conduction and radiative losses.
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4 The consequences of the consideration of heat conduction and radiative loss in the
formation of a coronal X-ray Bright Point

Figure 4.19: Rates of the magnetic, kinetic and thermal energy changes, integrated along
the magnetic field lines are depicted at t = 120 s in the top, middle and bottom panels,
respectively. The left/right rows are referring to the cases without/with heat conduction
and radiative losses.
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4.8 Conclusions

Figure 4.20: The total energy integrated along the magnetic field lines using the differen-
tial flux tube volume concept, (cases without/with heat conduction and radiative loss in
upper/lower rows respectively, at 60 s (left panels) and 120 s (right panels) of the simula-
tion time).

The inclusion of the heat loss terms does not change however, the coincidence of the
locations of the enhanced current densities and temperature. The current density profiles
also do not change significantly. We also compared the relative role of the Lorentz force,
pressure gradient force and Joule heating in the energy change rates for the two cases with
and without heat conduction and radiative losses involve. After inclusion of the two heat
loss terms the plasma compression is still much more effectively enhancing the thermal
energy and temperature in the BP region.

Using the concept of differential flux tubes, we performed the integration of different
contribution along the magnetic field lines. The integration results are compared in a
horizontal plane, from where the integration along the field lines starts. In both cases
these integrations show that the increase in thermal energy is provided mainly by the work
against the pressure gradient force rather than directly from magnetic energy via the Joule
dissipation. The major effect of the inclusion of the heat loss effects is a significant drop in
thermal energy and temperature. This shows that the energy balance in presence of these
heat loss effect requires an additional heat source to balance the energy losses. Despite
the quantitative difference, the structure of the heating sites is very similar. In particular,
temperature and flux volume integrated quantities follow the same pattern. This indicates
that regions of enhanced temperature are connected to the footpoint motion of the flux
tube that are carrying upward Poynting flux. This makes the flux tube rise into the higher
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4 The consequences of the consideration of heat conduction and radiative loss in the
formation of a coronal X-ray Bright Point

Figure 4.21: Magnetic, kinetic and thermal energies integrated along the magnetic field
lines are depicted after 120 s of the simulation time. The upper/lower rows refer to the
cases without/with heat conduction and radiative losses.

Figure 4.22: Pressure, temperature and flux tube volume, integrated along the magnetic
field lines, at t=120 s. The upper/lower rows are referring to the cases without/with heat
conduction and radiative losses.
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4.8 Conclusions

Figure 4.23: The result of the calculation of the squashing factor is shown (using a log-
arithmic colorbar), when upper/lower rows are referring to the cases without/with heat
conduction and radiative losses.

corona in regions with strong changes of the magnetic connectivity. The measure of the
change of the magnetic connectivity in this region the squashing factor indeed shows the
region with high squashing factor coincide with the regions of enhanced flux tube volume
and temperature enhancement.
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5 Discussion and outlook

In this dissertation the simulation results of the heating of X-ray Bright Points (BPs) in the
solar corona are presented. To estimate the evolution of plasma and magnetic field on the
BP region we used a three-dimensional resistive magnetohydrodynamics (MHD) model,
LINMOD3D. The model uses the line-of-sight (LOS) component of magnetic filed data
from SOHO/MDI magnetograms associated with a BP observed on 19 December 2006
by Hinode. A local-correlation-tracking (LCT) algorithm is applied to derive the velocity
patterns responsible for the evolution of the magnetic structures associated to the BP.

The simulation shows that an arc-shaped structure of enhanced temperature forms that
is 2-4 times hotter than the background plasma. This structure is located above the two
main opposite photospheric magnetic flux concentration. It coincides with the location
where the electrical current densities are maximum.

We further examined the contribution of the Lorentz force, pressure gradient force
and Joule heating by performing volume integrals in the simulation box that determine
the magnetic, kinetic and thermal energy change rates for three different resistivity mod-
els. We found that independent on the resistivity model magnetic energy was transformed
to kinetic energy through the work done by Lorentz force. Kinetic energy in turn is con-
verted to thermal energy due to pressure gradients that balance the Lorentz force. A
comparison of the effect of the three energy conversion through v · J × B, v · ∇P and ηJ2

show that adiabatic compression has an important role in temperature increase in the up-
per corona. This is not dependent on the resistivity model used in the simulation.

