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Summary

Within the next decade, two space missions will investigate Mercury, the innermost planet
of the solar system. NASA’s MESSENGER spacecraft is presently on its way to Mercury
and will be inserted into orbit in 2011, while BepiColombo will be launched in 2014 to
arrive at Mercury after a six-year-cruise in 2020. Both missions apply laser altimeters to
map the global topography and to extract the tidal signal of Mercury’s surface which oc-
curs due to solar gravitation. The purpose of this study is to investigate different analysis
methods which allow to extract the tidal elevation, expressed by the dimensionless tidal
Love number h2. The determination of the Love number h2 is one of the very few methods
that allows to study the interior of a planet from orbiting spacecraft. Provided that Mer-
cury has a liquid outer core, the tidal elevation amplitude is of order 1 m, corresponding
to a Love number h2 ≈ 0.7 (Van Hoolst and Jacobs 2003), otherwise it is much smaller.
Furthermore, it shall be confirmed with high confidence in the frame of the BepiColombo
mission that Mercury consists of a solid inner core and a liquid outer shell. First experi-
mental evidence for Mercury’s core not being completely solid has been found by Margot
et al. (2007). They used Earth-based radar interferometry, the well-known experiment
proposed by Peale (1976a), to determine a value of (35.8 ± 2.0) arcsec for the amplitude
Φlib of the 88-day forced libration due to torques from solar gravitation on Mercury’s
non-spherical mass distribution. This value suggests that only Mercury’s mantle follows
the solar torques, i.e. that the mantle can slip with respect to the core at the core mantle
boundary. Both the tidal signal as well as the libration of Mercury describe the reaction
of Mercury as a differentiated elastic body to the solar tidal forces. A combined precise
determination of both the tidal Love number h2 and the forced libration amplitude Φlib

allows to put constraints on the radii of Mercury’s inner and outer core which are deter-
mined by the initial sulfur content. For instance, an extraction of the tidal Love number
with a precision of 10 % allows to determine the outer core radius down to an uncertainty
of several tens of kilometers. In a somewhat different way, the libration amplitude de-
pends on the core radius and, therefore, on the sulfur content of the core. With a precise
knowledge of the interior structure of Mercury models can be improved which explain the
origin of Mercury’s weak magnetic field.

The potential science return from data of the BepiColombo laser altimeter BELA,
which is adapted to the larger of the two BepiColombo satellites, the Mercury Planetary
Orbiter (MPO), is investigated and analyzed. A precise determination of the tidal signal
is a challenging goal as the single-shot measurement uncertainty of BELA approximately
equals to the expected maximum tidal amplitude of Mercury. The time-dependent tidal
signal needs to be distinguished from the static surface topography of Mercury. There-
fore, the tidal signal can only be extracted by determining the global topography simulta-
neously. Three approaches are investigated in more detail for determining the tidal Love
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number. For the extraction of the libration amplitude, which is considered a less impor-
tant goal for BELA, only one method is explored, as the libration amplitude will also be
determined by the SIMBIO-SYS camera onboard the BepiColombo spacecraft.

BELA data cannot be expected to be received from the BepiColombo mission before
the years 2020 and 2021. Therefore, the yet unknown topography of Mercury is synthe-
sized in the form of a spherical harmonic expansion where the degree power follows a
power law with index - 2. At low spherical harmonic degrees, this power law approxi-
mately reproduces the lunar topography. The synthetic BELA data include an uncertainty
of about 62.5 m mainly due to the not-modeled small-scale topography and to less extent
because of the limited measurement precision.

The first approach uses a spherical harmonic expansion of the global surface topog-
raphy where the coefficients are directly determined by a least-squares inversion of the
simulated laser altimeter measurements. But it has the main advantage that surface to-
pography data can directly be correlated with gravity measurements. It has one main dis-
advantage in that computations are time-consuming, as each single laser shot contributes
to all coefficients of the global topography expressed as a spherical harmonic expansion.
With this method the topography coefficients can be extracted with small uncertainties of
less than 1 m down to a few centimeters for the lower harmonic degrees. The tidal signal
is retrieved with an uncertainty of about 10 % (2σ-uncertainty) for the most realistic case
where a non-resonant orbit and the data restriction for spacecraft altitudes up to 1000 km
are included. The libration amplitude is retrieved with an uncertainty which is comparable
with that retrieved by Earth-based radar interferometry (Margot et al. 2007).

The second method of using local basis functions defined in the near neighborhood of
cells of a rectangular grid has the main advantage in that the computation time is signifi-
cantly lower than for the global basis functions method. Due to the high shot density along
the spacecraft track, which has almost fixed longitude, the basis functions are chosen to
be simple step functions in latitudinal direction. In longitude direction in addition to step
functions, linear and cubic spline functions have been used. The extracted topography
is expressed as a rectangular grid with integer binning factors in latitude and longitude
with respect to the grid of the synthetic input topography. Optimum binning, i.e. highest
precision of the extracted Love number, is achieved when the output grid cell dimension
is similar to the distance between two spacecraft tracks. The tidal Love number can be
extracted with a precision of about 14 % (2σ-uncertainty) for the realistic case where a
non-resonant orbit and the restriction, that data can only be obtained up to 1000 km space-
craft altitude, is simulated. Better results are retrieved for a resonant orbit and especially
without data restriction due to the spacecraft altitude. This restriction typically reduces
the number of measurements to one half compared to the case where data are used all
over the orbit.

A third method has been developed to retrieve the tidal signal from an analysis at orbit
crossover points without a full determination of the global static topography. The method
is an alternative to check the results obtained from the other methods where the global
static topography is extracted simultaneously with the tidal signal. Crossovers can mainly
be found in the polar regions of Mercury. Due to Mercury’s eccentric orbit around the Sun
the tidal signal should still be significant at the poles. The tidal phase difference at such
crossovers varies so that roughly speaking half of the crossovers can be considered to be
useful to determine the tidal amplitude, while the other half can be taken to calibrate the
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spacecraft altitude. The largest uncertainty for the crossover analysis arises from unknown
small-scale topography between the crossover point and the next neighboring laser shots.
It turns out that a rather significant number of crossover points is available for precise
determination of the tidal Love number h2.

Keywords

Tidal Love number, forced libration amplitude, laser altimetry, Mercury, planetary to-
pography, BepiColombo, least squares adjustment
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Zusammenfassung

Innerhalb des nächsten Jahrzehnts werden zwei Weltraummissionen Merkur, den inner-
sten Planeten des Sonnensystems, untersuchen. NASAs MESSENGER Raumsonde ist
auf dem Weg zu Merkur und wird 2011 in der Umlaufbahn sein, während BepiColombo
2014 gestartet und Merkur nach sechs Jahren erreichen wird. Beide Missionen enthalten
Laseraltimeter, um die globale Topographie zu kartographieren und das Gezeitensignal
der Oberfläche von Merkur zu bestimmen, das durch die Gravitation der Sonne entsteht.
Das Ziel der Arbeit ist die Untersuchung verschiedener Analysemethoden, um die di-
mensionslose Lovezahl h2 zu bestimmen, die Information über den inneren Aufbau von
Merkur enthält. Die Bestimmung der Lovezahl h2 ist eine der wenigen Methoden, die Un-
tersuchungen der inneren Struktur eines Planeten aus Beobachtungen einer Raumsonde
erlaubt. Des Weiteren soll im Rahmen der BepiColombo Mission mit hoher Präzision
untersucht werden, ob Merkur aus einem festen inneren und flüssigen äußeren Kern
besteht. Sofern Merkur eine flüssigen äußeren Kern hat, wäre das Gezeitensignal in
der Größenordnung von 1 m und gleichbedeutend mit einer Lovezahl von h2 ≈ 0.7
(Van Hoolst and Jacobs 2003), ansonsten weitaus geringer. Erste experimentelle Be-
weise, dass Merkur keinen komplett festen Kern hat, wurden von Margot et al. (2007)
gefunden. Sie haben bodengestützte Radarinterferometrie verwendet; diese Beobach-
tungsmethode wurde bereits von Peale (1976a) vorgeschlagen. Für die Amplitude der 88
Tage dauernden, erzwungenen Libration Φlib, die aufgrund von Drehmomenten der so-
laren Gravitation auf Merkurs nichtsphärische Massenverteilung entsteht, wurde ein Wert
von (35.8 ± 2.0) arcsec bestimmt. Dieser Wert deutet darauf hin, dass nur Merkurs Mantel
den solaren Drehmomenten folgt. Das heisst, dass der Mantel im Vergleich zum Kern an
der Kern-Mantel-Grenze verrutschen kann. Sowohl die Messung des Gezeitensignals als
auch der Libration von Merkur als elastischen Körper beschreiben die Reaktion auf die so-
laren Gravitationskräfte. Eine kombinierte präzise Bestimmung der gezeitenabhängigen
Lovezahl h2 und der erzwungenen Librationsamplitude Φlib erlaubt, klare Grenzen für die
inneren Strukturen Merkurs aufzuzeigen. Die Extraktion der Gezeiten-Lovezahl mit einer
Genauigkeit von 10 % ermöglicht die Bestimmung des äußeren Kernradius bis zu einer
Größenordnung von einigen Kilometern. Die Librationsamplitude hängt von der Kern-
größe ab, und dies ist äquivalent mit dem Schwefelgehalt im Kern. Mit einer detaillierten
Kenntnis über die innere Struktur Merkurs können Modelle verbessert werden, die dessen
schwaches Magnetfeld erklären.

Das Potential der erwarteten wissenschaftlichen Resultate des BepiColombo Laseral-
timeters (BELA), eines der Instrumente der größeren der beiden Raumsonden, dem Mer-
cury Planetary Orbiter (MPO), wird untersucht und analysiert. Eine genaue Bestimmung
des Gezeitensignals ist eine Herausforderung, da die Messunsicherheit der Lasermessung
von BELA der erwarteten maximalen Gezeitenamplitude von Merkur entspricht. Das
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zeitabhängige Gezeitensignal muss von Merkurs statischer Topographie unterschieden
werden. Daher kann das Gezeitensignal nur mit einer simultanen Bestimmung der glo-
balen Topographie erfolgen. Drei Ansätze werden für die Bestimmung der Gezeiten-
Lovezahl im Detail untersucht. Für die Extrahierung der Librationsamplitude wird nur
eine Methode verwendet, da diese keine so hohe Priorität als wissenschaftliches Ziel für
BELA darstellt und sie mit der Kamera SIMBIO-SYS, die an der Raumsonde der Bepi-
Colombo angebracht ist, ohnehin auch anderweitig bestimmt werden soll.

BELA Daten können nicht vor 2020 und 2021 erwartet werden. Die bisher unbekannte
Topographie des Merkur wird synthetisch durch eine Kugelfunktionsentwicklung erzeugt,
deren Leistungsdichte einem Potenzgesetz mit Exponent -2 folgt. Dieses Potenzgesetz
ähnelt für niedrige Grade der Kugelfunktionsentwicklung der Mondtopographie. We-
gen nicht im Modell enthaltener Topographievariationen kleiner Maßstäbe, und zu einem
geringeren Maß aufgrund begrenzter Messpräzision beinhalten die synthetischen BELA
Daten eine Unsicherheit von 62.5 m.

Der erste Ansatz verwendet eine Kugelfunktionsentwicklung zur Beschreibung der
globalen Topographie, und die Koeffizienten werden direkt durch eine Inversion nach der
Methode der kleinsten Quadrate aus simulierten Lasermessungen bestimmt. Die Methode
hat den Vorteil, dass die Oberflächentopographie direkt mit dem Schwerefeldmessungen
korreliert werden können, und den Nachteil, dass die Berechnungen zeitaufwändig sind,
da jede Lasermessung die gesamte Topographie-Darstellung, beschrieben als Kugelfunk-
tionen, beeinflusst. Die Topographiekoeffizienten können mit einer Unsicherheit besser
als 1 m bis zu wenigen Zentimetern für niedrige harmonische Grade extrahiert werden.
Das Gezeitensignal wird mit einer Unsicherheit von 10 % (2σ-Unsicherheit) für den real-
istischsten Fall bestimmt, bei dem ein nicht-resonanter Orbit und eine Datenrestriktion für
Raumsondenhöhen bis zu 1000 km verwendet werden. Die Librationsamplitude wurde
mit einer vergleichbaren Unsicherheit wie durch erdgebundene Radarinterferometrie von
Margot et al. (2007) extrahiert.

Der zweite Ansatz basiert auf lokalen Basisfunktionen, die in der lokalen Umgebung
von Rechteckgitterpunkten definiert sind. In Breitenrichtung werden wegen der großen
Anzahl an zu erwartenden Messungen Stufenfunktionen als Basisfunktionen gewählt. In
Längenrichtung werden zusätzlich zu den Stufenfunktionen noch lineare und kubische
Spline Funktionen verwendet. Die extrahierte Topographie ist als Rechteckgitter mit
ganzzahligen Faktoren in Gitterlänge und -breite im Vergleich zu dem Gitter der synthetis-
chen Topographie definiert. Höchste Genauigkeit für die Lovezahl wird erreicht, wenn die
Anzahl der Gitterpunkte der extrahierten Topographie dem Abstand von zwei Satelliten-
spuren entspricht. Die Lovezahl kann für den realistischsten Fall mit einer Unsicherheit
von 14 % (2σ-Unsicherheit) bestimmt werden. Bessere Resultate werden für einen reso-
nanten Orbit und ohne Beschränkung der Anzahl an Messungen durch die Höhenrestrik-
tion erreicht, die die Anzahl der Lasermessungen halbiert.

Bei der dritten Methode wird die globale Topographie vernachlässigt und eine Anal-
yse von Kreuzungspunkten für die Extraktion des Gezeitensignals untersucht. Dieser
Ansatz ist eine Alternative, um die Resultate der vorherigen Methoden zu überprüfen.
Kreuzungspunkte werden hauptsächlich in den Polregionen von Merkur erwartet. Wegen
Merkurs elliptischem Orbit um die Sonne sollte ein deutliches Gezeitensignal vorhanden
sein. Die Gezeitensignaldifferenz variiert, so dass nur etwa die Hälfte der Kreuzungs-
punkte für die Bestimmung des Gezeitensignals verwendet werden können, während die
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restlichen zur Kalibrierung der Raumsondenhöhe genutzt werden können. Den größten
Einfluss bei der Kreuzungspunktanalyse hat die kleinskalige, unbekannte Topographie
zwischen dem Kreuzungspunkt und dessen nächster Umgebung. Es zeigt sich, dass eine
große Anzahl an Kreuzungspunkten für eine genaue Bestimmung der Lovezahl h2 ver-
fügbar ist.

Schlagwörter

Gezeiten-Lovezahl, Librationsamplitude, Laseraltimetrie, Merkur, planetare Topographie,
BepiColombo, Kleinste-Quadrate-Ausgleichung
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1 Motivation

Mercury is the inner most planet of the solar system. Due to its proximity to the Sun
and its orbital parameters, it is the least investigated planet. Mercury has only been vis-
ited in 1974/75, when NASA’s Mariner 10 spacecraft had three flybys, and very recently,
in 2008, when NASA’s Messenger spacecraft executed its first two flybys before inser-
tion into orbit around the planet in 2011. Supported by ground-based observations, it
has been concluded from the data of the Mariner 10 flybys that Mercury has the highest
uncompressed density among the terrestrial planets. This high density implies a metal-to-
silicate ratio of about 0.6 (Solomon et al. 2007). Mercury is expected to be differentiated
into core and mantle. For a core made of nearly pure iron, the core radius is predicted
to be approximately 0.75 times the planetary radius (Spohn et al. 2001). If the core con-
tained substantial amounts of a light alloying element, sulfur being the prime candidate,
its fractional radius could be much larger (Harder and Schubert 2001). The presence of a
weak global magnetic field (Connerney and Ness 1988) can be explained by a hydromag-
netic dynamo, which requires that the core is at least partly liquid. However, an origin
by crustal magnetization (e.g. Aharonson et al. 2004) is also discussed in which case the
magnetic field does not put any constraint on the present state of the core. Thermal evo-
lution models (Hauck et al. 2004, Schubert et al. 1988) suggest that Mercury’s core is
probably partly liquid if it contains some sulfur. However, the size of the solid inner core
has a wide possible range, depending mainly on the unknown sulfur content. For low (ini-
tial) sulfur concentration in the liquid core, it may presently form only a thin shell around
a large solid core. The presence of a solid inner core is probably essential for driving a
dynamo in the liquid part by compositional convection (Schubert et al. 1988), and its size
may control the strength and geometry of the magnetic field (Christensen 2006, Heimpel
et al. 2005, Stanley et al. 2005).

Geodetic observations made from orbiting spacecraft can put constraints on the inter-
nal structure of the planet. In particular, the response to solar tidal forcing is sensitive to
the size and state of the metallic core. The tidal Love number k2 quantifies the additional
gravity potential, relative to a tide-generating potential due to the mass displaced by tidal
force. For example, the value of k2 = 0.153 ± 0.017 inferred for the gravity tidal Love
number of Mars from radio Doppler tracking of the Mars Global Surveyor spacecraft has
been used to conclude that the core of Mars is not completely solid and has a radius of
1680 ± 160 km (Yoder et al. 2003). In the case of Mercury the tidal Love numbers h2

and k2 have been calculated to be approximately 0.7 and 0.4, respectively, if the core is
partly liquid (Van Hoolst and Jacobs 2003). For a completely frozen core, they are much
smaller. The precise value of h2 depends primarily on the core radius and to some degree
on the solid inner core radius, it is in the range of 0.6–0.9 for a liquid outer core. The
two tidal Love numbers, of which h2 describes the tidal deformation of the planet’s sur-
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face and k2 the change of the gravity potential resulting from the distortion of the planet’s
mass distribution, depend in similar way on the internal structure and hence carry simi-
lar information. However, slight differences exist and if both Love numbers were known
precisely it would be possible to remove ambiguities in the structural models that fit a
given value of one of the Love numbers, e.g., trade-offs between core radius and inner
core radius.

Another source of information on the internal structure comes from Mercury’s forced
libration, i.e., the slightly uneven rotation caused by the action of solar torques on the
non-symmetric permanent mass distribution of the planet. The libration amplitude, in
combination with low-order coefficients of the gravity potential and the obliquity of the
rotation axis, allows constraining the ratio of the moment of inertia of the solid mantle,
providing it is mechanically decoupled from the core (Peale 1972, 1976a, Peale et al.
2002). Like in the case of tides, the libration amplitude in combination with the other
information will allow to distinguish a completely frozen core from a partly liquid core
and, in the latter case it puts constraints on the core (Rambaux et al. 2007). While this
requires some assumptions on the details of the density structure in the planet, the uncer-
tainties may be less than in case of the quantitative interpretation of the Love numbers,
which also requires assumptions on the rigidity.

While the gravity Love number k2 is determined by tracking the spacecraft’s orbit,
h2 can be obtained from the precise monitoring of changes in the planet’s surface. A
precision of 1 m by laser altimetry needs an accurate spacecraft position.

Various techniques can be employed to determine the libration amplitude. Margot et
al. (2007) used Earth-based radar interferometry to determine a value of (35.8 ± 2.0) arc-
sec for the 88-day libration. A more accurate determination may be possible from orbit,
either by tracking of landmarks at the surface with precise imagery (e.g. Jehn et al. 2004,
Wu et al. 1997) or by laser altimetry (Zuber et al. 2007). In the latter case, the offset of
topographic structures compared to their location in a reference frame rotating at a uni-
form rate (or one rotating with a nominal libration) is treated as another time-dependent
component of the surface topography.

The aim of this study is the investigation of methods for retrieving Mercury’s tidal
Love number h2 and the amplitude of forced libration Φlib from synthetic topography data
sets as taken by laser altimeter onboard a spacecraft orbiting Mercury. Two space missions
will explore Mercury in the next decade, with elucidating Mercury’s internal structure as
one of their primary goals. NASA’s MESSENGER mission has executed two flybys and
will enter a highly elliptical orbit in 2011 (Solomon et al. 2007). The BepiColombo
mission of the European and Japanese Space agencies (ESA and JAXA, respectively) will
be launched in 2014, to reach Mercury in 2020 and put two spacecraft into orbit (Erd et
al. 2004). Of interest here is the Mercury Planetary Orbiter (MPO), which will have a
moderate elliptical polar orbit with 400 and 1,500 km minimum and maximum altitudes
above Mercury’s surface, respectively. Both missions carry laser altimeters. Because
the MPO orbit allows measuring the topography of the entire surface, the BepiColombo
mission is chosen for studying if time-dependent topography can be recovered from the
altimeter data.

The BepiColombo Laser Altimeter (BELA) is designed to map Mercury’s global to-
pography with an accuracy of ≤ 10 m (Thomas et al. 2007). Its primary goal is to de-
termine the global (static) topography, which in combination with the gravity field allows
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inferring some aspects of the internal structure, e.g., crustal thickness variations. Super-
imposed on the static topography are the time-dependent tidal elevation changes with an
amplitude of up to 1.5 m (e.g. Van Hoolst and Jacobs 2003). The longitudinal shift of
the topography due to libration can also be treated as a time-dependent variation of to-
pography. The determination of the libration amplitude and the tidal signal are primary
science goals of BELA (Oberst 2007). Therefore, the goal of this study is to investigate
to what accuracy the tidal Love number h2 and the amplitude of forced libration Φlib can
be extracted from synthetic BELA data.

A rather encouraging example for the recovery of a time-dependent signal of 1 m
amplitude in the presence of much larger static topography is the determination of the
seasonal variation of the CO2-ice layer thickness in the North polar region of Mars, using
the data of the MOLA laser altimeter on board the Mars Global Surveyor mission (Smith
et al. 2001a). The variation is not determined point-by-point, but (in case of ice thickness)
as an average for a given latitude like in the case of retrieving a tidal signal. While the ice
thickness can be assumed to vary smoothly with latitude and time, the precise functional
dependence is not known a priori. In contrast, the shape of the tidal deformation is given
as function of location and time, and only its amplitude needs to be solved for. There-
fore, recovering the tidal Love number h2 should be possible with a higher precision than
determining ice layer thickness variations.

This thesis is organised as follows. Firstly, an overview of the current scientific knowl-
edge is given in ch. 2. Afterwards the generation of the synthetic topography of Mercury is
described in more detail (ch. 3). Several approaches will then be presented for extracting
the time-dependent parameters of the topography. For this purpose simulated height mea-
surements are generated, and calculated for the nominal orbit of the MPO. The operational
constraints of the BELA instrument are also taken into account. Furthermore, an error es-
timation for the extraction of the tidal Love number h2 from observations at crossovers
of the spacecraft ground tracks on the planetary surface is performed. If the spacecraft
passes these points at times of different tidal phase angles, the tidal amplitude can be cal-
culated from the difference of the topographic measurements at these points. The main
uncertainties restricting the precision of these measurements are analyzed. However, the
polar orbit of the MPO will produce very few crossovers at low latitudes, where the tides
are largest, and the tracks will cross at very acute angles, which make this approach some-
what unattractive (ch. 6). Higher priority is given to simultaneous inversions of the static
topography and the time-dependent variations of the topography. Two approaches are
investigated. The first approach uses global basis functions for inverting the entire set
of simulated measurements simultaneously for the global long-wavelength topography
(represented by a spherical harmonic expansion), the tidal Love number, and the libration
amplitude (ch. 4). The second approach uses local basis functions concentrated at the
points of a rectangular grid to describe the static topography together with a global basis
function that describes the time-dependent tidal elevation (ch. 5). At the end the final
results are summarized, and an outlook for future work is given.
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2 Introduction

An introduction to the scietific background, to the missions exploring Mercury, and the
laser altimetry is given in the following sections.

2.1 Mercury
Mercury can only be seen in the twilight sky during dawn and dusk. Due to the tilt of
its orbital plane with respect to the orbital plane of the Earth, Mercury’s declination is
sometimes lower than that of the Sun and sometimes larger. This limits the possibility
for observing Mercury because it is not visible all the time. Furthermore, Mercury is
"hurrying" along the sky because, as it is the inner-most planet of the solar system, it
has an orbital period of only 88 Earth days. These two orbital peculiarities account for
Mercury’s elusiveness. Best observation conditions are in the equatorial region and at
low latitudes of the Earth with dry climate and clear sky, respectively (Strom and Sprague
2003).

2.1.1 Mercury – mythology and first observations
The Northern cultures, such as Germans and Scandinavians, associated Mercury with
their main deity, Wodan or Odin. These names are still in use and show the connection
of the importance of Mercury for ancient cultures. "[...] The connection lives on in our
current use of English day of week Wednesday derived from "Wodan’s day" and present-
day Swedes and Danes use of "onsdag", directly derived from the old Norse "Odinsdagr",
and also in the French word "mercedi" coming from the Latin "Mercury dies". The ancient
civilizations of the Middle East knew that the time between the reappearance of Mercury
in the same configuration in the sky was shorter than for the other planets, and correctly
reasoned that it, therefore, moved more rapidly. [...]" (Strom and Sprague 2003). In
400 BC, Euxodus derived the time interval of 115 days between subsequent identical
configurations in the morning or evening sky. Originally, Mercury was assumed to be an
evening star, when observed with eastern elongation, and a morning star, when observed
with western elongation (fig. 2.1, upper panel). Later it has been realized that it is the
same star. Note, that elongation is the angular distance between a planet, here Mercury,
and the Sun, seen from Earth. The largest angular distance between Mercury and the Sun,
seen from Earth, is called greatest elongation (adopted from Strom and Sprague 2003).

In Mesopotamia, the first recorded observation was made on November 15th 265 BC.
Mercury was named "Nebo" which was then used to denote geographical land forms (Mt.
Nebo) and for certain people in the Old Testament. Mercury means passionate desire,
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Figure 2.1: Left panel: Elongations and conjunctions of an inferior planet (planets interior
to the orbit of Earth). If the inner planet (Venus or Mercury) is between Sun and Earth,
it will be called inferior conjunction. In case the planet is on the far side of the Sun, it is
called superior conjunction. The nodes of the orbital planes can sometimes be aligned.
Then Mercury or Venus appear as dark spots crossing or transiting the Sun’s disk (adopted
from Strom and Sprague 2003). Right panel: Picture of Mercury, the ancient god at the
Central Station, Mainz, Germany.

fertility, and rapid movement in original Greek dialects. Mercury was a Greek god, and
even nowadays pictures can be found (fig. 2.1, lower panel, at the entrance of the central
station in Mainz). The Greek god has the attributes of tireless, being a traveler, and the
god of twilight (Strom and Sprague 2003).

With the invention of the telescope the modern era of astronomy started. The English
scientist Thomas Harriot firstly used a telescope for observations in August 1609, and
Galileo did so in the same year later. Mercury is an elusive object for observations, i.e.
by telescope which were done by Galileo and Harriot, because its longitude in the sky
never deviates more than 28 degrees from that of the Sun as seen from the Earth. As
mentioned above, observations of Mercury are only possible in the twilight or during the
day. Twilight has the great advantage that there is a good contrast for observations of
the illuminated disk on the dark sky. However, disadvantage comes from the long optical
path length in Earth’s atmosphere which causes refractions. Additionally, atmospheric
turbulence limits the observations. Observations at daytime have the advantage of shorter
optical path lengths through the atmosphere, but the contrast of the illuminated disk to
the sky is marginally small; Mercury is then hard to find. Computational tracking makes
it somewhat easier to find and track Mercury. Mercury is only visible during about thirty
or forty days a year. Mercury has different phases during which different fractions of its
illuminated disk can be seen from Earth. This phenomenon is similar to the Moon phases.
When Mercury has a crescent phase it is even more difficult to find it on the sky.

Mercury is in a 3 : 2 resonance between its orbital and rotational motion. One side-
real period lasts approximately 87.969 Earth days, while Mercury’s rotation period is
two-thirds of that, approximately 58.64 days. Balogh et al. (2002), Murray and Dermott
(1999), Strom and Sprague (2003) and Wieczorek (2007) give a more detailed overview
of the rotational states of Mercury. The rotational resonance is related to the Mercury’s
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eccentric orbit around the Sun. Optimum observation conditions repeat after approxi-
mately three synodic periods. However, after that time period, one always observes the
same part of the surface again. This is the reason for the original assumption that Mercury
has a bound rotation with the Earth and, therefore, always faces the same side to Earth as
does the Moon. Using the Arecibo radar facility in Puerto Rico, Gordon Pettengill and
Rolf Buchnan Dyce discovered in 1965 that Mercury has an eigenrotation with a period
of around 58 days. "[...] The finding of a value for the rotational period of Mercury
which differs from the orbital period is unexpected and has interesting theoretical impli-
cations [...]" (Pettengill and Dyce 1965). Astronomers could significantly improve their
Earth-based investigations in the last decades due to the availability of CCD sensors. Fur-
thermore, with imaging radio interferometry the rotational states and libration amplitudes
of Mercury could be retrieved.

Naturally, most detailed information can be retrieved by orbiting Mercury with a
spacecraft. One mission, Mariner 10 by NASA, has already investigated Mercury, NASA’s
MESSENGER spacecraft is currently on its way to Mercury and will be in orbit in 2011,
and ESA plans to arrive at Mercury in 2020 with its BepiColombo mission. An overview
of these missions is given in sec. 2.2.

Mercury is mostly observed and investigated by ground-based radar observations from
which rotational parameters can be determined. Margot et al. (2007) observed the forced
libration amplitude (sec. 2.4.2) of Mercury. This technique is generally used for creat-
ing maps of the surface reflectivity and the surface texture, because some fraction of the
transmitted electromagnetic wave is absorbed. It also allows putting constraints on the
chemical composition of the surface. Another technique widely used for observing Mer-
cury is interferometry with different telescopes that observe the same body at the same
time to achieve a better angular resolution.

2.1.2 Mercury – the planet, surface and parameters
Mariner 10 (sec. 2.2.1) mapped approximately 45 % of Mercury’s surface. Characteristic
features of Mercury’s topography are plains such as the Tolstoj-basin shown in fig. 2.2,
right panel. The pictures showed large plains and a heavily cratered surface indicating
that Mercury’s surface is geologically old. Half of the surface of Mercury viewed by
Mariner 10 shows intercrater plains which must be the result of the time of the heavy
bombardment. Furthermore, the whole surface shows scarps. These scarps are assumed
to be the result of the shrinking of Mercury during its thermal evolution. Mercury’s radius
probably has decreased by 3-4 km since formation of the planet. A scarp seen by Mariner
10 is shown in fig. 2.2, left panel. Strom and Sprague (2003) and Zuber et al. (2007)
describe in more detail the geological history of Mercury. Furthermore, Mercury has
irregularly formed hills up to 1 km altitude within the plains. These hills are assumed to
be the result of a large impact. Laser altimetry and stereo imaging can answer how these
hills are formed and allow putting constraints on the time of heavy bombardment at the
end of the planetary formation process.

The topography of terrestrial planetary bodies is usually dominated by features such
as craters and slopes. Mercury is the terrestrial planet in the solar system for which the
topography is least studied. Considerably more information is available for the Moon
and for Mars. In the past decade, Mars has been mapped by the Mars Orbiter Laser Al-
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Figure 2.2: Left panel: Smooth plains fill the center of the 510-km-diameter Tolstoj Basin
(unit boundaries shown as white arrows) and partially fill smaller craters (black arrows)
on the basin floor. These superposition relationships indicate that this region of smooth
plains cannot be impact melt generated at the time of formation of the Tolstoj Basin. The
image is a portion of a hemispheric mosaic with a resolution of 1 km/pixel (Solomon et
al. 2001). Right panel: A Mariner 10 image of Discovery Rupes, one of the longest and
most prominent scarps imaged by Mariner 10 with a resolution of 240 m/pixel (Solomon
et al. 2001).

timeter (MOLA) which is briefly described in sec. 2.3.3. Aharonson et al. (1998, 2001)
have analyzed MOLA data in more detail to derive the slope distribution and topogra-
phy properties for Mars, while McEwen and Robinson (1997) have thoroughly evaluated
mapping data taken during the Clementine mission to the Moon. Kreslavsky and Head
(1999, 2003) identify the difference in geological properties of the Northern and Southern
hemisphere of Mars and show that different kinds of geological features of Mars have
typical kilometer-scale slopes. Based on current knowledge, Kreslavsky et al. (2008)
compare the different surfaces of terrestrial planets and find that Mercury is similar to the
Southern hemisphere of Mars and not very different from the Moon’s topography. Fur-
ther investigations and comparisons for the terrestrial planets are performed by Rummel
(2005). Smith et al. (1998, 1999, 2001a) and Zuber et al. (1992) have analyzed the Mar-
tian topography as well. Helfenstein and Shepard (1999) have studied the topography of
the Moon for very short wavelengths in the sub-millimeter range and its relations to the
Lunar Regolith.

Mercury’s surface is heavily cratered indicating that the surface is geologically very
old similar to the Southern highlands of Mars. Aharonson et al. (2001) have analyzed
the spatial frequency distribution of the surface topography of Mars using MOLA data.
The resulting power spectral density is shown in fig. 2.3 for two typical areas of Mars.
Region B belongs to the Northern hemisphere and is geologically young, while Region A
belongs to the Southern hemisphere and is geologically old and heavily cratered. Fig-
ure 2.3 shows the power spectrum which is used for the synthesis of the yet unknown
Hermean topography in the simulations presented in sec. 3. This hypothetical topography
has a degree power following a power law with an exponent (β in fig. 2.3) of −2 and
resembles the lunar topography at large scales.
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Figure 2.3: Power spectral density of the topography of two types of regions on the Mar-
tian surface (Aharonson et al. 2001). Region A belongs to the Southern hemisphere,
which is geologically old and heavily cratered. Region B belongs to the Northern hemi-
sphere which is geologically young. The topography is described as a power law with an
exponent of β. For comparison, the power spectral density corresponding to the degree
power Vl of the spherical harmonic expansion which is used in the simulations by Koch
et al. (2008, 2009a) is shown as red line.

Astronomical observations revealed that Mercury is a spherical body with marginally
small differences between the mean equatorial and polar radius. Mercury is assumed to be
a sphere in the simulations, as the polar and equatorial radius is nearly identical. Further-
more, the angular deviation between Mercury’s rotational and figure axis is marginally
small. This effect has an important role for the time-dependent parameters of the topog-
raphy which will be discussed in sec. 2.4. With more than 250,000 years, Mercury’s
precession is quite long (e.g. Bois and Rambaux 2007, Peale 2005) as compared to the
Earth where the precession period is roughly 25,600 years.

As Mercury is the innermost planet of the solar system, it is a planet of extremes.
Temperature gradients on the surface are quite large. The lowest approximated tempera-
ture is 100 K (-173 ◦C) during night in Mercury’s apohel. The maximum temperature of
about 700 K (+427 ◦C) is reached on parts of the surface directly pointing to the Sun
in Mercury’s perihel. The mean temperature is 440 K (+167 ◦C). Due to Mercury’s
resonant orbit, the areas of largest temperature gradient can easily be determined. The
large temperature gradients have also implications for the design of space instrumenta-
tion on spacecraft orbiting Mercury. Instruments have to operate in a large temperature
range if not controlled within a specific temperature range by external heating and cool-
ing systems. Table 2.1 lists the parameters of Mercury which are needed and used for the
simulations. The planetary radius is only 40 % of Earth’s planetary radius.

Another extreme is Mercury’s density. Mercury has a mean density of 5.3 g/cm3. This
is an unusually large uncompressed density. When the uncompressed densities of the
terrestrial planets and the Moon are plotted versus the planetary diameter, the densities
fit in a line except for that of Mercury. This can be explained by a large content of
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Table 2.1: Mercury parameters

Parameter Symbol Value
Mass ratio MSun/MMerc 6023700.0
Mean radius a 2439.7 km
Distance Mercury to Sun R 57.909 × 106 km
Eccentricity e 0.20563
Orbital period TMerc 87.969 days

heavy elements such as iron. The geophysics of Mercury are analyzed in more detail by
Anderson et al. (1987) and Zuber et al. (2007). Furthermore, the existence of a magnetic
field suggests that Mercury has a liquid outer core. Mercury is assumed to have a large
inner, solid core and small liquid outer core shell. Due to Mercury’s large density, the
core is assumed to be made of nearly pure iron with a marginal amount of light elements;
the most promising candidate is sulfur. The core size is derived to be approximately
75 % of the planetary radius, i.e. about 1800 km. Around 70 % of the planetary mass is
concentrated in the core. While the mantle of the Earth has 62 % of the planetary mass,
for Mercury this part is only around 30 %. The mantle of Mercury has a thickness of
about 600 km, and the crust has a thickness of only about 10 km. A better understanding
of the interior structure of Mercury will be retrieved by the space missions MESSENGER
(sec. 2.2.2) and BepiColombo (sec. 2.2.3). These missions will probably reveal why
Mercury has such an unusually large amount of iron. The actual models for the origin
of the large iron amount are not discussed, as they are beyond the scope of this work.
Section 2.1.3 briefly describes the importance of a differentiated core into an inner solid
and outer liquid part for generating Mercury’s weak magnetic field.

Mercury’s orbital plane is inclined by 7 degrees with respect to the ecliptic plane of
the Earth. Mercury’s perihel is at about ≈ 0.307 Astronomical Units (AU), and apohel
≈ 0.467 AU (e.g. Balogh et al. 2002, Strom and Sprague 2003). Mercury has a mean
orbital velocity of 47.87 km/s. Mercury’s rotation axis and figure axis are nearly parallel.
Therefore, there are craters in the Polar Region which are in shade. There, the probability
of detecting water ice is high. This shall be investigated by MESSENGER (sec. 2.2.2) and
BepiColombo (sec. 2.2.3). Water ice in these craters probably dates back to the time of
planet formation. If its composition could be determined, it would allow a more detailed
investigation of the planet formation processes.

Mercury has an exosphere, which is not yet investigated in detail. This is a primary
goal of the MESSENGER (sec. 2.2.2) and BepiColombo missions (sec. 2.2.3). The main
constituents of the exosphere are hydrogen (22 %) and helium (6 %) which probably
originate from the solar wind. Oxygen (42 %), sodium (29 %) and potassium (0.5 %)
originate from Mercury’s surface. The mean pressure of the exosphere is derived to be
≈ 10−15 bar. This means that Mercury’s atmosphere has a mass of only 1000 kg. This is
marginally small compared to the whole planet’s mass.
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2.1.3 Mercury – the interior structure

During its first flyby, Mariner 10 surprisingly detected a magnetic field which was investi-
gated in more detail during its third flyby (sec. 2.2.1). The presence of the magnetic field
may either be based on the external magnetic field generated by the Sun or on an internal
dynamo. The strength of Mercury’s magnetic field is only about 1 % of that of the Earth’s
magnetic field. The main result of Mariner 10’s third flyby was that the magnetic field
must be of internal origin. The magnetic field is explained, e.g. in Connerney and Ness
(1988), Ness (1979) and Strom and Sprague (2003). The magnetic field is strong enough
to form a bow-shock wave which deflects the solar wind, and is assumed to be stable. It
was shown that Mercury has a dipolar field which is inclined by (14.5 ± 5) degrees from
the rotation axis, similar to the Earth’s magnetic field, i.e. Ness (1979). The equatorial
field intensity is (330 ± 18) nT, with an equivalent dipole moment of

(
4.8 × 1022

)
gauss

cm3.
Margot et al. (2007) have found evidence that Mercury must have a molten outer core

by observing Mercury’s longitude libration (sec. 2.4.2) with ground-based radar interfer-
ometry. Rambaux et al. (2007) present a theoretical approach to the relation between the
strength of core-mantle coupling and the libration amplitude of Mercury. Peale (1972,
1976a,b) has already hypothesized that Mercury must have a molten core by using obser-
vations made by Mariner 10.