Utilizing the concept of differential flux tube integration of the different contributions
along the magnetic field lines, a quantitative comparison shows that energy conversion
rate, total energies and work done by Lorentz and pressure gradient forces are located
in the same flux tubes, also temperature and flux tube volume are maximum at the same
place. The results demonstrate the importance of the adiabatic compression in the energy
budget of the BP. In comparison, the role of Joule heating was confirmed to be quanti-
tatively small. Therefore, unless there is a convincing argument for using higher values
of diffusivity than the already large one used here, Joule heating cannot be considered a
viable process for heating.

As a further step toward a more realistic modelling, we studied the changes in the en-
ergy budget of this BP after considering two heat loss processes: Heat conduction along
the magnetic field lines and radiative loss for the optically thin atmosphere. Including
these two plasma transport processes, the local adiabatic compression is not anymore re-
versible. Furthermore, the heat loss processes result in a significant drop in temperature
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5 Discussion and outlook

(thermal energy).

The heating sites have a similar structure, indicating the dominance of magnetic struc-
ture in the dynamic evolution of coronal plasma. Regions of enhanced temperature co-
incide with the one of enhanced flux tube volume, which are connected to the footpoint
motion of the flux tubes that are carrying maximum upward Poynting flux. The strong
changes in magnetic connectivity also appears mainly in this regions.

Nevertheless, in the presence of the heat loss effects, one would need to consider some
additional heating sources to maintain energy balance and coronal temperature. One way
is to consider reflection of Alfven waves from the transition region, where the angle be-
tween the direction of the magnetic field and vertical determines the reflection coefficients.
Another possibility is taking into account the heating due to dissipation of Pedersen cur-
rents. Applying the model in the regions with stronger magnetic field and, consequently,
strong Poynting vector could help to acquire higher values of upward heat flux. Beside the
heating sources one could modify the numerical scheme for a longer simulation time, as
well as testing application of some artificial viscosity models. It would be also desirable
to calculate observable parameters, moving toward a forward modelling.
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A Normalization of the energy
equation

Energy equation:
∂p
∂t

= −∇ · pu − (γ − 1)p∇ · u + (γ − 1)S (A.1)

P0

τ0

∂ p̂
∂t̂

= −P0 u0

L0
∇ · p̂û − (γ − 1)

P0 u0

L0
p̂∇ · û + (γ − 1)S (A.2)

∂ p̂
∂t̂

= −∇ · p̂û − (γ − 1)p̂∇ · û + (γ − 1)(
τ0

P0
)S (A.3)

Normalization of the source term:

Ŝ = (
τ0

P0
) S =

2 L0 µ0

vA0 B2
0

(η j2 − ∇ · q − Lr) (A.4)

2 L0 µ0

vA0 B2
0

η j2 =
2 L0 µ0

vA0 B2
0

(µ0 L0 vA0) η̂ (
B2

0

η2
0 L2

0

) ĵ2 = 2 η̂ ĵ2 (A.5)

2 L0 µ0

vA0 B2
0

n2 χ Tα =
2 L0 µ0

vA0 B2
0

n2
0 n̂2χ (T0 T̂ )α =

2 n0 L0

mp v3
A0

n̂2χ (T0 T̂ )α (A.6)

2 L0 µ0

vA0 B2
0

∇‖ · (κ‖ ∇‖ T ) =
2 L0 µ0

vA0 B2
0

p0

2 n0 κB L2
0

∇̂‖ · (κ‖ ∇̂‖ T̂ ) (A.7)

=
1

2 vA0 n0 L0 κB
∇̂‖ · (κ‖ ∇̂‖ T̂ )

which implies for the transport coefficients:

• κ̂‖ =
10−11T

5
2

0
2vA0n0κBL0

T̂
5
2 =

10−11.(7.2.104)5/2

50.103 4.10−3 500.103 T̂
5
2 = 0.01T̂

5
2

• χ̂ = 2n0L0
mpv3

A0
Tα

0 χ = 2.2.1015.500.103

1.67.10−27 503.109 Tα
0 χ = 9.6.1033Tα

0 χ
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B Derivation of the energy transport
equations