The magnetic field of Mercury cannot entirely be induced by an interplanetary mag-
netic field generated by the Sun. Mercury’s inner solid core presumably has a radius of
approximately 70 % of the planetary radius, and it is presumably surrounded by a thin
liquid layer. The thin liquid layer is the source of the weak magnetic field of Mercury.
Due to its high density, Mercury has to have a solid inner core mainly consisting of iron.
Lighter elements have then to be present in the outer liquid core so that a weak magnetic
field can be generated by a dynamo driven by chemical convection. Current models on
Mercury’s interior have the outer core’s sulfur content as crucial parameter for starting a
dynamo (Harder and Schubert 2001). Several scientific groups explain the existence of
the magnetic field by the presence of a dynamo generating the magnetic field in the outer
core of the planet. Breuer et al. (2007) and Wicht et al. (2007) give comprehensive reviews
of the current dynamo models that explain the observed strength of the dipolar magnetic
field of Mercury. Spohn et al. (2001) summarize how Mercury is differentiated and what
can be retrieved by the BepiColombo mission (sec. 2.2.3). Simulations by Christensen
(2006) demonstrate that the magnetic field can be generated by a deep dynamo. Chris-
tensen and Wicht (2008) show that the magnetic field of Mercury can even be generated
in cores which are partly stable.

The inner core radius can be derived from radio Doppler tracking data. Yoder et al.
(2003) use this approach for determining the core radius of Mars to (1680 ± 160) km.
Hauck et al. (2004) explains the internal and tectonic evolution of Mercury.

2.2 Missions for exploring Mercury

Mercury has yet only been visited by one satellite mission – Mariner 10 in 1974/1975.
MESSENGER is currently on its way to Mercury and will be in orbit around Mercury
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in 2011. It lasted more than 30 years for setting-up missions to Mercury again, as it is
hard to reach Mercury and high technical efforts are needed for observing Mercury from
orbit. BepiColombo will additionally investigate Mercury. Launch is planned for 2014.
In the following all these missions will be described with emphasis on the BepiColombo
mission. A comprehensive overview of all missions is given by Balogh (2007).

2.2.1 Mariner10

Mariner 10 was the first mission to visit Mercury. It also was the first mission to use a
gravitational field of a planet (gravity assist at Venus) to reach a planetary body far from
Earth with limited fuel reserves. In 1970 and 1973 there were optimums conditions for
using a gravity assist to reach Mercury with the least amount of energy. The National
Aeronautics and Space Administration (NASA) designed a mission to Mercury using a
concept for the satellite which was previously used for other missions, Mariner. As it
was the 10th Mariner satellite, the mission was named Mariner 10. Guiseppe Colombo
(fig. 2.4, right panel) pointed out that Mariner 10 can pass by Mercury two or three times
before the fuel runs out. NASA took his remark and launched Mariner 10 within the time
window which allowed to use a gravity assist and to reach Mercury with a cruise time of
less than 1 year.

Figure 2.4: Left panel: Guiseppe Colombo (1920-1984), Italian scientist, who advised
NASA to achieve three flybys of Mercury by Mariner 10. ESA and JAXA’s joint two-
spacecraft mission is named in his memory (Balogh 2007). Right panel: The Mariner 10
spacecraft and its scientific payload (Balogh 2007).

Mariner 10 carried several scientific instruments to observe Venus during the gravity
assist. The payload included seven instruments: television imaging, infrared radiometry,
ultraviolet spectroscopy, magnetic fields, plasma science, charged particles, and radio
science (fig. 2.4, left panel).

During its first flyby, Mariner 10 observed a weak planetary magnetic field. After this
surprise, it was decided to further map Mercury’s surface only during its second flyby,
while the origin of the magnetic field should be investigated in more detail during the
third flyby.
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2.2.2 MESSENGER
NASA also set up the second mission to Mercury. MESSENGER (MErcury Surface,
Space ENvironment, GEochemistry and Ranging) was launched in August 3rd 2004. The
spacecraft will be inserted into orbit around Mercury in 2011. The main goals of MES-
SENGER are the more detailed investigation of the planetary surface and Mercury’s mag-
netic field and its interaction with its exosphere. Domingue and Russell (2008) and Gold
et al. (2001) give an overview of the scientific objectives of the MESSENGER mission.
The instruments adopted to the spacecraft are listed in tab. 2.2. MESSENGER is in a
elliptical orbit with a periapsis altitude of around 60 degrees. The orbit will have an
eccentricity of 0.7396 (Domingue and Russell 2008, Santo et al. 2001, Solomon et al.
2007). The orbit of MESSENGER is shown in fig. 2.5 (right panel) and the spacecraft
and its instrumentation itself in fig. 2.5 (left panel).

Figure 2.5: Left panel: MESSENGER spacecraft showing instrument accomodation
(Gold et al. 2001); right panel: the operational orbit of MESSENGER (Balogh 2007).

The orbit is chosen to be highly elliptical to investigate Mercury’s magnetosphere.
Investigations of a planetary magnetosphere involve the visit of different regions of the
magnetosphere at different distances to the planet in order to understand the full structure
of the magnetic field and plasma flow. First results from the first flyby of MESSENGER
in January 2008 are reported by Zuber et al. (2008). MESSENGER is set-up to map
the Northern hemisphere by imaging and altimetry, as Mariner 10 already mapped the
Southern hemisphere of Mercury. The MESSENGER laser altimeter (MLA) is described
in more detail in sec. 2.3.4. The MLA instrument shall determine the libration amplitude.
Together with the gravity field measurements this will lead to a better understanding of
Mercury’s interior structure. From this knowledge, models of the generation of Mercury’s
magnetic field (Christensen 2006, Christensen and Wicht 2008) can be tested (sec. 2.1.3).

2.2.3 BepiColombo
The European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA)
are also setting-up a mission to Mercury. Erd et al. (2004) describe the whole mission in
detail, while here only the main goals and features of the mission are briefly described.
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Table 2.2: Scientific payload of MESSENGER

Abbreviation Instrument
MDIS Dual imagers, narrow and wide angle FOV
GRNS Gamma-Ray and Neutron Spectrometer
XRS X-ray spectrometer, 1-10 keV
MAG Fluxgate magnetometer +3.6 m boom
MLA Laser altimeter, 1,200 km range
MASCS UV/Visible spectrometer, visible/IR spectrograph
EPPS Energetic particle spectrometer, fast imaging plasma spectrometer
DPU Integrated electronics, power processing for instruments,

MDIS electronics

The mission is named after the famous Italian scientist Bepi Colombo (fig. 2.4, left panel).
It will be launched with an Ariane 5 rocket to take the payload into space in 2014 and will
reach Mercury in 2020 after a six-year cruise. BepiColombo will investigate the following
topics

• Mercury as a planet (form, interior, geology, composition),

• Origin of its magnetic field,

• Exosphere (composition and dynamics),

• Magnetosphere (structure, dynamics, interaction with the planet),

• Relativity and Gravitational physics.

The science topics of the BepiColombo laser altimeter (BELA) are set in Italic style.
Testing Einstein’s theory of General Relativity seems promising as Mercury is close

to the Sun which contains the vast majority of mass of the solar system. One of the
classical tests is the measurement of the perihelion shift of Mercury which is already
proven, but higher accuracy is required to test alternative theories to Einstein’s theory of
General Relativity. In fig. 2.6 the planned cruise for BepiColombo to Mercury is sketched.
Figure fig. 2.7 (left panel)shows the spacecraft of the BepiColombo mission on its cruise
to Mercury how it presumably will look like.

BepiColombo includes two spacecraft, the Mercury Magnetospheric Orbiter (MMO)
set up by JAXA and the Mercury Planetary Orbiter (MPO) set-up by ESA. MMO’s orbit
has peri- and apoherm distances of 400 – 16,000 km, respectively, while these distances
are 400 km and 1,500 km, respectively, for MPO’s orbit. The two spacecraft have a
4 : 1 resonance between their orbits which are sketched in fig. 2.7 (right panel). MMO
will investigate the magnetosphere. In combination with observations of MESSENGER
(sec. 2.2.2) a better understanding of the magnetosphere of Mercury and its interaction
with the solar wind will be achieved.

MPO is described in more detail, as the laser altimeter is adapted to this spacecraft.
The payload of both spacecraft are listed in tab. 2.3. On MMO five instruments will be
installed, while MPO is much larger and includes nine instruments. The radio science
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Figure 2.6: The cruise trajectory of BepiColombo in an elliptic projection, in a coordinate
system with the Sun-Earth line fixed. The gravity-assist flyby encounters with the Earth
(E1), Venus (V1 and V2), and Mercury (M1 and M2) are indicated as is the final arrival to
Mercury (Marr). Solar electric propulsion (SEP) thrust arcs are shown in red and green;
coasting arcs are shown in black (Balogh 2007).

experiment (MORE, Milani et al., 2001), the camera (SIMBIO-SYS, Capaccioni et al,
2005), and the laser altimeter (BELA, Thomas et al., 2007) are of main interest here,
where BELA is described in more detail in sec. 2.3.5.

Table 2.3: Scientific payload of BepiColombo

S/C Abbreviation Instrument
MPO BELA Laser Altimeter

ISA Radio Science: Accelerometer
MERMAG Magnetometer
MERTIS Gamma Ray and Neutron Spectrometer
MGNS X-ray Spectrometer and Solar Monitor
MORE Radio Science: Ka-band Transponder
PHEBUS UV Spectrometer
SERENA Neutral Particle Analyser / Ion Spectrometer
SIMBIO-SYS High Resolution and stereo cameras / Visual and

NIR Spectrometer
MMO MGF Magnetic Field Investigation

MPPE Mercury Plasma Particle Investigation
PWI Plasma Wave Investigation
MSASI Mercury Sodium Atmosphere Spectral Imager
MDM Mercury Dust Monitor

A precise extraction of the static and the time-dependent topography requires knowl-
edge of the spacecraft position from the radio science experiment MORE with a precision
of about 10 cm. This high precision will probably be achieved by the radio science exper-
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iment (MORE) and the Italian spring accelerometer (ISA) onboard the spacecraft (Lucch-
esi and Iafolla 2006, Milani et al. 2001). The radio science experiment (MORE) will use
two different wavelengths for increasing the precision. Joint analyses of SIMBIO-SYS
and BELA data sets will further improve the understanding of Mercury’s topography.
MPO is in a slightly elliptical orbit with an eccentricity of 0.162, and needs approxi-
mately 2.3 hours for completing one orbit. The orbit is a nominally polar one. Due to the
non-spherical gravity field of Mercury the orbital parameters will slightly vary. An orbit
with 89.9 degrees inclination is assumed.

Figure 2.7: Left panel: BepiColombo spacecraft (credits to ESA); right panel: the opera-
tional orbits of the Mercury Planetary and Magnetospheric Orbiter (Balogh 2007).

Mercury’s rotational period and the chosen MPO orbit define the separation between
the satellite ground tracks. This limits the precision of the extraction of the topography,
especially in the equatorial region. For the nominal mission duration of 1 Earth year
(approximately 4 Mercury years) and approximately 910 MPO orbits within 1 Mercury
year gives a separation of the tracks of approximately 2 km in the equatorial region. This
limits the resolution of the surface map as discussed in ch. 5. The surface will always be
mapped with high accuracy along the laser tracks in latitudinal direction. The spacing of
laser shots is of order 0.3 km for a repetition frequency of 5 Hz of the laser.

2.3 Laser altimetry
Laser altimetry is a specific observation technique for point measurements of the topog-
raphy of a surface. It is a well known tool for mapping the global topography of a planet,
and already had large impact on planetary science.

2.3.1 Introduction to laser altimetry
Laser altimetry uses visible light or near-infrared radiation, and is based on a time mea-
surement. A laser pulse is transmitted from the spacecraft to the planetary surface. A
small fraction of the laser light scattered by the planetary surface is transmitted back to a
detector on board the spacecraft. The time difference between transmission of the laser
pulse and detection of the returned fraction of light, ∆t, is measured. The topographic
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height T at the laser shot can then be determined to

T = RS C − r − c
∆t
2
, (2.1)

where c is the speed of light, and RS C the radial distance of the spacecraft from the center
of mass of the planet. The radius r is the radius of a reference body for the planet, which is
here chosen as a sphere. Equation (2.1) assumes that the instrument points nadir. This is
the simplest case for the determination of topographic height. The observation principle
is schematically shown in fig. 2.8. Gardner (1982, 1992) analyses in detail the effect of
specific instrumental uncertainties, e.g. beam divergence of the laser, off-nadir angle of
the instrument, or the surface slope within the laser foot print of which the size mainly
depends on the beam divergence and the spacecraft altitude. He summarizes the effect
for each of the limiting parameters on the laser pulse propagation time and on the width
of the returned pulse. Furthermore, he gives simplifications for the equations from which
the propagation time and its uncertainty are calculated. It turns out that the surface slope
and the beam divergence usually have the largest effect on the uncertainty distribution.
Another important limitation is usually also given by the timing resolution of the receiver
or by the initial pulse length of the laser shot. An uncertainty in the receiver timing of in
the centroid of the initial laser pulse of 1 ns corresponds to an uncertainty of 30 cm in the
altitude measurement.

The analysis of the measurements needs the accurate knowledge of the spacecraft
position. The position of the spacecraft is determined by radio tracking experiments,
while stellar cameras are used for the exact orientation within the celestial reference frame
and for the pointing adjustment of the instruments. Montenbruck and Gill (2005) give an
overview on this topic. The orbit and pointing of the spacecraft are affected by the gravity
field of the central planetary body and by the solar gravity field. Additionally, the solar
radiation pressure can be important, as well as the atmospheric drag, although not in the
case of an orbit around Mercury.

Most laser altimeters (LA) operate either at a wavelength of 532 nm, of 1064 nm or
of 1500 nm. This specific wavelength is given by the most commonly used laser-active
crystal, the Nd:YAG crystal. The wavelength of 1064 nm is well applicable because there
are no prominent absorption features in this wavelength. In particular, it works in the
Earth’s atmosphere and allows mapping of the surface depending on the amount of water
in the atmosphere. Observations can in principle be made in all wavelengths. Radar is
often used for Earth observations due to the Earth’s atmosphere absorption window in the
near-infrared.

Laser altimeter data significantly depend on the slope and roughness of the analyzed
terrain. The shape of the returned optical pulse varies due to the different topographic
features and is additionally a function of the used wavelength. The returned signal is large
in the case of observing water or an ice sheet, for which the specular surface reflectivity
is largest. Generally, some fraction of laser light is absorbed, some fraction is reflected
specularly, and some fraction is reflected diffusively.

In general, the best orbit to be chosen for a laser altimeter experiment is a circular
one. Then, the quality of the returned signal does not vary much for different measure-
ment locations. MESSENGER (sec. 2.2.2) and BepiColombo (sec. 2.2.3), however, are in
elliptical orbits around Mercury. This directly results in a measurement uncertainty that
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Figure 2.8: Scheme of laser altimeter measurements. The mean planetary radius and the
reference sphere are shown in orange, the orbit of the spacecraft in blue, the spacecraft al-
titude above the center of mass in black, the surface topography in brown, the observation
or range in green, and the unknown topographic altitude above the mean planetary radius
in red.

is unevenly distributed over the planetary surface. Parts of the surface are more densely
covered with measurements, but these measurements have larger uncertainty because the
spacecraft is at higher altitude, while some parts are less densely covered with laser shots,
but these measurements have higher precision. The analysis of the data sets which are
generated in the course of a mission and the results being retrieved from them very much
depend on the chosen orbit.

Laser altimetry has already been used quite often in Earth observation, while it is a
rather new technique in planetary science. In the following two laser altimeters will be
briefly described, where one mapped the Earth and one Mars. The MOLA laser altimeter
has already returned results with very high quality from Mars. Figure 2.9 shows the global
topography of Mars as accurately mapped by MOLA. Together with the Geoscience Laser
Altimeter System GLAS, MOLA provides the basis for the laser altimeters which are
either sent or planned to be sent to Mercury. These laser altimeters are described below,
where the BepiColombo laser altimeter is described in more detail.

2.3.2 Geoscience Laser Altimeter System (GLAS)

The Geoscience Laser Altimeter System (GLAS) is one of the instruments of the ICESat
mission to investigate ice elevation changes which indicate variations of the ice volume
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(mass volume). ICESat was launched in January 2003 and is in a circular orbit 600 km
above Earth’s surface. Abshire et al. (1998) give a general overview about GLAS, while
the data analysis procedure for the derivation of a topographic measurement from a single
laser shot is described by Brenner et al. (2003). This analysis mainly concentrates on the
derivation of the elevation and the slope of the surface. Phillips et al. (1999) made first
investigations for correcting the laser altimeter record for tidal variations of the ocean. The
laser altimeter data record of GLAS has additionally to be corrected for the atmospheric
delay, which has been investigated in more detail by Herring and Quinn (1999).

Table 2.4: Laser altimeter instrument parameters

Parameter GLAS MOLA MLA BELA
S/C

Destination Earth Mars Mercury
Altitude [km] 600 400 200–15,000 400–1500
Pointing uncertainty [µrad] 6 15 25

Laser transmitter
Pulse energy [mJ] 70-80 42 20 50
Pulse width [ns] 2.5 3.4 2.5 3.4
Wavelength [nm] 1064
1/e2 beam divergence [µrad] 54 185 40 25
Repetition rate [Hz] 40 10 8 10

Receiver optics
Aperture radius [mm] 500 250 53×4 125
Focal length [mm] 740 1750 1250
Field of view [µrad] 425 200 200

GLAS operates in the 1064 nm wavelength, but it has the possibility to also measure
at a wavelength of 532 nm. Until March 2009, GLAS made more than 1,000,000,000
observations. The main instrumental parameters are listed in tab. 2.4. The accuracy of
each laser shot is less than 15 cm. GLAS was important for the setting-up of the laser
altimeters described below. The main scientific objective of GLAS is the exploration
of the cyrosphere: a) the determination of the mass balance of the polar ice sheets and
their contribution to the global sea level changes, and b) to obtain a data set for further
predictions of the sea level changes. Furthermore, GLAS investigates the atmosphere and
the land areas. In this respect, the scientific objectives are: a) to measure cloud heights
and to extract vertical profiles of the clouds, b) to map the solid surface topography, and
c) to obtain data of the surface roughness, vegetation heights, snow-cover, and sea-ice
surface characteristics. Brenner et al. (2003) give a more detailed overview. GLAS was
a very important precursor project where most of the analysis techniques were developed
in detail. These techniques can be applied to altimetry in space.
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2.3.3 Mars Orbiter Laser Altimeter (MOLA)

The Mars Orbiter Laser Altimeter (MOLA) was included to the scientific payload of the
spacecraft of the Mars Global Surveyor (MGS) mission which was launched November
7th 1996, and observed Mars from September 1998 to November 2006, when the commu-
nication with the satellite broke down. The design of the laser altimeter is described in
detail by Afzal (1994). The instrument transmits laser pulses with 1064 nm wavelength.
A more detailed summary of the instrumental parameters in comparison with the other
presented laser altimeters is given in tab. 2.4.

The main goal of MOLA is to map the surface of Mars for a better understanding of
its geology, geophysics, and atmospheric circulations. The laser altimeter has a relative
uncertainty of approximately 30 cm for a single laser shot. Figure 2.9 shows a global
map of Mars retrieved after analyzing the laser altimeter data set. The observation of the
reflection within the Martian atmosphere was a secondary goal of the mission and the
instrument.

Figure 2.9: Maps of Mars’ global topography. The projections are Mercator to 70 de-
grees latitude and stereographic at the poles with the South pole at left and North pole
at right. Note the elevation difference between the Northern and Southern hemispheres.
The Tharsis volcano-tectonic province is centered near the equator in the longitude range
220 degrees E to 300 degrees E and contains the vast east-west trending Valles Marineris
canyon system and several major volcanic shields including Olympus Mons (18 degrees
N, 225 degrees E), Alba Patera (42 degrees N, 252 degrees E), Ascraeus Mons (12 degrees
N, 248 degrees E), Pavonis Mons (0 degree, 247 degrees E), and Arsia Mons (9 degrees
S, 239 degrees E). Here an areocentric coordinate convention with east longitude positive
is used (taken from www.wikipedia.de).
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The analysis of the MOLA data was mainly carried out by using interpolation tech-
niques described by Abramov and McEwen (2004) and Neumann (2001). The character-
istics of the Martian topography are not evenly distributed over the surface. The Northern
hemisphere is geologically young compared to the Southern hemisphere. Aharonson et
al. (2001, 1998), Kreslavsky and Head (1999, 2003) and Smith et al. (1998) investigated
the surface slope and elevation distribution of the Martian topography in detail. They
found that the power spectral density of the topography follows a power law where the
Northern and Southern hemisphere have to be described by different laws (Aharonson
et al. (2001) and fig. 2.3). Smith et al. (1999, 2001b) presented the results which were
retrieved by analyzing the MOLA data. Neumann et al. (2004) additionally investigated
the crustal structure of Mars by using the laser altimeter observations and gravity data of
Mars. MOLA was adopted for the environment of Mercury and then launched as MLA
for investigating Mercury.

2.3.4 Mercury Laser Altimeter (MLA)

The Mercury Laser Altimeter (MLA) is included in the scientific payload of the MES-
SENGER mission (sec. 2.2.2) for exploring Mercury. MLA operates at 1064 nm wave-
length. The first flyby in January 2008 gave first results which were published by Solomon
et al. (2008) and Zuber et al. (2008). Cavanaugh et al. (2007) and Krebs et al. (2005) de-
scribe the instrumental properties in more detail. The most important properties related
to the transmitter and receiver and the spacecraft itself are listed in tab. 2.4.

MLA is designed to map the topography up to spacecraft altitudes of 1000 km above
the mean surface. The MESSENGER spacecraft is in a highly elliptical orbit around
Mercury. With the chosen orbit which has an argument of periapsis which is close to the
North pole, MLA will only map the Northern hemisphere. However, in combination with
the data of the camera of the spacecraft and the picture data of the Mariner 10 mission
(sec. 2.2.1) a global topographic map of Mercury wil be retrieved. Due to the high density
of laser data records along the orbit tracks of MESSENGER, craters can be analyzed in
more detail. Furthermore, the altimeter shall investigate the time-dependent variations,
described as forced libration amplitude (sec. 2.4.2). The combination with the data of the
magnetometer shall provide an explanation for the magnetic field generation on Mercury.

MLA shall also support a more precise extraction of the topographic features. In
combination with stereo imaging and radio occultation, their shape shall be retrieved.
Analyzing the whole data set shall also give an answer to the question whether the com-
plete surface of Mercury is heavily cratered as observed by Mariner 10, and whether the
"scarps" are a local or global feature on Mercury.

2.3.5 BepiColombo Laser Altimeter (BELA)

The BepiColombo Laser Altimeter (BELA) is one of the main instruments of the Mercury
Planetary Orbiter (MPO) in the frame of the BepiColombo mission (sec. 2.2.3) exploring
Mercury. BELA is built by a cooperation project of the German Space Agency (DLR),
the University of Bern (UBE), the Instituto de Astrofisica di Andalucia (IAA), industrial
partners, and the Max-Planck-Institut für Sonnensystemforschung (MPS).
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The main scientific objectives of BELA are the extraction of the long-wavelength to-
pography, the generation of Digital Terrain Models (DTM) for special regions, deriving
the shape of Mercury expressed as an ellipsoid, the extraction of the time-dependent varia-
tions of the topography expressed as tidal Love number h2 (sec. 2.4.1) and forced libration
amplitude Φlib (sec. 2.4.2). Oberst (2007) summarizes all scientific goals. Only the pri-
mary goals of the mission are listed here. The BELA data can be analyzed together with
observations of the radio science experiment (MORE, Milani et al., 2001) to correlate the
long-wavelength topography and gravity field.

Figure 2.10: Scheme of BELA containing labels of the different units of the instrument:
RBU (Receiver Baffle Unit), TBU (Transmitter Baffle Unit), LHB (Laser Head Box),
LEU (Laser Electronics Unit), BPU (Base Plate Unit), and ELU (ELectronics Unit).

BELA is designed to have a relative range uncertainty of 1 m (e.g. Gunderson et al.
2006). Gunderson et al. (2006) have modeled the link budget of BELA and have found
that the receiver will be sufficiently sensitive to detect enough return photons up to a
spacecraft altitude of up to 1000 km. If the argument of periapsis is at the equator, this
will result in a double coverage of the Polar Regions. First investigations showed that the
argument of periapsis will change. The amount depends on the gravity field coefficient
C22. The argument of periapsis will probably change up to 30 degrees. Then the South
Polar Region is only observed within the first Mercury years. This will to some extent
limit the precision of the analysis of the global topography.

Thomas et al. (2007) summarize the instrument properties in more detail. Figure 2.10
shows the complete BELA instrument, the way how it will presumably look like. The
instrument is designed to map the surface of Mercury with at most 10 Hz repetition rate
and a range uncertainty of 1–2 m.

Furthermore, simulations are performed for the case that it shall be possible to take
measurements at all spacecraft altitudes as well as for the more realistic case of restricting
the altitude for observations. It may turn out that the final BELA flight instrument can take
data at spacecraft altitudes much higher than 1000 km.
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2.4 Time-dependent variations of the topography

Time-dependent variations of the topography can be divided into radial (vertical) and hor-
izontal components, where the latter can be decomposed into longitudinal and latitudinal
variations. Variations in latitude direction will not be discussed in the context of Mer-
cury because they can only occur for planets of which the rotational axis is inclined with
respect to the normal of their orbital plane. Mercury’s rotation axis, however, is nearly
perpendicular to its orbital plane. The radial elevation changes due to solar gravitation are
called tidal elevations. Longitudinal variations of the topography due to solar torques on
the non-spherical mass distribution of Mercury are called librations. Both the radial tidal
elevation and the libration caused by solar gravitation depend on the interior structure of
the planet, i.e. on density models, elastic properties and equation of state of the planet.
The interior structure of planets has been described in more detail by Hofmann-Wellenhof
and Moritz (2005), Murray and Dermott (1999), Torge (2003) and in sec. 2.1.2.

Both parameters of interest of this study, the tidal Love number h2 and the forced
libration amplitude Φlib, depend on the elasticity of a body. Elasticity depends on the in-
terior structure. Planets can be differentiated into a mantle which mainly consists of rocks,
and a core which mainly contains iron. Core and mantle are separated by a boundary. If
the inner core were completely solid or frozen out, the planetary body would marginally
react on solar forces. The mantle could only marginally slip with respect to the core;
the libration amplitude would then hardly be detected by laser altimetry. In the case of a
frozen core, the tidal amplitude would significantly decrease. A completely liquid Mer-
cury would have a large tidal amplitude. Mercury, however, is certainly not completely
liquid; it has a solid mantle and presumably a differentiated core. A differentiation of the
core into an inner solid and an outer liquid core gives libration amplitudes as observed
by Margot et al. (2007), and a tidal amplitude as theoretically derived by Van Hoolst and
Jacobs (2003). The exact quantities of the tidal amplitude and the libration amplitude
depend on the size of the inner and outer core.

Mercury is probably differentiated into an inner (solid) and an outer (liquid) core.
Recent models on Mercury’s interior can be found in Bois and Rambaux (2007), Rambaux
et al. (2007) and Van Hoolst and Jacobs (2003). Due to its larger inner core and its thin
outer liquid core, the tidal Love number h2 can be estimated to be approximately 0.7 (Van
Hoolst and Jacobs 2003). Zuber et al. (2007) discuss what can possibly be derived from
MESSENGER (sec. 2.2.2) observations for the internal structure of Mercury. Margot et
al. (2007) have already accurately measured the forced libration amplitude with ground-
based radar interferometry to (35.8 ± 2.0) arcsec. From that it can be concluded that
Mercury is very likely to have a liquid outer core.

2.4.1 Tidal elevation

Forces on a planet can be described by Newton’s Gravitation law. In the center frame of
Mercury the force F1� between the Sun (�) and a mass element m1 on Mercury’s surface

F1� = −Gm1MSun

r2
1�

r1�
r1�

, (2.2)
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where G is the gravitational constant, MSun the solar mass, and r1� = R − r1 the vector
from surface point 1 to the distant Sun with r1 the position of surface point 1 in Mercury’s
center frame. If Ψ is the angle between the general position vector r and R the vector
pointing from Mercury’s center to the Sun, the gravitational potential at a point P on
Mercury’s surface can be written as

V (r) = − GMSun

|R − r| = − GMSun√
R2 + r2 − 2 r R cos Ψ

. (2.3)

Ψ depends on the co-latitude θ, the longitude λ and the time t. This potential can be ex-
panded. Besides the mean gravitational potential in which Mercury moves on a Keplerian
orbit, one obtains the tidal potential

Vtide (r) = −GMSun

R

∞∑
n=2

( r
R

)n
Pn (cos Ψ) , (2.4)

where Pn are the Legendre polynomials of degree n. As the ratio between r and R is only
of order 4 × 10−5, usually only degrees n = 2 and n = 3 are used (Van Hoolst and Jacobs
2003):

Vtide (r) = −GMSun

2
r2

R3

[
3 cos2 Ψ − 1 +

r
R

(
5 cos3 Ψ − 3 cos Ψ

)]
. (2.5)

This tidal potential leads to a deformation of Mercury’s geoid. The Love number h is
a dimensionless number which gives the ratio between the actual tidal elevation of the
planetary surface with respect to the tidal elevation of the geoid. The unperturbed geoid
of Mercury is assumed to be a sphere. Mercury is slowly rotating which causes a small
flattening

f =
requatorial − rpole

requatorial
, (2.6)

where requatorial is the mean equatorial radius from center of mass, and rpole the mean polar
radius. At present, only an upper limit of f < 10−6 can be given, because until now the
equatorial and polar radiuses are known with the same value.

In general, there are different kinds of Love numbers which have to be distinguished
from each other. The Love numbers h and l describe respectively radial and horizontal
variations of the topography, while k describes changes of Mercury’s gravitational poten-
tial due to mass displaced by tidal interaction. Extracting k is one of the primary goals of
the radio science experiment MORE on board BepiColombo which will additionally pro-
vide the spacecraft position with less than 1 m after post-processing (Milani et al. 2001).
The gravitational Love number is not directly seen by laser altimeter records. A sugges-
tion how to extract the tidal Love number k2 from laser altimeter records will be provided
in ch. 8.

In the following the general equations will be developed and analyzed before going
into detail for the tidal Love number h2 which is of main interest here. The potential
for the second and third power which generate tides can be described as Van Hoolst and
Jacobs (2003):

V (r) = −
3∑

n=2

( r
ā

)2 n∑
m=0

Gm
n (cos θ)Rn,m (X,Y,Z, χ) , (2.7)
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where ā is the mean equatorial radius of Mercury with 2440 km, Gm
n depends on the

latitude of surface point P, χ is the mean Mercurian sidereal time, which can be expressed
as χ = H − α − 180◦. H is the local hour angle of the Sun and α the right ascension.
Therefore χ is time-dependent. Rn,m contains the complete potential

Rn,m =
3
4

GM
an

Rn+1 Hn,m , (2.8)

with

H2,0 =
1
3
− Z2

R2 , (2.9)

H2,1 = −2
XZ
R2 cos χ − 2

YZ
R2 sin χ , (2.10)

H2,2 =
X2 − Y2

R2 cos 2χ + 2
XY
R2 sin 2χ , (2.11)

H3,0 =
1
3

Z
R

(
3 − 5

Z2

R2

)
, (2.12)

H3,1 =
1
2

[
X
R

(
5

Z2

R2 − 1
)

cos χ +
Y
R

(
5

Z2

R2 − 1
)

sin χ
]
, (2.13)

H3,2 = 5


(
X2 − Y2

)
Z

R3 cos 2χ + 2
XYZ
R3 sin 2χ

 , (2.14)
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Y
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)
sin 3χ
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where X, Y , and Z are rectangular coordinates with the origin in the center of mass of
Mercury, and the equatorial plane is the (X, Y)-plane. These coordinates are given by

X = R cos δ cosα , Y = R cos δ sinα , Z = R sin δ , (2.16)

where δ is the declination of the Sun. The surface displacement ∆x can then be written as

∆xr = −1
g

(h2V2 + h3V3) , (2.17)

∆xθ = −1
g

(
l2
∂V2

∂θ
+ l3

∂V3

∂θ

)
, (2.18)

∆xλ = −1
g

(
l2

∂V2

sin θ∂θ
+ l3

∂V3

sin θ∂λ

)
, (2.19)

where Vn is the potential which generates the tides up to degree n and can be derived
with eq. (2.7) (Van Hoolst and Jacobs 2003). h3 is almost two times smaller than h2.
The horizontal Love numbers l2 and l3 are 5 and 50 times smaller. The horizontal Love
numbers can be neglected, as their size is significantly smaller than the laser footprint size.
The uncertainty of a laser shot is approximately 1 m which is the size of h2. Retrieving h3

will not be possible with BELA, as the tidal potential at h = 3 is much smaller than the
relative uncertainty of BELA, too.
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2 Introduction

The radial tidal displacement of Mercury’s surface described with the tidal Love num-
ber h2 is approximately given by

δr = h2Ftide (Ψ,R) = h2
MSun

MMerc

a4

R3

[
3
2

cos2 (Ψ − δtide) − 1
2

]
, (2.20)

where δtide is the tidal phase lag (e.g. Van Hoolst and Jacobs 2003). The tidal phase lag is
supposedly small and is set to zero here. For a given solar hour angle Λ at zero longitude
in Mercury’s rest frame, one has

cos Ψ = sin θ cos δ cos(Λ + λ) + cos θ sin δ . (2.21)

The declination never exceeds the obliquity δobl ≈ (2.11 ± 0.1) arcmin (Margot et al.
2007), which is so small that δobl is set to zero. The angular dependence of the tidal
potential can then be written

3
2

cos2 Ψ − 1
2
≈ −1

4

(
3 cos2 θ − 1

)
+

3
4

sin2 θ cos 2 (Λ + λ) . (2.22)

The first term on the right side is the long-period (zonal) tide and the second term repre-
sents the semi-diurnal (sectorial) tide. The terminology is not fully appropriate, because
of Mercury’s long sidereal rotation period of 58.65 days and the 3 : 2 spin-orbit reso-
nance, both tides have a fundamental period of one Mercury year (88 days), which equals
half a solar day on Mercury. For a Love number h2 = 0.74, the zonal tides have a peak-
to-peak amplitude of 60 cm at the poles (Van Hoolst and Jacobs 2003) due to the distance
variations to the sun in Mercury’s eccentric orbit. The sectorial tides have a peak-to-peak
amplitude of up to 180 cm on Mercury’s equator at zero longitude.

2.4.2 Libration amplitudes
Mercury is slightly elongated in the equatorial plane with the major axis at longitudes
λ = 0, λ = π pointing towards the Sun at perihelion. The solar torque acting on this
permanent bulge causes the forced libration. The torque is proportional to (B − A) sin 2Λ

(Murray and Dermott 1999), where A and B are the two equatorial components of the
moment-of-inertia tensor. The libration angle δlib is defined as the difference between
Mercury’s sidereal rotation angle and the angle 3M/2 obtained for uniform rotation,
where M is the mean anomaly. The libration angle δlib can be written as a series of
sine terms in M

δlib = Φlib flib(M) = Φlib

sin M +

∞∑
n=2

an sin(nM)

 , (2.23)

where Φlib is called the libration amplitude. The coefficients an decrease rapidly with n,
a2 being -0.105 (Jehn et al. 2004). Φlib is proportional to (B − A)/Cm, where Cm is the
moment of inertia of that part of the planet that contributes to the librational motion. If
the solid mantle can slip at the core mantle boundary, Cm is the moment of inertia of the
mantle plus crust, otherwise Cm is equal to the moment of inertia C of the entire planet
(Peale 1976a)

Cm

C
=

Cm

B − A
× B − A

Ma2 ×
Ma2

C
. (2.24)
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2.4 Time-dependent variations of the topography

The first term on the right side is obtained from the libration amplitude, the second equals
four times the quadrupole gravity coefficient C22, and the third term is related to the grav-
ity coefficients C20, C22 and to δobl, if Mercury is in Cassini state. A planet is in Cassini
state, when the planet has an evolved rotational state where the spin axis, orbit normal,
and normal to the Laplace plane are coplanar while the obliquity remains constant, and a
Laplace plane is defined as the plane about which a planet’s orbit precesses with constant
inclination to the equatorial and ecliptic planes (Yseboodt and Margot 2006). Margot et al.
(2007) have determined the value of (B− A)/Cm from ground-based measurements of the
libration amplitude to (2.03 ± 0.04) × 10−4. Using the value C22 = (1.0 ± 0.5) × 10−5

from Mariner 10 observations (Anderson et al. 1987), they have determined the ratio
Cm/C to be approximately 0.5 with a large uncertainty of ≈ 0.3 primarily due to the large
uncertainty of C22. For a typical structural model of Mercury, Cmantle/C ≈ 0.5. Therefore,
Margot et al. (2007) conclude from their results that Mercury’s solid mantle slips at the
core-mantle boundary, which suggests that Mercury has a liquid outer core.

In general, the Sun causes a torque T on Mercury’s spin axis

T = −3 GMSun

2 r3
(B − A) sin 2Ψ . (2.25)

Figure 2.11 shows this relation, it is taken from Balogh et al. (2002). Additionally θ and
f are introduced, where θ is the rotation angle in inertial space, and f the true anomaly of
the planet around the Sun. A general introduction is given, e.g., in Balogh et al. (2002)
and Jehn et al. (2004). The order of the different libration amplitudes are even much
smaller than the 88 day libration amplitude which is based on Mercury’s 3 : 2 resonance.
The tidal reaction of the planet has additionally to be taken into account for retrieving the
forced libration amplitude. As the libration amplitude is, furthermore, related to the tidal
Love number h2, h2 has to be included in the analysis and determined in a first step.

Figure 2.11: Geometry of the torque for Mercury’s spin axis. θ is the angle of Mercury’s
long axis with the inertial reference axis, and Ψ the angle in the direction to the Sun. The
true anomaly of Mercury can then be described as f = θ − Ψ (Balogh et al. 2002).

Balogh et al. (2002) describe the libration amplitude as a series of sine-terms which
depend on the eccentricity of the planet. The linearization of the series leads to an ap-
proximation which is based on the zonal coefficients of a spherical harmonic expansion.
Extracting the 88 day libration amplitude is one of the scientific goals of the BepiColombo
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2 Introduction

mission. It is possible with the camera (Capaccioni et al 2005) and the BepiColombo laser
altimeter BELA (Oberst 2007). Margot et al. (2007) use ground-based observations of the
libration amplitudes, and achieve results with an uncertainty of (35.8 ± 2.0) arcsec.

In this study the error budget for the libration amplitude is overwhelmingly dominated
by the uncertainty in C22 at the present stage. The upcoming space missions with orbiting
spacecraft will determine the gravity coefficients and the obliquity with high precision.
The uncertainty in the libration amplitude may then be dominant and it is worthwhile to
study how well it can be constrained by laser altimeter data.
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3 Forward modelling of synthetic laser
altimeter data

A synthetic topography model and a set of laser shots for the nominal orbit of MPO are
synthetically generated for investigating whether the tidal Love number, libration ampli-
tude, and global topography can precisely be extracted. A synthetic topography model
has the main advantage that the topography which shall be extracted is accurately known.
The generated topography is expressed as a spherical harmonic expansion where the total
power of the coefficients for a certain harmonic degree l can be expressed by a power law
of the form

Vl =
∑

m

(
C2

lm + S 2
lm

)
=

A2

lk . (3.1)

The coefficients of the topography are randomly synthesized up to a maximum degree lmax.
Integrating the power of the small-scale topography which is not modeled up to infinity
results in an error of 62.5 m. As this uncertainty is assumed to have a normal distribution,
the measurement uncertainty of one laser shot is modeled by a random number with a
normal distribution of zero mean and a standard deviation of 62.5 m. The chosen power
law is described in more detail in sec. 2.1.2 and shown in fig. 2.3.