For the volume V, the kinetic, magnetic and thermal energies are:

εkin =

∫
V

1
2
ρu2d3v (B.1)

εmag =

∫
V

1
2µ0

B2d3v (B.2)

εth =

∫
V

p
γ − 1

d3v (B.3)

Kinetic energy

1
2
∂ρu2

∂t
=

1
2

u2∂ρ

∂t
+ ρu · ∂u

∂t
(B.4)

= −1
2

u2(∇ · ρu) + ρu · ∂u
∂t

= −1
2

u2∇ · ρu + u · ∂ρu
∂t
− u2∂ρ

∂t

= u · ∂ρu
∂t

+
1
2

u2∇ · ρu

= u · [−∇ · ρuu − ∇p + j × B] +
1
2

u2∇ · ρu

= −1
2

u2∇ · ρu + u · [u × (∇ × u) − 1
2
ρ∇u2 − ∇p + j × B]

= −1
2
∇ · uρu2 − u · ∇p + u · j × B
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B Derivation of the energy transport equations

Magnetic energy

1
2µ0

∂B2

∂t
=

1
µ0

B · ∂B
∂t

(B.5)

= − 1
µ0

B · ∇ × E

= − 1
µ0
∇ · (E × B) − E · j

=
1
µ0
∇ · [(u × B − ηj) × B] + (u × B − ηj) · j

=
1
µ0
∇ · [−uB2 + (u · B)B − ηj × B] − u · j × B − η j2

Thermal energy

1
γ − 1

∂p
∂t

=
1

γ − 1
[−u · ∇p − γp∇ · u ± γu · ∇p] + S (B.6)

= − γ

γ − 1
∇ · pu + [u · ∇p + S ]

Energy conservation

dεkin

dt
= −1

2

∫
S V

ρu2~u · d~s +

∫
V

(−~u · ∇p + ~u · ~j × ~B)d3v (B.7)

dεmag

dt
= − 1

µ0

∫
S V

(−~u~B2 + (~u · ~B)~B − η~j × ~B) · d~s (B.8)

+

∫
V

(−~u · ~j × ~B − η~j2)d3v

dεth

dt
= − γ

γ − 1

∫
S V

p~u · d~s +

∫
V

(~u · ∇p + S )d3v (B.9)

Note that when it is mentioned the source term, S, in the thermal energy equation
includes the thermal conduction and radiative loss terms in addition to the Joule heating.
Therefore the rate of the thermal energy would be:

• For the case without heat conduction and radiative loss:

dεth

dt
= − γ

γ − 1

∫
S V

p~u · d~s +

∫
V

(~u · ∇p + η~j2)d3v (B.10)

• For the case that includes heat conduction and radiative loss:

dεth

dt
= − γ

γ − 1

∫
S V

p~u · d~s +

∫
V

(~u · ∇p + η~j2 − ∇‖ · (κ‖∇‖T ) − 0.83ρ2χTα)d3v (B.11)
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C Resistivity values

• Resistivity:

η0 =
ν

ε0 ω2
pe

(C.1)

• Anomalous resistivity:

ηe f f =
νe f f

ε0 ω2
pe

(C.2)

• Collision frequency:

ν0 =
ne4LnΛT−

3
2

16πε2
0m

1
2
e K

3
2
B

(C.3)

• Effective collision frequency:

νe f f =
ω2

pe

2π
(C.4)

• Using out set of normalization values (table. 3.1):

ν0 = nT−
3
2 ∗ 3.419.10−5 = 3540Hz

ωpe =

√
ne2

ε0me
= 2.522.109

νe f f =
2.522 ∗ 109

2π
= 370MHz

ε0 ω
2
pe = 0.5632 ∗ 108

η0 =
3540

0.5632 ∗ 108 = 6.285 ∗ 10−5

ηe f f =
370 ∗ 106

0.5632 ∗ 108 = 6.569

ηnorm = µ0L0vA = 104π

η0 =
6.285 ∗ 10−5

104π
= 2 ∗ 10−9

ηe f f =
6.569
104π

= 2.09 ∗ 10−4
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