A laser shot has several uncertainties, where the main components are the spacecraft
positioning uncertainty, instrumental uncertainties, surface properties, and systematic un-
certainties. The spacecraft position is provided by the MORE experiment on board the
Mercury Planetary Orbiter (MPO) of the BepiColombo mission (Milani et al. 2001). The
position will be provided with a precision of about 0.1 m (personal communication with
Milani, 2006). Instrumental uncertainties of the laser altimeter are, e.g., pointing uncer-
tainties, beam divergence, range uncertainty, and surface slope within the laser footprint.
Gardner (1982, 1992) carried out analyses of the importance of the specific uncertainties
of laser altimeter records.

The spacecraft altitude is known with 1 m uncertainty, and the footprint sizes which
depend on the beam divergence are marginally small in comparison to the longitudinal
surface coverage of the laser altimeter which depends on the chosen orbit. The orbit
restricts the extraction of global topographic features, as the longitudinal coverage is lim-
ited. Systematic errors are assumed to be marginally small so that they can be neglected.
They have to be analyzed, but this is beyond the scope of this work. Chapter 8 will analyze
this in more detail. To simplify the analyses, a general value of 5 m for positioning and
instrumental uncertainties is assumed. The largest uncertainty is based on the topography
that is not modeled.

This approach for generating the synthetic topography model and synthetic laser al-
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3 Forward modelling of synthetic laser altimeter data

timeter measurements is used for both analysis methods a) using global basis functions
i.e. a spherical harmonic expansion and b) using local basis functions i.e. different trial
functions for the data points within a rectangular grid. The results for the method with
the global basis functions are presented in ch. 4, and the results for the method with local
basis functions are summarized in ch. 5.

3.1 Deterministic topography model of Mercury
The deterministic time-invariant part of the input topography model is given by

T (θ, λ) =

lmax∑
l=0

l∑
m=0

Pm
l (cos θ) {Clm cos (mλ) + S lm sin (mλ)} , (3.2)

where the Pm
l (m ≤ l) are normalized associated Legendre functions of degree l and or-

der m. To synthesize Mercury’s topography, the input values for the spherical harmonic
coefficients Clm and S lm need to be determined first. For the method using global basis
functions, the coefficients up to degree l = 16 have been taken from the lunar topography
model. This gives the model some resemblance of a real planet, although Mercury cer-
tainly looks different. Random values are assigned to the coefficients from l = 17 to 1024,
assuming a Gaussian distribution around a zero mean. For the method using local basis
functions, all input coefficients from l = 1 to lmax + 1 are generated by a random number
generator. The standard variation of the input coefficients is such that the degree power Vl

varies with l as

Vl =
∑

m

(
C2

lm + S 2
lm

)
=

A2

lk . (3.3)

A slope of k = 2.0 is appropriate for terrestrial planets (Vening Meinesz 1950, Neumann
et al. 2004), and A is set to 2000 m, which gives a smooth match with the lunar topogra-
phy for the long-wavelength part of the model. Aharonson et al. (2001) determined the
power spectral density for the Mars southern hemisphere which is in fairly good agree-
ment with the chosen model, although this power spectral density has a lower level by
about factor 2 fig. 2.3). Mercury can be assumed to be more subdued than the Moon for
the larger wavelengths. Therefore, the assumptions for the analysis are conservative. A
more damped topography would lead to a better determination of the tidal Love number
and the topography.

Using a single topography model in the inversion may result in a fortuitously high
level of accuracy for the recovery of the Love number. Therefore the inversion was done
for 20 topography models that differed in their coefficients for l > 16 for the global
basis functions (ch. 4). For the case when local basis functions (ch. 5) are used, the
accuracy for extracting the tidal Love number depends on the chosen, synthetic input
topography. Therefore, 22 different topography models are analyzed with 20 different
noise realizations. The mean accuracy of the topography for the whole surface does not
depend on the input topography. More important is the chosen topography grid which is
used for the analysis.

Evaluating the spherical harmonic expansion (eq. 3.2) for each of the simulated shot
points would be far too time-consuming, because the number of shot points is of the
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3.2 Distribution of laser shot points

Figure 3.1: Simulated input topography for one specific random number where the coef-
ficients of the spherical harmonic expansion from l = 1 to lmax are generated by a random
number generator.

order 108 and they are not regularly distributed in (θ, λ). Therefore, the topography is
first calculated for a regular 3072 × 1536 longitude-latitude grid on Mercury’s surface.
Figure 3.1 shows one example of a transformed input topography for one random number
for initializing the random number generator and where the coefficients of the spherical
harmonic expansion are randomly computed except the coefficient C00. The topography
at the actual position of the laser foot points is determined by a third-order Lagrangian
interpolation using the 16 surrounding grid points.

For each shot point the position of the MPO relative to Mercury’s centre of mass is first
determined in an inertial reference frame (sec. 3.2). Longitude and latitude of the laser
footprint on the rotating planet are then calculated by taking into account the libration
according to eq. (2.23). A libration amplitude of Φlib = 40 arsec is assumed.

Furthermore tidal elevation is added to the static height at each shot point, which
depends on R, Λ, λ, θ and h2 according to eqs. (2.20) and (2.22). An input value of
h2 = 0.7000 and values listed in tab. 2.1 for the orbital and other relevant parameters of
Mercury are assumed.

3.2 Distribution of laser shot points
For simplicity a strictly Keplerian orbit of the MPO around Mercury’s center of mass is
assumed. Such an assumption does not limit the feasibility study, given that the spacecraft
position will be properly tracked by the Radio Science Experiment MORE onboard MPO
(Milani et al. 2001). The Keplerian elements are listed in tab. 3.1 in accordance with the
nominal orbit of the MPO. Two slightly different orbits are used for the analysis. The
first is a resonant orbit, meaning that Mercury’s rotation period is an integer multiple
of the spacecraft orbital period TMPO. After two Mercury years the ground track will
repeat exactly as before. The second orbit does not include any resonance. The orbital
parameters of MPO which are used for the simulations are listed in tab. 3.1. As a first
approach in the simulations of BELA data, the argument of periapsis of MPO has been
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3 Forward modelling of synthetic laser altimeter data

Table 3.1: MPO parameters

Parameter Symbol Value
Resonance No Resonance

Number of MPO cycles 910.000 909.750 909.234
Semi-major axis RMerc [km] 3389.218 3389.839 3391.121
Eccentricity e 0.162
Inclination i [degree] 89.9
Period TMPO [hr] 2.320 2.321 2.322
Min./max. altitude [km] 400/1500
Longitude of node Ω [degree] 0.0
Argument of periherm ω [degree] 0.0

chosen to be constant at zero latitude. MPO’s orbit is mainly chosen to be elliptical for
minimizing the time which MPO is directly illuminated by the Sun. Then the temperature
variation can not reach high values and the mission has a longer life time. The orbit is
almost polar, the orbital plane aligns with the apsides of Mercury’s orbit and the periherm
lies on the equator. The periherm will actually move to higher latitude during the mission,
which is ignored here. For this study, the position of the spacecraft, in particular its
distance from Mercury’s center of mass is assumed to be precisely known.

A shot frequency of 5 Hz is taken for the laser altimeter, although a higher frequency
will be possible. This means that shot points along the ground track are 300 m apart
at periherm and more closely spaced in other parts of the orbit. Because of Mercury’s
slow rotation, consecutive ground tracks will be separated by approximately 26 km at
the equator. Observations are chosen to be available for at least four Mercury years or six
sidereal days, after which the average longitudinal spacing of ground tracks is 2 km at low
latitudes, provided that measurements can be performed over the entire orbit including at
apoherm. All longitudes on the planet will then have been visited six times, at different
stages of the tidal cycle, which is a condition for detecting the signal of the sectorial tide
in the altimeter measurements. The laser is assumed to be exactly nadir-pointing. The
pointing uncertainty of 5 arcsec does not affect the distance measurement by more than
1 cm. The horizontal displacement can reach approximately 25 m which is smaller than
the footprint size. Resolving the surface roughness within the laser footprint is a difficult
task which can hardly be solved.

A basic requirement for the BELA instrument is that it can reliably determine the dis-
tance for a spacecraft altitude up to 1000 km. This covers an angular range in the orbit
of approximately 207 degrees. Measurements from higher altitudes may be possible, but
would suffer from an increasing rate of missed return signals or false detections (Gunder-
son et al. 2006). Here, it will first be assumed that height data are obtained over the whole
orbit, including at apoherm. In a further step, only a data set where measurements are
limited to a maximum spacecraft altitude of 1000 km will be used. Additional limitations
for the analyses are based on incomplete coverage. Two main restrictions of the data set
are present which will be investigated: a) latitudinal restrictions, i.e. due to limitations of
instrumental parameters which are described in sec. 2.3.5, and b) longitudinal restrictions,
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3.3 Noise sources

e.g. the mission duration or simulation time.

3.3 Noise sources
A stochastic noise contribution Nk is added to the deterministic static topography T and
the tidal displacement δrtide at each shot point k to obtain the simulated topographic mea-
surement Tk:

Tk = T (θk, λk + ∆λlib) + δrtide (Ψk) + Nk . (3.4)

The noise has a Gaussian distribution with a standard deviation of 62 m. Only a small
fraction of this represents measurement errors or errors in the spacecraft position. Most
of it accounts for the topographic roughness at scales smaller than the cutoff in harmonic
degree of the input topographic model, i.e. lmax = 1024, corresponding to a wavelength
of 15 km. To estimate the topographic variance at small scales the validity of the power
law (eq. 3.3) to l → ∞ is assumed. Summing up from lmax to ∞ gives a total small-scale
variance of 3900 m2, or a standard deviation of 62.5 m. Of course, this is the average
roughness and occasionally much larger deviations occur, e.g., more than 200 m for 1%
of the points.

This treatment of small-scale roughness in the model may be overly pessimistic. On
Mars, 1-D spectra of roughness obtained along MOLA tracks suggest that the spectral
slope steepens to values k > 2 at wavelengths smaller than about 10 km (Aharonson et
al. 2001). Also, assigning to each shot point a noise value that is uncorrelated to that of
neighboring points is a worst case assumption and certainly not realistic for the small-
scale topography. Moon’s regolith includes huge variations of the sub-millimeter scale
shown by Helfenstein and Shepard (1999). This is far beyond the resolution which can
be retrieved by laser altimetry. Longer scales in the range half of the shot point distance
is hardly to be resolved. In general the analysis is dominated by the longer scales of the
topography. A standard deviation of 62 m can be assumed to be the worst case for the
chosen case. The effect of the small-scale variation is expected to be smaller. Especially
in post-processing, the uncertainty can be assumed to be even much smaller.

However, a critical assumption is that the distribution of the noise is purely random.
This is an essential prerequisite for reducing the error by the large number of measure-
ments to the decimeter level that is required for retrieving the Love number. Systematic
errors, in particular if they have a periodic component with the same period as the tide
(for example in the determination of the orbit) would seriously compromise the method
for determining h2.
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4 Extraction of the static and
time-dependent topography by a
spherical harmonic expansion

A primary goal of the BepiColombo laser altimeter (sec. 2.3.5) is the extraction of the
time-dependent parameters of the static topography expressed as tidal Love number and
forced libration amplitude and the long-wavelength topography expressed as a spherical
harmonic expansion. The closest approach is to extract the long-wavelength topogra-
phy directly. The extracted value of the tidal Love number is directly connected to the
topography and can be extracted simultaneously with the static topography. The basis
functions of the tidal Love number h2 are expressed by coefficients of the static topog-
raphy (Van Hoolst and Jacobs (2003) and sec. 2.4). Additionally basis functions of the
tidal Love number include a time-dependency which can mainly be related to Mercury’s
orbit around the Sun. The effect of the second degree order coefficients for the tidal eleva-
tion can be expressed as a series of harmonic coefficients. Van Hoolst and Jacobs (2003)
analyzed this in more detail. Extracting the libration amplitude Φlib does not linearly
depend on the static topography and the tidal Love number. The dependency is weakly
non-linear. For the extraction good approximations are needed for the static topography
and the tidal Love number. The basis functions of the forced libration amplitude are also
expressed by the coefficients of the spherical harmonic expansion of the static topography.
Similar to the tidal elevation the effect of the libration amplitude is expressed by a series
of coefficients which contains the time-dependency related to Mercury’s orbit around the
Sun.

The static topography, tidal Love number and libration amplitude shall be extracted si-
multaneously from a synthetic data set (sec. 3.2 and 3.3) based on a topography model as
described in sec. 3.1. After introducing the topic in more detail and describing the meth-
ods for retrieving the spherical harmonic coefficients, the tidal Love number and forced
libration amplitude (sec. 4.2), and investigations for different weighting schemes in order
to retrieve a best possible fit of the parameters will be presented. The weighting scheme is
adopted for using the orthogonality criteria of the spherical harmonic expansion. Chang-
ing the weights affects the structure of the inversion matrix where the off-diagonal el-
ements are then decreased. This simplifies the inversion of the matrix. Furthermore,
weighting-down the simulations results in an equal distribution of the laser shots over the
entire surface. With the optimum weighting scheme the simulations are carried out with
different realizations of noise (sec. 4.3), and afterwards with different realizations of the
deterministic input topography and different orbits, but only one representation of noise
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4 Topography extraction by a spherical harmonic expansion

(sec. 4.4). At the end a regression for the uncertainties of the time-dependent variations
is prepared, assuming that their uncertainties decrease as a power law with the maximum
degree of inversion linv (sec. 4.5).

4.1 Introduction into the extraction by spherical harmo-
nic analysis

It is first investigated whether the topography of a planet can be extracted from laser al-
timeter records where the topography is expressed as a spherical harmonic expansion.
Spherical harmonic coefficients include the important information about scaling laws of
a planet. Head et al. (2007) and Neumann et al. (2004) describe for example the topogra-
phies of Mars and Moon. The topography can be described for small scales with wave-
lengths of several kilometers. Here, it will be shown that the long-wavelength topography
of Mercury (sec. 2.1.2) can accurately be extracted with a mean uncertainty of less than
10 cm. This is one of the main goals of the BepiColombo mission and in particular of the
BepiColombo laser altimeter (sec. 2.2.3 and 2.3.5).

In the following sections, the mathematical approach will be presented, on which the
simulations are based. It will then be analyzed in detail which parameters may play a
major role. Different weighting schemes of the laser altimeter data records have a large
effect. Results will be presented in sec. 4.3. The simulations are first approaches, to show
which limitations arise. The limitations strongly depend on the time-dependent variations
expressed as tidal Love number h2 and the forced libration amplitude Φlib. On optimizing
the weighting scheme the errors of the coefficients are approximately of the same order,
while the accuracy of the tidal Love number and the retrieved value for the tidal elevation
changes and the libration amplitude vary and show dependencies on the limitations.

An introduction is given in Koch et al. (2008), Margot et al. (2007), Peale (1972) and
Van Hoolst and Jacobs (2003). The simulations are based on different representations of
noise. It will be shown and investigated how the results of the time-dependent variations
and the long-wavelength topography, expressed as spherical harmonic expression, depend
on the different noises which are at least one magnitude larger than the presumable uncer-
tainty of the laser altimeter measurement of the BepiColombo mission itself (Sec. 2.3.5),
which is given as 1 m by Thomas et al. (2007).

In a first step, the effect of different weighting schemes and additionally the impact of
an incomplete coverage of the surface with laser altimeter records is investigated. Incom-
plete coverage of the surface with observations can be assumed for each satellite mission,
as in general restrictions due to temperature, orbit design, or other parameters arise. The
simplest case is based on the use of a simulation time which is not a multiple of the tidal
period. Furthermore, data gaps can be assumed. Data gaps are caused on the one hand by
restrictions to the instrument, and on the other hand by restrictions from the environment.
Restrictions due to the instrument can, e.g., be heating and cooling of the instrument.
Another instrumental restriction is related to the background noise which is mainly solar
radiation which is reflected by Mercury’s surface (albedo).

Orbital parameters for example are specified as environmental restrictions. Laser al-
timeter observations in an elliptical orbit as for the BepiColombo mission (sec. 2.2.3) are
not possible for spacecraft altitudes larger than 1000 km. This special case is analyzed
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4.2 Least-squares inversion

in more detail in sec. 4.3.2. Different weighting schemes affect the extraction of the tidal
Love number h2 and the forced libration amplitude Φlib.

After investigating different weighting schemes and retrieving the best one for the
simulations, a closer look at different topographies is taken, where the power law of the
input topography (sec. 3.1) varies for degrees and orders larger than 16, as the long-
wavelength scales are taken from the long-wavelength topography of the Moon.

The uncertainties of the time-dependent variations decrease as a power law with larger
maximum degrees of inversion for the spherical harmonic expansion. Regressions are
computed for the time-dependent variations in sec. 4.5. It can be shown that the extraction
of the libration amplitude has approximately the same exponent of the power law. The
uncertainties decrease for a resonant orbit, and the decrease is slower for a non-resonant
orbit. Restricting the data to spacecraft altitudes smaller than 1000 km hardly leads to
different exponents in the power law. The uncertainty for the largest degree of inversion
linv is about 12 %. The uncertainty can be assumed to be even much smaller for larger
degrees of inversion.

4.2 Least-squares inversion
The generation of the deterministic input topography, of the laser shots, and of the noise
are described in ch. 3. The laser shots are simulated for the complete orbit. The data are
restricted within the simulations, either by varying the input parameter or taking data out
of the simulation. The analysis method is based on a two-step inversion of the simulated
data set of height measurements. In the first step, the low-order topography coefficients
and the Love number are solved by a least-squares inversion simultaneously. Including
the libration amplitude into the inversion changes the problem to a weakly nonlinear one
and requires a second iteration step. The recovered values of the topography coefficients,
Love number and libration are then compared to the input values.

4.2.1 Inversion for topography and Love number
In the first inversion, the libration amplitude is treated as given, but a value of 30 arcsec
is assigned that does not agree with the input value of 40 arcsec taken to calculate the
shot point position in Mercury coordinates. With this different initial value, the nominal
longitude λk of the laser shot points is calculated by using in the first inversion step. The
coefficients Clm, S lm of the static topography and for h2 are simultaneously solved for by
minimizing

∑
k

wk

Tk − h2Ftide (Ψk)−
linv,l∑

l,m=0

Pm
l (cos θk){Clm cos mλk + S lm sin mλk}


2

. (4.1)

Here, linv is the maximum harmonic degree which is inverted and the wk are weights
assigned to each measurements. Ordering the unknown coefficients and h2 into a (N+1)-
dimensional vector x, where N = (linv + 1)2, a normal matrix equation of the least-squares
inversion process is needed to be solved

Ax = b , (4.2)
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where the elements of the (N + 1)× (N + 1) matrix A and the right-hand side vector b are
given by

ai j =
∑

k

wkFi(θk, λk, tk)F j(θk, λk, tk) , (4.3)

bi =
∑

k

wkTkFi(θk, λk, tk) . (4.4)

For i ≤ N the basis functions Fi(θ, λ, t) are the spherical harmonic functions, which
are independent of the time of observation tk. For i = N + 1 the basis function depends
explicitly on time, FN+1(θ, λ, t) = Ftide(Ψ), where the relation between Ψ and (θ, λ, t) is
obtained from eq. (2.22).

The most time-consuming part of the simulation is the calculation of the matrix ele-
ments because each of the ≈ 108 measurements contributes to each element of the matrix.
The number of matrix elements increases with the fourth power of linv and reaches 107 at
linv = 56. Therefore, the maximum degree of the inversion model must be much smaller
compared to that of the input model in a direct inversion for the spherical harmonic rep-
resentation of the static topography. In this study, linv is limited to ≤ 64. In order to
reduce the workload for calculating the inversion matrix, a certain number of topography
measurements (typically 25) are lumped along the ground track, i.e. their average is cal-
culated and treated as if it were a single measurement located at the central footprint of
the ensemble. A comparison has shown that the inversion results do not differ from the
case of treating each shot separately. While normally weighting is used to account for
variable data quality in an inversion problem, here the choice of weights wk is governed
by a different principle. As it will be discussed in detail in Sec. 4.3, it is advantageous
to use the weights to simulate a uniform coverage of different surface regions with data
points (and uniform temporal coverage for retrieving the time-dependent part of topogra-
phy). In the polar orbit, high latitudes are more densely sampled, proportional to sin−1 θ.
Furthermore, assuming a constant shot frequency of the altimeter, the density of points
along-track varies with the inverse of the orbital angular velocity of the spacecraft, or pro-
portional to the square of the distance r from the centre of Mercury. In the simplest case
of continuous measurements from all parts of the orbit, a uniform coverage is obtained by
choosing

wk ∼ r−2
k sin θk . (4.5)

If data gaps are present, the weighting scheme must be modified, as discussed below.

4.2.2 Inversion for the amplitude of forced libration
In a second step, the libration amplitude is treated as an additional unknown and inverted
for simultaneously with the static topography and the Love number. Including libration
makes the inversion nonlinear, although for Φlib � 1 it is weak, therefore one iterative
step is sufficient.

∆Φlib is called the correction of the libration amplitude compared to the initial value
used in the first inversion step and set for the corrected longitude of the shot point λ∗k =

λk + ∆Φlib flib(Mk). Denoting by a hat the topography coefficients obtained in the first
inversion and linearizing the trigonometric terms containing λ∗k, the following expression
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is obtained to be minimized

∑
k

wk

Tk − h2Ftide (Ψk)−
linv,l∑

l,m=0

Pm
l (cos θk){Clm cos mλk + S lm sin mλk}


2

+

wk

∆Φlib flib (M)
linv,l∑

l,m=0

Pm
l (cos θk)

{
mŜ lm cos mλk −mĈlm sin mλk

}
2

. (4.6)

The additional condition on the libration requires that one more row and one more column
are added to the inversion matrix A, with the rest of the matrix being unchanged. A further
inversion step, using Ftide (Ψ∗) instead of Ftide (Ψ) does not alter the retrieved values of the
topographic coefficients, the tidal Love number, and the libration amplitude significantly.
The values converge directly for the carried out investigations.

4.3 Optimization of the weighting scheme
Two sets of numerical simulations have been implemented. In a first step an idealized
data set is used to explore the impact of the weighting scheme (sec. 4.2.1) on the resulting
accuracy of the inverted static and time-dependent topography which will be presented
below. Here, the dependency of the weighting scheme on varying the spatial and tem-
poral data coverage is investigated. In a second step, more realistic assumptions on the
spacecraft orbit are investigated, like a non-resonant orbit related to Mercury’s rotation
(sec. 4.4), or data gaps caused by restrictions of the maximum spacecraft altitude from
which data are obtained to 1000 km. The second case is important for optimizing the
weighting scheme of the simulated laser shots.

In order to test different weighting schemes, a single synthetic topography model, i.e.
only one realization of input coefficients Clm and S lm, is used. However, 26 different
realizations of noise have been used with a standard deviation of 62.5 m (sec. 3.3) consid-
ering the influence of the not-modeled part of the input topography by adding a normal
distributed value with zero mean and a standard deviation of the power from lmax + 1 to
∞ which is not modeled. Additionally a resonance between Mercury’s rotation period
and the spacecraft orbit is assumed, with 910 orbital periods corresponding exactly to one
Mercury year. As first approach data for exactly two Mercury years are used to investi-
gate restrictions. Afterwards the dependency on the temporal coverage is described. The
retrieved results for the static topography as well as the results for the extracted tidal Love
number h2 and libration amplitude Φlib are presented.

4.3.1 Uniform surface coverage
The simplest assumption use equal weights for each simulated laser shot. The weighting
scheme according to eq. (4.5) is closer on simulating a uniform surface coverage than
using equal weights. The latter implies for example a down-weighting of the data in the
Polar Regions, where the sampling is very dense. This is not related to differences in
the data quality. In fig. 4.1, the spectra of the input topography and of the errors in the
inverted static topography coefficients for both weighting schemes are shown as function
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4 Topography extraction by a spherical harmonic expansion

Figure 4.1: Harmonic degree power of static input topography (·) and the harmonic degree
errors El (eq. 4.7) of the inversion using constant weights (◦) and weights simulating
uniform surface coverage (blue ×).

of harmonic degree. The degree error is defined by

El =

√√
l∑

m=0

(
Cinv

lm −Clm

)2
+

(
S inv

lm − S lm

)2
, (4.7)

where the index inv indicates topography coefficients obtained in the inversions. The
errors of the extracted topography coefficients remain at the centimeter level at low har-
monic degrees where they increase smoothly with l. For uniform weighting the errors start
to increase rapidly when the harmonic degree approaches the maximum degree of inver-
sion, which is 64 in this case. With weighting that simulates a uniform surface coverage,
the errors remain moderate up to the maximum inversion degree.

This improvement in accuracy can be understood for the hypothetical limit of in-
finitely dense data coverage. In this limit the summation over all measurement points
in eq. (4.1) and (4.6) is turned into an integration over a spherical surface when weights
according to eq. (4.5) are used. The inversion matrix becomes diagonal because of the
orthogonality relation of the spherical harmonic basis functions Fi (θ, λ). Mathemati-
cally speaking, the inversion becomes in fact a projection of the topography on the basis
functions, i.e. the non-diagonal elements of the inversion matrix described in eq. (4.3)
vanish. The absolute uncertainty of each topographic coefficient is then roughly of the
order of the uncertainty of a single topographic measurement divided by the square-root
of the number of measurements. When using equal weights, the inversion matrix is non-
diagonal even for arbitrarily dense coverage with measurement points. The uncertainties
of all coefficients contribute to some extent to the errors of a particular coefficient, and to
the errors of the retrieved tidal Love number and the retrieved libration amplitude. The
numerical simulations yield that the weights simulating a uniform surface coverage are
also the better choice for the inversion problem with finite density of data points. Addi-
tional investigations have then to be done on the effect of the laser shots and the weighting
scheme, when real data are available.

The accuracy of the inversion for the tidal Love number and the libration amplitude
has been analyzed in more detail. In particular, it has been studied whether there is a
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4.3 Optimization of the weighting scheme

correlation between the error of the inferred Love number and the maximum harmonic
degree in the inversion for the static topography linv.

With uniform weighting, the errors are large for the inverted Love number, although
they seem to decrease somewhat with the maximum degree of inversion for the static
topography (fig. 4.2a). In contrast, when applying the weighting scheme simulating uni-
form surface coverage the Love number is determined much more accurately with a value
close to 0.7 which is expected to be the real value and without an offset. The recovery
of the libration amplitude is less sensitive to the weighting scheme than that of the Love
number (Fig. 4.2b), although weighting for uniform surface coverage gives slightly better

(a) (b)

Figure 4.2: Extracted Love number (a) and extracted libration amplitude (b) vs. maximum
harmonic degree for static topography.◦ are representing uniform weights and ∗ weights
uniform surface coverage. Input values are indicated by horizontal lines. The dashed line
in (b) indicates the initial value used in the first inversion step. The symbols indicate the
mean value of the inverted Love number obtained for the 26 noise realizations. The error
bars give the 1σ standard deviation for the different noise models. The inversion for the
libration is prepared for a single noise model. The simulations are only carried out for
special inversion degrees with equal weights (◦), as the intermediate results show large
offsets.

results. In any case, the accuracy of the extracted values of h2 and Φlib increases with the
maximum harmonic degree of the expansion of the static topography in the inversion. As
the weighting scheme simulating a uniform surface coverage of measurements seems to
be superior, all subsequent simulations are adopted like this.

The accuracy of the tidal Love number does not change with varying the maximum
degree of the inversion for the static topography. The accuracy is related to the different
noise realizations. The extracted value of the tidal Love number varies with the maximum
degree of the inverted static topography expressed as spherical harmonic expansion. No
direct correlation can be found. The value seems to oscillate around the expected value of
0.7000 which is further used as input value. Expressing the determined value of the tidal
Love number as a function of the inversion degree linv is not possible due to two reasons:
a) the deviation can be a random function which is not understood, b) the oscillation can
not be expressed due to the restriction of the maximum degree of inversion. For a better
and detailed analysis of this effect the inversion degree linv has marginally to be increased.

41



4 Topography extraction by a spherical harmonic expansion

In general the basis function of the tidal Love number h2 depends on the spherical har-
monic coefficients of the static topography C20, C22 and S 22. The more accurately these
coefficients are determined as more precisely the tidal Love number is extracted. The
simulations showed this dependency where no functional dependency can be found.

4.3.2 Data restrictions

Restrictions for the surface coverage by laser altimeter data records are simulated with
time intervals of different lengths. Then the surface is not equally covered with simula-
tions. It takes the MPO spacecraft 2 Mercury years to pass the same surface region at the
same phase of the tidal cycle. If there is a fraction of a measurement period that exceeds
an integral multiple of 2 Mercury years, it is necessary to adapt the weighting scheme
such that not only uniform surface coverage is ensured, but also the different stages of the
tidal cycle at a given location are equally covered after weighting. Simulations are pre-
pared for this case and a maximum inversion degree of 16. Figure 4.3 shows the results
for a uniform surface coverage (�) and the adopted weighting scheme (+). The retrieved
values of the tidal Love number show that the weighting scheme is optimized for data
coverage of a factor of 2 Mercury years. The x-axis is labeled in Mercury days, 2 Mer-
cury years can be expressed as 3 Mercury days due to Mercury’s 3:2 spin rate. Four cases
are chosen for a more detailed analysis: a) 3 Mercury days, as this is a direct factor of 2
Mercury years, b) 3.75 Mercury days, as the extracted value for h2 is far away in the di-
rection of 0, c) 4.5 Mercury days, as this is half of the tidal period and the extracted value
is close to the one retrieved for a factor of 2 Mercury years, and d) 4.75 Mercury days, as
the first result has a large offset and is much larger than 1. These cases are to some extent
extremes and do not present all possible cases. These cases coincide with the libration
amplitude (fig. 4.3b). For these chosen cases, the weighting scheme is generalized so that
the distribution of simulations over the whole surface is uniform over a period of 2 Mer-
cury years. The weights are multiplied by an additional factor for down-weighting areas
which are observed more than others. The previously found optimum weighting scheme
of uniform data coverage of the surface is further expanded. The four chosen cases are
shown as + in fig. 4.3. The topography looks inferior and increases marginally up to
the maximum degree of inversion if the weighting scheme is not adopted as described
above (but is not shown, as the figure would equal fig. 4.2, when weights are assumed as
1). After adopting the weighting scheme, a similar result as shown in fig. 4.1 for equal
weighting and a uniform surface coverage is obtained. As no new information can be
distinguished from this graphic, it is not shown.

Simulations are also carried out for a simulation time of 2 Mercury years. Due to
instrumental restrictions, observations of BELA will only be possible up to spacecraft
altitudes of 1000 km (sec. 2.3.5). Restricting the simulations for spacecraft altitudes up
to 1000 km leads to a more dense coverage of the Polar Regions. The areas which are
observed twice in the Polar Region are weighted down by a factor of one half to cover
the surface uniformly with observations. The mean errors of the static topography are
twice larger than for the case where data from all over the orbit are used (fig. 4.4). The
increase of the mean errors is due to limiting the data results on the bisection of the data
set. Approximately only half of the simulations are used to build up the inversion matrix
for the spherical harmonic coefficients and the time-dependent variations.
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4.3 Optimization of the weighting scheme

(a) (b)

Figure 4.3: Extracted Love number (a) and extracted libration amplitude (b) vs. simu-
lation time for a fixed maximum harmonic degree of inversion linv = 16. � represent
a uniform surface coverage for one Mercury sidereal rotation (Md) of approximately 58
Earth days, while + indicate a uniform weighting over two rotational periods of Mercury
(approximately 176 Earth days). Input values are shown by horizontal lines. The dashed
line in (b) indicates the initial value used in the first inversion step. The symbols indicate
the mean value of the inverted Love number obtained for the 26 noise realizations. The
error bars are not shown for emphasizing the effect of the different weighting schemes.
The inversion for the libration has been prepared for one single noise model.

Figure 4.4: Mean errors of the static topography coefficients as a function of harmonic
degree for data from all over the orbit (×), and data limited to spacecraft altitudes up to
1000 km (4).

The tidal Love number is extracted with an offset of approximately 6 % and an in-
creased uncertainty of the standard deviation for 26 different noise realizations of approx-
imately a factor of 2. As only half of the data set is used than for all data over the orbit
the number of simulation contributing and minimizing the uncertainty are only half. The
libration amplitude is extracted with an offset of approximately 10 %. The offsets within
the extraction of the time-dependent variations are based on the limitation of the extrac-
tion. The main effect of the solar force is present at the equator as Mercury’s rotation axis
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4 Topography extraction by a spherical harmonic expansion

is perpendicular to its orbital plane. Each surface point is only observed three times after
restricting the data to spacecraft altitudes up to 1000 km. The equatorial region is the
region where the coefficient C20, C22, and S 22 have the largest effect. These coefficients
affect mostly the analyses of the tidal Love number.

The libration amplitude is extracted in a second step. As the coefficients of the static
topography and the tidal Love number are inverted in the first inversion (sec. 4.2.1) and
then used as approximated values for the determination of the libration amplitude, the

(a) (b)

Figure 4.5: As fig.4.2 for data limited to spacecraft altitudes up to 1000 km.

uncertainties retrieved for the coefficients of topography and the tidal Love number affect
directly the uncertainties of the libration amplitude. As the values for the coefficients, the
tidal Love number, and the libration amplitude converge quickly, almost no improvement
is possible in the second iteration.

The values of the time-dependent variations improve by multiplying with an addi-
tional factor. Then all regions of the surface are equally covered with simulations. With-
out weighting, the criteria of orthogonality are not true and the inversion matrix turns
into a full matrix with correlations between the different coefficients. The correlations in
general vanish due to the orthogonality of the different coefficients. The orthogonality
of the spherical harmonic coefficients is realized by adopting the weighting scheme. The
following simulations use the weighting scheme, where the surface is uniformly weighted
over the tidal cycle of 2 Mercury years.

It has to be remarked that the optimum weighting scheme has only been computed
for a single topography realization. In the following the improvements of the weighting
scheme are used for the investigation of different topography models. Different topogra-
phy models show that here only a special case was investigated. Thus it is improved in the
following, where the optimized weighting scheme will be used. Optimizing the weighting
scheme is done by:

• using a nearly uniform weight of the surface with observations.

• multiplying by an additional factor to simulate nearly uniform surface coverage of
Mercury for a 2-years-cycle of Mercury.
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4.4 Orbit selection and its effect on the retrieved topography

• weighting down areas which are observed twice in order to simulate a nearly uni-
form surface coverage.

This leads in general to a nearly uniform surface coverage of the surface over a complete
2-Mercury-years-cycle.

4.4 Orbit selection and its effect on the retrieved topog-
raphy

In a second set of simulations, the effect of the particular choice for the spacecraft orbit
(hence the detailed distribution of laser foot points) and of data gaps on the precision
of the inversion are tested. Data for 4 Mercury years, i.e. the nominal duration of the
BepiColombo mission, have been used. As outlined in sec. 3.2, simulations for a resonant
orbit with 910 orbital periods of the spacecraft corresponding to exactly one Mercury year
are compared to simulations for a realistic non-resonant orbit. In the latter case, arbitrarily
909.234 orbital periods in one Mercury year are taken. In a third step, the restriction of
a non-resonant orbit is augmented by the fact that no data are obtained from spacecraft
altitudes above 1000 km (sec. 4.3.2). In the latter case, the density of measurements in two
calottes around the North and South pole of Mercury is twice as high as in the equatorial
regions. The latter applies for the idealized situation that the periherm of MPO’s orbit
stays exactly above Mercury’s equator during the whole mission duration (sec. 3.2). To
simulate uniform spatial coverage, the weights for the measurements falling into these
calottes have been reduced by a factor of 2. The results for 20 different synthetic models
of Mercury’s static topography are calculated as outlined in sec. 3.1 for all cases. A
single noise realization has been used. The mean error for the recovered Love number
and libration amplitude is then determined by

∆h2 =

√√
N−1

sim

Nsim∑
i=1

(
hi

2,inv − h2

)2
, (4.8)

where h2 is the input value of the Love number and hi
2,inv is the extracted Love number

for the i-th of the Nsim = 20 different topography models. The mean error of the libration
amplitude ∆Φlib is defined in the same way. The investigation are further extended to also
analyze different realizations of the libration amplitude.

Figure 4.6 shows that the degree error eq. (4.7) of the topography coefficients up to
degree 64 is at the level of 1-20 cm. The differences between the resonant and the´non-
resonant orbit with measurements restricted to 1000 km is larger by a factor of 2.

For a resonant orbit and full data coverage, it can be found that the mean error of the
Love number h2 at low inversion degrees for the static topography is larger considering
the 20 different topography models (fig. 4.7a), compared to the results in sec. 4.3 for
a single topography model (and only different noise realizations, fig. 4.2). Obviously,
the topography model which was created before leads to a good agreement for the Love
number. At high inversion degrees, the average error value becomes small. The slight
offset of the error bars from h2 = 0.7 indicates a weak bias of the inverted Love number
towards lower values. For the libration amplitude, the error remains somewhat larger even
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4 Topography extraction by a spherical harmonic expansion

Figure 4.6: Mean errors of the static topography coefficients as a function of harmonic de-
gree for a resonant spacecraft orbit (4), a non-resonant orbit (blue �), and a non-resonant
orbit with data limited to spacecraft altitudes up to 1000 km (red �).

(a) (b)

Figure 4.7: Results for the Love number (a) and libration amplitude (b) vs. maximum
harmonic degree of inversion for a resonant spacecraft orbit and data returned from all al-
titudes. The size of the error bars indicates the 2σ deviation from the input value obtained
for different topography models. The error bar is centered at the mean inverted value.

at high inversion degrees, but also here a trend of decreasing error with increasing degree
of inversion can be found.

Compared to the case of a resonant orbit, the error in the Love number at high in-
version degrees becomes larger for a non-resonant orbit (fig. 4.8a) and increases further
when the data coverage is limited to those parts of the orbit where the spacecraft is less
than 1000 km above the planet’s surface (fig. 4.8b). In the last and most realistic case ∆h2

drops to 0.036 at linv = 64, meaning a 2σ-uncertainty of 10 %.
In contrast to the error of the Love number that for the libration amplitude is hardly

dependent on the different scenarios for the orbit and the data coverage that have been
studied (compare figs. 4.7b and 4.8c). Here the 2σ-error at the maximum applied inver-
sion degree is approximately 5 arcsec.

The tidal Love number h2 is determined with an uncertainty of less than 10 % at
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(a) (b)

(c)

Figure 4.8: As Fig.4.7 for a non-resonant orbit. Error is shown in the Love number for
full coverage (a) and when data are limited to a maximum spacecraft altitude of 1000 km
(b). The error for the libration amplitude is shown in (c) with an altitude restriction to
1000 km.

the 2σ-level. If Mercury’s core is partly liquid, this will allow to determine the core
radius within 75 km according to the results by Van Hoolst and Jacobs (2003). The
uncertainty of the determination of the libration amplitude of 5 arcsec (12 %) which is
more than but still comparable to the measurement precision achieved with ground-based
radar interferometry (Margot et al. 2007). The simulations suggest that the error in the
Love number h2 and the libration amplitude Φlib decreases roughly as l−2/3

inv if the maximum
harmonic degree of inversion is increased roughly. A more accurate determination of the
libration amplitude might be possible by tracking landmarks with an onboard camera
(SYMBIO-SYS in case of the BepiColombo mission, Capaccioni et al (2005)), or an
improvement might be possible by combining the imaging data with those from laser
altimetry.
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4 Topography extraction by a spherical harmonic expansion

4.5 Precision of the extracted Love number and libration
amplitude

Further a regression of the retrieved uncertainties of sec. 4.4 is computed, where different
orbits and data restriction are analyzed. Section 4.4 showed that the uncertainty of the
tidal Love number depends on the chosen orbit and the number of measurements. The
number of simulated measurements decreased by about a factor of 2, when measurements
are restricted up to 1000 km spacecraft altitude.

Plotting the errors in logarithmic scale for the inverted Love number and libration
amplitude against the maximum degree of inversion of the static topography linv looked
as there is a linear dependency between the errors for the time-dependent topography
variations and linv (Fig. 4.9, symbols). The scaling seems to follow a power law with the
maximum inversion degree, which can be described by

(∆h2, ∆Φlib) = a lb
inv . (4.9)

Niemeier (2002) describes the computation of a regression in more detail. Only the main
parts of the derivation will be summarized. The functional model is

(∆h2, ∆Φlib) = a0 + b linv , (4.10)

where the more general equation is adopted to the used variable names. The transforma-
tion of Eq. (4.9) to (4.10) is easily done by computing in logarithmic space. (∆h2, ∆Φlib)
are the observation vector, and linv the parameter vector. The stochastic model is assumed
to be uncorrelated and with an equal weight of one so that the stochastic matrix is the

(a) (b)

Figure 4.9: Errors of the tidal Love number (a) and the libration (b) according to eq. (4.8)
vs. harmonic degree of inversion for a resonant spacecraft orbit (4), a non-resonant orbit
(◦), and a resonant orbit with data limited to spacecraft altitudes up to 1000 km (�). The
lines represent the results of linear regressions.

unity matrix. The design matrix A can be written as a two-dimensional vector containing
the following values

Ai =
[
1

(
∆h2,i, ∆Φlib,i

)]
. (4.11)
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The normal equations are then
N b̂ = n , (4.12)

where N =
(
AT A

)
is the normal matrix and n = AT linv the normal vector. A quantity

for describing how well the retrieved parameters fit to the input values can be described
by the regression coefficient which is determined as

B =
bT n

(∆h2, ∆Φlib)T (∆h2, ∆Φlib)
, (4.13)

where B must be between 0 and 1. For a value of 1 the regression fits well to the defined
model, while for B = 0 the model does not fit the data.

The retrieved functions are plotted as a straight line in logarithmic scale in fig. 4.9
for the inverted Love number and libration amplitude against the maximum degree of
inversion of the static topography linv. In all studied scenarios for the orbit and data cov-
erage, the value for the errors of the tidal Love number ∆h2 or the libration amplitude
∆Φlib, respectively, scale as a power law with the maximum inversion degree described in
eq. (4.9). All regressions have a correlation coefficient larger than 0.99 for linv > 22. The
limitation was included as the behavior for values of linv smaller than 22 is not completely
understood..

The decrease of the error in the tidal Love number (fig. 4.9a) is strongest for the case
of a resonant spacecraft orbit, with an exponent of b = −1.42, while for the non-resonant
orbit the decrease is weaker, with an exponent b = 00.69 and -0.76 for the case of full data
coverage and the case of data limited to spacecraft altitudes up to 1000 km, respectively.
The error of the libration amplitude decreases with an exponent of about b = −0.66 for
all scenarios (fig. 4.9b). These results suggest that even more precise information on the
time-dependent topography can be retrieved if the inversion are prepared for harmonic
degrees of the static topography larger than 64 (Koch et al. 2008). At present, the static
topography cannot be described for larger degrees because the computational effort in-
creases exponentially. A more detailed discussion is given in ch. 8.
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5 Extraction of the static and
time-dependent topography by a
local basis function expansion

One of the primary goals of the BepiColombo laser altimeter (BELA, sec. 2.3.5) is the ex-
traction of Mercury’s tidal signal. For a precise determination of the tidal Love number h2,
the time-dependent tidal elevation needs to be distinguished from the static topographic
elevation. Therefore, Mercury’s static topography always needs to be extracted simultane-
ously with high precision as a by-product of a precise determination of the tidal elevation
due to solar gravitation.

In the previous section, the static topography was expressed as a spherical harmonic
expansion. The normalized spherical harmonic functions are global basis functions. The
extracted topography of Mercury is determined by a set of coefficients Clm and S lm (sec.
3.1). The computation of the design matrix is time-consuming because contributions to
all design matrix elements must be calculated for each subsequent measurement location.
This means, that for each of the 152 million measurements of order (linv + 1) × (linv + 1)
corresponding calculations must be performed (sec. 4.2).

Therefore, an alternative approach with local basis functions is explored. The surface
of Mercury is covered with a grid containing approximately 4.7 million cells. The ex-
tracted output topography grid either has the same grid resolution as the synthetic input
topography or points are combined. On each cell, a set of local basis functions such as
simple step functions, linear functions ("hat" function), or cubic splines are used. Step
functions are localized to one particular cell, where the value is one, and zero otherwise.
The linear and cubic functions are localized to only a few grid cells. The static topogra-
phy is expanded into these local basis functions, i.e. each measured topography value is
expressed as a linear combination of the local basis functions. For step functions, only a
single coefficient describes a particular topography measurement because it can be associ-
ated with a particular grid cell. In case of the linear and cubic spline functions, only a few
coefficients are needed to describe a measurement because only a few local basis func-
tions are non-zero at the location of the measurement. The coefficients are determined
by a least-squares inversion of the local basis function expansion to the measured topog-
raphy values with the same algorithm for the inversion of the design matrix as used for
the spherical harmonic expansion. The big advantage of the local basis function approach
is that for each subsequent measurement point, only a small number of contributions to
the small number of elements of the design matrix must be calculated. This significantly
increases the computational speed of this method.
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The synthetic data are simulated in the same way as for the method applying global ba-
sis functions (sec. 3.2 and 3.3) and the same deterministic topography model as described
in sec. 3.1. The approach will be specified in more detail in the following sections. The
mathematics which is used for building-up the inversion matrix are explained in more
detail as well as the method to solve the inversion by a Gaussian elimination (sec. 5.2.2).
With this approach, the tidal Love number is simultaneously extracted. Then the best res-
olution of the grid shall be investigated. This will be performed analytically, sec. 5.3.1.
Analyses with global basis functions showed a large dependency on the weighting scheme
and on data restrictions. Different weighting schemes are also tested for the approach with
the local basis functions. Furthermore, the topography is transformed into a spherical
harmonic expansion. For a simultaneous analysis of the long-wavelength topography and
gravity field, both must be expressed by a spherical harmonic expansion to be correlated
to each other. This gives deeper insight into the differentiated interior of Mercury.

5.1 Introduction into the extraction by local basis func-
tion expansion

The analysis methods for MOLA were provided and published by Abramov and McEwen
(2004). They used a Delauny triangulation for expressing the topography. Here, the anal-
ysis method uses a global rectangular grid as topography description, where the basis
functions of the grid points are only locally non-zero around the grid points surrounding
the laser shot. A Delauny triangulation of the observations for the BELA data set would
give a bad distribution of the triangles. Furthermore, the tidal elevation is included as
an additional parameter which shall also be extracted accurately. The extraction of the
tidal elevation has in fact higher priority. The static topography has to be extracted for
a precise determination of the tidal elevation change, although it is rather a by-product.
In the following, the topography will be expressed by a rectangular grid. The measured
topography values at the locations of the different laser shots will determine the topogra-
phy values at the grid points. Each measured topography value will be decomposed into a
few coefficients belonging to the few non-zero local basis functions in the neighborhood
of the measurement location. The set of basis functions are equivalent for all grid points,
i.e. their coordinates are relative to one central grid point.

Here, it will be investigated how precise the tidal Love number h2 and also the topog-
raphy as a kind of by-product can be retrieved by using local basis functions. The majority
of grid points are not affected by each subsequent laser altimeter measurement. Only the
area close to the laser shot is affected. This is opposite for the global basis functions where
the topography is expressed as a spherical harmonic expansion (ch. 4). For computing the
influence of a laser shot onto the grid point, three functions are used: 1) step functions
which can be described as the closest neighboring point, 2) linear functions, and 3) cubic
spline functions. For the step functions, one could also use the natural neighbor, i.e. the
neighbor which is closest in its topography value but not closest in distance (Abramov
and McEwen 2004). However, this would need more effort and information to implement
because several neighboring points have to be analyzed for each measurement, and an
approximate topography model must be known as a priori information.

As a first approach simplifications are introduced. In latitudinal direction only step
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5.2 Inversion method

functions are chosen. The laser shots are separated by at most 300 m in low latitudes if
the shot frequency is 5 Hz. Therefore, many measurements fall into one grid cell and
the corresponding coefficient can always be determined. The choice of step functions in
latitudinal direction has the advantage that the design matrix has a band structure which
facilitates the inversion. In longitudinal direction, the laser shots could be separated by
several kilometers in the equatorial region of Mercury depending on the chosen orbit for
the simulations. Therefore, linear and cubic spline basis functions are also implemented
for the longitudinal direction with the aim to "bridge" badly covered areas. The three
mentioned types of basis functions are described in more detail in sec. 5.2.1.

The algorithm of inversion is implemented as a Gaussian elimination of the inversion
matrix (sec. 5.2.2). The inversion results in all coefficients for each grid point necessary
to describe the static topography value of this grid point and in the tidal Love number h2.
The triangulation of the inversion (design) matrix can be computed using arrays of the
full matrix because of its band structure. Restrictions of the analysis due to using only
step functions in latitude direction have not been found, but this has to be investigated in
the future in more detail. Due to MPO’s polar orbit around Mercury with limited number
of orbits covering the surface and crossing the equator, restrictions arise for interpolating
the laser shots on grid points in the equatorial region. In order not to include aliasing
artifacts, the determination is limited to special cases (sec. 5.3.1).

The computation time mainly depends on the number of laser shots and the running-
time of the program for generating the input topography. The setting-up of the input
topography, generation of the laser shots itself, and the sources of noise are implemented
in the same way as in ch. 4, and are explained in ch. 3. While the simulations based on
global basis functions for the extraction used the long-wavelength coefficients of Moon’s
topography up to degree and orders 16, the coefficients of the synthetic topography for the
method based on local basis functions are generated completely randomly for all spherical
harmonic degrees.

Analytical investigations are prepared whether there is an ideal combination of the
data for the output topography (sec. 5.3.1). The binning is expressed by factors describing
the resolution of the input topography compared to the resolution of the output grid. If
the number of grid points for the input topography is ni = 1.5 lmax in latitudinal direction
and n j = 2 ni in longitudinal direction, and for the output topography it is nlong in
longitudinal direction nlat in latitudinal direction, the factors are defined as

ilong =
n j

nlong
, (5.1)

ilat =
ni

nlat
. (5.2)

5.2 Inversion method
The extraction of the coefficients which describe the decomposition of all the topography
values at the different grid points into the local basis functions is obtained by a least-
squares inversion to the measurement data. The design matrix elements are given by
products of the local basis functions in a similar way as in the case of using global basis
functions. However, the computation of the inversion matrix is much simpler as will be
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5 Topography extraction by a local basis function expansion

seen in sec. 5.2.1. A similar normal equation

Ax = b , (5.3)

has to be inverted where A is the design matrix, b the right-hand-side vector containing
the measured topography values and the tidal Love number a priori, and x is the result
vector of the coefficients of the basis functions. These coefficients are the topographic
values at the grid points itself for step functions and linear functions, while some sim-
ple calculation needs to be done in the case of the cubic spline functions to derive the
measured topography values at the grid points (sec. 5.2.2). The inversion of the matrix is
based on a triangulation and is described in sec. 5.2.2.

5.2.1 Local basis functions defined on topographic grid cells
The local basis functions are defined as functions of local coordinates relative to certain
grid points. For each topographic measurement, the next neighboring grid point to the
respective laser shot must be determined. The interval where the laser shot is located is
computed in two steps. First the position in latitude direction is computed and secondly
the position in longitude direction. In latitude direction only step functions are used due
to the high density of laser shots along the spacecraft track. The width of an interval to
which a laser shot has to be assigned is given by

∆θ =
π

nlat
, (5.4)

where nlat is the number of grid points in latitude direction. The distance between longi-
tudinal points can similarly be computed to

∆λ =
2 π

nlong
, (5.5)

where nlong is the number of grid points in longitude direction. nlong and nlat are defined
by equations (5.1) and (5.2), respectively.

The numbering of the grid in latitudinal direction is given by

ik = INT
(
nlat
π

θk

)
, (5.6)

where θk is the co-latitude of the kth laser record. The determination of the longitudinal
position has been separated into two parts. The first belongs to the step functions as
longitudinal basis functions (eq. 5.7), where the second is used for the linear and cubic
spline basis function (eq. 5.8)

jk = INT
(
nlong

2 π
λk + 0.5

)
+ 1 , (5.7)

jk = INT
(
nlong

2 π
λk

)
+ 1 , (5.8)

where λk is the longitude of laser record k. The position to which a laser shot is assigned
in the design matrix is given by

nk = jk + nlong ik . (5.9)
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5.2 Inversion method

This order results in a matrix with band structure if only step functions are used as ba-
sis functions in latitudinal direction. The band structure facilitates the triangulation and
therefore the inversion of the normal equation. For the analysis of the tidal Love number,
one row and one column have to be added.

Once the correct grid cell into which a laser shot falls is determined the values of the
local basis functions at the location of the laser shot must be calculated to build-up the
inversion matrix. In latitudinal direction only step functions are used, so that it is sufficient
to know the correct interval into which the laser shot falls (eq. 5.6). The step function trik
is simply 1, if the grid line ik is the next latitudinal neighbor to the kth laser shot, all other
latitudinal step functions are zero at the location of laser shot k:

trstep,ik = 1 . (5.10)

The same applies for the longitudinal step function:

trstep, jk = 1 . (5.11)

For the higher order basis functions (linear functions and cubic spline functions), the local
coordinate in longitudinal direction is defined as

x jk =
δλk

2 ∆λ
, (5.12)

with
δλk = λk − jk ∆λ , (5.13)

where jk is the integer such that jk ∆λ denotes the location of that neighboring grid point
to the laser measurement shot k which has smaller longitude than the laser shot k (eq. 5.8).

The linear trial functions used to build up the contribution of laser shot k to the design
matrix can be expressed as

trlin, jk = 1 − x jk , (5.14)
trlin, jk+1 = x jk . (5.15)

For all other j the linear trial functions are zero at the location of the laser shot k.
Each cubic spline function extends over four intervals in longitude bounded by five

grid points:
x jk−2 < x jk−1 < x jk < x jk+1 < x jk+2 . (5.16)

The local spline functions which are used to build up the design matrix are defined as

trcub, jk−1 =
1
4

(
1 − 3 x jk + 3 x2

jk − x3
jk

)
, (5.17)

trcub, jk =
1
4

(
4 − 6 x2

jk + 3 x3
jk

)
, (5.18)

trcub, jk+1 =
1
4

(
1 + 3 x jk + 3 x2

jk − 3 x3
jk

)
, (5.19)

trcub, jk+2 =
1
4

x3
jk . (5.20)
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5 Topography extraction by a local basis function expansion

The contributions to the design matrix elements from measurements of which locations
fall into a certain grid cell n and the respective contributions to the right-hand side vector
are given by

an,n′ =
∑
k(n)

wk(n) trstep/lin/cub, jk(n) (xk(n), tk(n)) trstep/lin/cub, j′k(n)
(xk, tk) , (5.21)

bn =
∑
k(n)

wk(n) Tk(n) trstep/lin/cub, jk(n) (xk, tk) . (5.22)

For n ≤ N the basis functions trstep/lin/cub, jk(n)(xk, tk) are the local basis functions, which
are independent of the time of the observation tk, and jk(n) is the index for the local basis
function in longitude direction. The loop over k(n) is limited to the sum over all laser
measurements shots that fall within the same grid cell numbered by n. The n′ and j′ values
are related in the same way as n and j. For step functions only one computation with j′ = j
is required, for linear functions two computations for j′ = j and j′ = j + 1 are needed,
and for cubic functions j′ runs from j − 1 to j + 2 which require four computations. The
diagonal design matrix element An,n is given by the above an,n while for the off-diagonal
design matrix elements An,n′ with n′ , n contributions from measurements of several grid
cells have to be summed up. The band structure of the design matrix is obvious from the
fact that n′ only runs from n − 1 to n + 2. The design matrix is diagonal so that only the
"upper" off-diagonals must be stored. Care must be taken about the so-called wrap-around
in longitude. The design matrix has blocks which belong to a fixed latitude with index i.
The wrap-around produces design matrix entries in the upper right and lower left corners
of these blocks due to the overlap-region close to the 0th meridian.

The design matrix elements with n = N + 1 or n′ = N + 1 the basis function describes
the global tidal signal and, therefore, depends explicitly on time, FN+1(θ, λ, t) = Ftide(Ψ),
where the relation between Ψ and (θ, λ, t) is obtained from eq. (2.22).

Most computational power is needed for generating the input topography models.
The time-consuming part of the simulations is the computation of the design matrix and
the identification of the exact position within the inversion matrix of the least-squares
inversion (nk). The matrix needs only 2 j computations for the part of the inversion matrix
containing the topography and j + 1 computations for the time-dependent part expressed
as tidal Love number. This decreases the needed computational power significantly.

Some more explanation is needed for the cubic spline basis functions (Freund and
Hoppe 2007). The cubic spline function "belonging" to a grid cell n in fact extends over
four intervals. The cubic spline functions are identical for all latitudes so that n can
be replaced by j in their numbering. Additionally, there is translational invariance in
longitude for these spline functions, so that one can in principal skip the index j when
numbering the four longitudinal intervals with index j′ = j − 1, . . . , j + 2. The cubic
spline function belonging to grid cell j can be written as

S j′
(
x j′

)
= a j′ + b j′ x j′ + c j′ x2

j′ + d j′ x3
j′ . (5.23)

These spline functions have to fulfill the following criteria:

• continuity S j′ (1) = S j′+1 (0),

• twice continuous differentiable S ′j′ (1) = S ′j′+1 (0) and S ′′j′ (1) = S ′′j′+1 (0) for all
three interval boundaries.
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5.2 Inversion method

This gives nine conditions. Five more conditions are obtained by

1. S ′′j−2 (0) = S j + 2′′ (1) = 0 ,

2. S j−2 (0) = S j + 2 (1) = 0 ,

3. S j (0) = 1 .

These yield

S j−1 (x) =
1
4

x3 , (5.24)

S j (x) =
1
4

(
1 + 3 x + 3 x2 − 3 x3

)
, (5.25)

S j+1 (x) =
1
4

(
4 − 6 x2 + 3 x3

)
, (5.26)

S j+2 (x) =
1
4

(
1 − 3 x + 3 x2 − x3

)
. (5.27)

(5.28)

One local cubic spline basis function assigned to longitudinal grid point j is given by the
set of four functions S j−1 (x) =: S j, j−1 (x), S j (x) =: S j, j (x), S j+1 (x) =: S j, j+1 (x), and
S j+2 (x) =: S j, j+2 (x) which are piecewise defined on the intervals [x j−2, x j−1], [x j−1, x j],
[x j, x j+1], and [x j+1, x j+2], respectively.

If a laser shot falls into the interval between x j = 0 and x j = 1, there are four local
cubic spline basis functions which are non-zero. These are given in eq. (5.17) to (5.20).

5.2.2 Gaussian elimination of the inversion matrix with band struc-
ture

The method of the Gaussian elimination is an efficient algorithm for solving a system
of linear equations in algebra. The algorithm is named after Carl Friedrich Gauss who
firstly investigated this method and published it in 1809. The main goal of the method is
the transformation of a given matrix to an upper triangle matrix with similar changes of
the right-hand side vector which contains here the topography values for the interpolated
laser shots of the whole data set. The process can be divided in two parts. First the
matrix is changed to an upper triangle matrix and the right-hand-side vector is adopted
at the same time (forward elimination). Second the solutions are computed row by row
(backward substitution). The forward modeling applies matrix decompositions by the
three elementary row operations (multiplying rows, switching rows, and adding multiples
of rows to other rows). Here, switching rows is neglected as the elements of each row
are set to be a fixed point on the surface. The allocation after switching rows needs lot of
effort as each row directly contains the information of the coordinates of the grid points.

Gaussian elimination solves n equations for n unknowns. This requires n (n + 1) / 2
divisions,

(
2 n3 + 3 n2 − 5 n

)
/ 6 multiplications, and

(
2 n3 + 3 n2 − 5 n

)
/ 6 subtractions

for a total complexity of 2 n3 / 3 operations. Its complexity is O
(
n3

)
. Due to its simplicity,

the algorithm can easily be implemented.
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5 Topography extraction by a local basis function expansion

The inversion matrix which has to be transformed for the local basis functions is a
band matrix where the majority of the matrix elements A itself is zero. The building-up
of the matrix for step functions gives a diagonal matrix, for linear interpolation a band
matrix with one additional outer column and an additional element for the overlap in the
longitudes at zero longitude, and for the cubic spline interpolation a band matrix with
three additional outer columns and additional elements for the overlap at zero longitude.
The matrix is stored band by band due to the interpolation in latitude direction. The
elements in latitude direction do not affect each other. An adoption due to the usage of
linear interpolation and cubic spline interpolation in latitude direction is not prepared right
now. All cases contain an additional row and column considering the effect of the tidal
Love number h2. The additional row has to be eliminated while the matrix is triangulated
for the simultaneous analysis.

The topography values for the step functions and linear interpolation can be directly
retrieved. The matrix contains the coefficients of the interpolation. This has to be taken
into account for the cubic spline interpolation where the topographic values are derived
by

Ti, j =
1
4

xi, j−1 + xi, j +
1
4

xi, j+1 , (5.29)

where x is the result vector for the Gaussian elimination containing the coefficients after
transformation, i the index for the latitude and j the index in longitude direction.

5.3 Optimization of data binning and weighting scheme
The spatial resolution of the BELA topography measurements is given by the distance
∆λst between laser tracks in longitudinal direction. Presumably it will not make much
sense to choose the output grid cell dimension in longitudinal direction much smaller
than the value ∆λst. On the other hand, information will be lost, if the output grid cell
dimensions are larger than ∆λst.

The input grid cell sizes have been chosen to be somewhat smaller than ∆λst. There-
fore, the modeled input topography has more detail than can be measured by BELA. This
ensures that the quality of data extraction can actually be verified by comparing the out-
put topography with the input topography (sec. 5.3.1). In the following, it will be derived
analytically that the optimum binning is achieved when the rectangular output grid cells
have approximately the dimension ∆λst.

It will further be shown that no improvement of the analysis can be achieved by using
an optimized weighting scheme. This is in contrast to the analyses with global spherical
harmonic basis functions, where the effect of different weighting schemes on the precision
of topography extraction was large (sec. 4.3).

5.3.1 Analytical determination of the optimum combination of grid
points

The analytical determination first needs the definition of some variables. The equator
length UM is computed from the planetary radius a of Mercury:

UM = 2 π a = 15, 330.97 km . (5.30)
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5.3 Optimization of data binning and weighting scheme

Using n j and ni for the number of input topography grid points in longitude and latitude,
respectively, and nlong and nlat for the respective number of output topography grid
points, the size of grid cells in longitudinal and latitudinal direction can be calculated
as

∆λI =
UM

n j
, (5.31)

∆λO =
UM

nlong
= ilong

UM

n j
,= ilong ∆λI (5.32)

∆θI =
UM

2 ni
, (5.33)

∆θO =
UM

2 nlat
= ilat

UM

2 ni
= ilat ∆θI , (5.34)

where ∆λI is the distance between grid points for the input topography in longitude direc-
tion and ∆θI in latitude direction, while ∆λO and ∆θO are the respective distances of the
output topography.

The distance between laser tracks ∆λst is estimated from the number of satellite tracks
(st) that the Mercury Planetary Orbiter (MPO) of the BepiColombo mission leaves on the
planetary surface within 1 Mercury year on its near-polar orbit:

∆λst =
UM

st
. (5.35)

The realistic case is assumed that BELA measurements can only be taken at spacecraft
altitudes below 1000 km. To facilitate the estimates it is assumed that only measurements
can be taken on the tracks from South to North pole but not from North to South pole.
This means that the number of laser tracks left on Mercury’s surface approximately equals
the number of orbits.

The distances ∆λst for three possible orbits which are investigated here are listed in
tab. 5.1.

Table 5.1: List of distances between satellite tracks for different orbits according to
eq. (5.35)

st ∆λst [km]
909.234 16.861
909.750 16.852
910.000 16.847

The latitudinal spacing of laser shots is determined by the shot frequency (s f ) which
is assumed to be 5 Hz in average. This gives a latitudinal distance ∆θs f in the equatorial
region of Mercury between laser shots of

∆θs f = 0.3 km . (5.36)

A general relation between ilong and ilat can be derived from the requirement that the topo-
graphic grid should be suitable for transformations into spherical harmonic expansions.
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5 Topography extraction by a local basis function expansion

According to the Nyquist theorem, it is necessary that nlat ≥ nlong/2, if aliasing should
be avoided for transformations to high degrees. For the input grid, we have n j = 2 ni.
Consequently, it is required that

ilat ≤ ilong . (5.37)

5.3.1.1 Input and output specifications

The input topography has 3072 grid points in longitude direction (n j) which are separated
by ∆λI ≈ 4.991 km, and 1536 grid points in latitude direction (ni) which are separated
by 4.991 km as well. The resolution of the output topography is given in tab. 5.2 for the
longitudinal and latitudinal parameters.

Table 5.2: Specifications for the output topographic grid in longitude direction

ilong = ilat nlong nlat ∆λO [km]
1 3072 1536 4.991
2 1536 768 9.981
4 768 384 19.962
6 512 256 29.943
8 384 192 39.924

5.3.1.2 Longitudinal limitations

The output grid resolution will usually not be chosen to be higher than the input grid
resolution. This is equivalent with the condition

ilong ≥ 1 . (5.38)

For a precise extraction of the Love number, it can be advantageous not to apply any
binning, i.e. ilong = 1. This leaves “white” areas in the output topography, but this
leads to a more accurate extraction of the Love number h2. Then the grid points, which
are not affected by laser shots, are not used for the analysis, but the other grid points
contain more information. Furthermore, it is advantageous not to choose ilong larger than
4 because topographic information may be lost if the longitudinal output grid length is
larger than the typical distance between laser tracks ∆λst (tab. 5.2)

∆λO ≤ ∆λst ≈ 4 ∆λI

ilong ≤ 4 . (5.39)

This limitation of the longitudinal coverage is based on the orbit of MPO.

5.3.1.3 Estimate of the optimum longitudinal binning

An additional parameter ν is introduced which describes how many output grid points
are affected by a laser altimeter measurement at a certain location. ν is 1 for using step
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5.3 Optimization of data binning and weighting scheme

functions in longitude, ν is 2 for linear functions, and ν = 6 for cubic spline functions.
The longitudinal distance LO on the output topographic grid which is affected by a laser
shot can be written as

LO = ν∆λO = ν ilong ∆λI . (5.40)

If a measured topographic value should be assigned to each of the output grid points in
longitudinal direction, the following relation must hold

∆λst ≈ ν∆λO

ilong ≈ n j
ν st

. (5.41)

Then the next larger integer value for ilong in the case of step functions (ν = 1) can be
determined to

ilong ≈ 4 . (5.42)

For the linear functions (ν = 2) this leads to

ilong ≈ 2 , (5.43)

and for the cubic spline functions (ν = 6) to

ilong ≈ 1 . (5.44)

5.3.1.4 Latitudinal limitations

The lower boundary of ilat depends on the number of laser shots (eq. 5.36) in latitudinal
direction which is large due to MPO’s orbit and the high repetition frequency of the laser.
The latitudinal resolution of the output topography should be equal or smaller than that of
the chosen input topography. Therefore the first condition for ilat can be written as

ilat ≥ 1 . (5.45)

The upper limit of ilat can be derived from eq. (5.37) and eq. (5.39) to be

ilat ≤ 4 . (5.46)

5.3.1.5 Summary of the retrieved conditions

The retrieved conditions for the simulations (eq. 5.37, 5.38, 5.39, 5.45, and 5.46) can be
summarized to

1 ≤ ilat ≤ 4 , (5.47)
1 ≤ ilong ≤ 4 , (5.48)
ilat ≤ ilong . (5.49)

Different combinations of the different factors can easily be found, because a combination
of the grid points in latitudinal direction is not very critical due to the small shot point
separation ∆λs f . Therefore, only three cases are investigated in more detail where always
ilat = 1. The factors in longitudinal direction

(
ilong

)
are chosen to be 1, 2, or 4.
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5 Topography extraction by a local basis function expansion

5.3.2 Optimizing the weighting scheme
The weighting scheme for the laser measurement shots took an important role in the
direct inversion of the measured topography into global basis functions, i.e. into spherical
harmonic functions (ch. 4). The effect of two different weighting schemes which are also
used in ch. 4 will be investigated in detail in the following. First no additional weighting
is added to the noise of the laser shots (sec. 3.3). Second the laser shots are weighted to
simulate a uniform surface coverage over the entire orbit by eq. (4.5). The uncertainty
of the tidal Love number (xmdim+1) and the topographic grid points (xk) for the 22 (Nsim)
different synthetic topography representations is computed by

∆xi =

√√
N−1

sim

Nsim∑
i=1

(
xi

k,inv − xi,k

)2
, (5.50)

where xi,k is the input value and xi
k,inv the extracted value for the ith topography represen-

tation and kth topography grid point. The tidal Love number is chosen to 0.7000.
Based on the analytical results of sec. 5.3.1, the tests are performed for the three cases

where ilat = 1 and ilong = 1, 2, 4. The variation of the parameter ilong is introduced
because the analysis of the tidal Love number is only possible if the static topography is
determined precisely. The mean uncertainty at the grid points is computed for all the grid
points on which the topographic measurements have an effect. A single measurement may
not only affect the central grid point but also neighboring grid points due to overlap of the
linear and cubic local basis functions. When no data are available for a grid point, then
it is not used for the calculation of the mean uncertainty. The standard deviations of the
extracted topography values are determined with respect to the input topography values.
This is, of course, only possible at those grid points where the input grid point coincides
with an output grid point because the output grid has lower spatial resolution due to the
binning by an integer value.

Figure 5.1 does not only show the results for different weighting schemes, but also
the results for the restrictions described in sec. 5.4. Figure 5.1 shows eight cases where a
non-resonant orbit (909.234 MPO cycles within 1 Mercury year) is used for A to G and a
resonant orbit (909.750 MPO cycles within 1 Mercury years which has a resonance after
4 Mercury years) for H. The different cases can be briefly described as:

• analyses of the topographic altitudes at the grid points and of the tidal Love number
without restrictions and equal weights (A);

• analysis with weighting uniform surface coverage (analogous to eq. 4.5) and with-
out restrictions (B);

• analyses with altitude restriction where observations can only be taken up to a
spacecraft altitude of 1000 km (C);

• similar to C, but with down-weighting the areas in the Polar Regions which are
observed twice by a factor 2 (D);

• analyses using equal weights for all data over the orbit, but restricting the simulated
mission time to 3.5 Mercury years (E);
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Extracted tidal Love numbers (left panels) and mean standard deviations of
the topography (right panels) for different resolutions of the output topography: upper
row for ilong = 1, middle row ilong = 2, and bottom row ilong = 4. Each panel contains the
results of eight different test cases. A non-resonant orbit with 909.234 MPO orbits within
1 Mercury year is used except for case H where a resonant orbit with 909.75 MPO orbits
within 1 Mercury year (resonance with 4 Mercury years) is chosen. The different cases
A to H are described in the text. The green line in the left panels indicates the chosen
input value of 0.7000 for the tidal Love number. The uncertainty is determined from 22
different topography models.
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5 Topography extraction by a local basis function expansion

Figure 5.2: Standard deviations of the extracted topography with respect to the input
topography for data over the entire orbit without any restrictions. Step functions are used
in longitude and latitude direction as local basis functions. ilong is chosen to be 1 for the
upper panel, 2 for the middle panel, and 4 for the bottom panel.
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• similar to E, but using a weighting scheme simulating a uniform coverage of the
tidal period of 2 Mercury years (F);

• analyses with an altitude restriction of observations up to 1000 km, data are only
simulated up to 3.5 Mercury years, and equal weights are chosen (G);

• analyses for a resonant orbit over 4 Mercury years without including any data re-
striction (H).

Combining grid points in longitude direction causes an increase in the uncertainty of the
tidal Love number. Best results can be obtained when the output and input topographic
grid have the same number of grid points. Furthermore, cubic spline functions as local ba-
sis functions give marginally better results than the use of linear functions. Step functions
have generally worse results compared to other basis functions in longitude direction.

Decreasing the number of grid points by increasing ilong causes smoothing of the to-
pography in the equatorial region (fig. 5.2). Best results are obtained for ilong = 2. Only
the plots of the results for step functions as local basis functions in longitude and latitude
direction are shown because the results for linear and cubic spline functions look simi-
lar. If the input and output topography models are chosen with an equal number of grid
points, the spacecraft tracks can be identified in the figures. Step functions in longitude
direction have the main advantage that the plotted standard deviations of the grid points
directly indicate which parts of the surface are observed or not. None of the used weight-
ing scheme improves the uncertainty of the tidal Love number, neither does the mean
uncertainty of the complete topography change (fig. 5.1a and b). The results when using
different local basis functions in longitudinal direction did also not show any dependency
on different weighting schemes. As the change of the weighting scheme does not result in
an improvement of the results as it did in ch. 4, equal weights are chosen for the following
tests (sec. 5.4).

The increase of the uncertainty due to the binning of more grid points in longitude
direction is caused by the smoothing of the topography. MPO’s orbit has a separation of
2 km for its tracks on Mercury’s surface at maximum. Furthermore, when more tracks are
combined, the tidal signal is also smoothed. It seems that the tidal Love number can only
be retrieved precisely, when the topography is also accurately extracted.

The precision of the retrieved topography and the tidal Love number probably cannot
be increased by a proper weighting scheme, because the local basis functions have only
limited overlap with neighboring basis functions. The improvement in ch. 4 is the result
of reducing the quantity of the off-diagonal elements of the design matrix. The weights
simulating uniform surface coverage with measurements have the effect that the summa-
tion over the products of spherical harmonic functions becomes an approximation to the
scalar product between two spherical harmonic functions. Therefore, the outer-diagonal
elements of the design matrix tend to be close to zero the more densely the measure-
ments cover the surface. The method using local basis functions does not require the
application of such a weighting scheme because the inversion matrix has a band structure
which already has very few off-diagonal elements, i.e. most off-diagonal elements are
zero anyway. The weighting scheme is further explored with respect to properties other
than uniform surface coverage for the cases C, D, E, F, and G, which is investigated in
more detail in the following sections.
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5 Topography extraction by a local basis function expansion

5.4 Simulations for temporal and spatial data restrictions
After having optimized the binning of the grid points for the output topography (sec. 5.3)
and having evaluated different weighting schemes (sec. 5.3.2), the data shall be restricted
to more realistic cases. Additionally the very special case of a resonant orbit has been
simulated. Four different investigations are carried out: 1) restricting observations to
spacecraft altitudes below 1000 km (sec. 5.4.1); 2) a limited observation time which is
chosen to 3.5 Mercury years where observations are taken all over the orbit (sec. 5.4.2);
3) limiting the simulation time to 3.5 Mercury years and further including the restriction
that observations are only possible for spacecraft altitudes less than 1000 km (sec. 5.4.3);
and 4) using a resonant orbit instead of non-resonant orbits without limiting the temporal
and spatial data coverage (sec. 5.4.4). The results for the tidal Love number and the
mean standard deviation of the extracted topography values with respect to their input
topography values are shown in fig. 5.1. There, the mean standard deviations are shown
as an average over simulations with 22 different topography realizations. The plots of the
standard deviation of the topography in this sec. 5.4 show the results for the case of using
step functions and the highest resolution with ilong = ilat = 1. In this case the areas which
are less densely covered with data or even without data can easily be distinguished.

5.4.1 Altitude restriction

Restricting the data coverage to regions where the spacecraft orbit has altitudes less than
1000 km resulted in an increase of the uncertainty (sec. 4.4). An improvement was
achieved by down-weighting the area close to the Polar Regions which are observed twice
by a factor of 2. Two sets of simulations are performed where the Polar Regions are either
down-weighted or not. The results for the tidal Love number are shown in fig. 5.1 in all
panels labeled as C and D. The uncertainty of the tidal Love number increases by a factor
of at least 10 when the number of grid points of the in- and output topography is equal.
When grid points are binned, the increase gets less. For ilong = 4 the uncertainty increases
by a factor of 3. The mean uncertainty of the surface topography shown in the right panels
of fig. 5.1 is almost the same in all cases and does not change as much as the uncertainty
of the tidal Love number.

The increase in the uncertainty of the tidal Love number is related to the decrease in
the number of observations. Rough approximations show that the number of simulations
which are used for the analyses are halved. The larger increase for step functions com-
pared to linear and cubic spline functions is related to the effect which the laser shots have.
Step functions affect only the neighboring point, while linear and cubic spline function
affect more points. The best results with smallest uncertainty of the tidal Love number
are obtained when combining two grid points to one for the output topography in lon-
gitudinal direction. In that case, the 1σ-standard deviation is 0.05 (approximately 15 %
uncertainty for a 2σ-standard deviation) for cubic spline functions. The decrease of the
accuracy in the case of the altitude restriction is based on the reduced number of different
tidal elevations which are detected. When all data over the orbit are available, the tidal
signal is observed 24 times within 4 Mercury years at any location on Mercury’s surface.
When the altitude restriction is included, the tidal elevation change is only observed 12
times. Due to the non-resonant orbit the maximum number of 24 different tidal changes
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Figure 5.3: Standard deviations of the extracted topography with respect to the input
topography for the case of restricting the spatial coverage to locations where the spacecraft
altitude is less than 1000 km. Step functions are used in longitude and latitude direction
as local basis functions, and the input and output topographic grid are chosen to have the
same resolution. Dark colors indicate areas with a lower number of observations or no
observations at all.

can in fact not be observed even without altitude restriction; there are only 2 to 3 different
tidal phases at a specific grid point. This is close to the limit where aliasing arises. When
observing an even smaller fraction of the surface, the results can not be trusted any more.

Figure 5.3 shows the extracted standard deviations for 22 different realizations of the
topography when step functions are used as local basis functions in longitude direction.
Due to the non-resonant orbit the surface is covered with a rather uniform standard de-
viation. Restricting the spacecraft altitude nevertheless limits the density of the surface
coverage. The mean global standard deviation increases with increasing ilong. If ilong

equals 1 or 2, the mean global standard deviation will be approximately 16 m for linear
functions and 13 m for cubic spline functions. If ilong is 4, the mean global standard de-
viation will increase for the different basis functions to more than 30 m. Figure 5.3 also
shows the areas where no observations are taken. The areas are related to the pattern of
the spacecraft tracks. This is obvious because local basis functions are used.

When the Polar Regions which are observed twice are down-weighted by a factor of
2, the uncertainty of the tidal Love number increases. The topography extraction does
not change. Therefore no further plot is shown. As there is no improvement after down-
weighting areas which are observed twice, no additional weighting is included in the
following simulations.

5.4.2 Temporal restriction
After having investigated a spatial restriction due to the limitation of the data coverage to
areas where the spacecraft altitude is below 1000 km, it shall be investigated here, whether
and how large a temporal restriction of the data coverage is, i.e. data are taken during 3.5
instead of 4 Mercury years. The temporal restriction mainly has to be understood as a
less complete coverage of the tidal phase. It turns out that a shorter time duration does
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5 Topography extraction by a local basis function expansion

not affect the determination of the tidal Love number h2 using the method with local
basis functions as much as it did for the method using global basis functions (sec. 5.4.1).
The results are plotted as E and F in fig. 5.1. The decrease in accuracy is caused by the

Figure 5.4: Standard deviations of the extracted topography with respect to the input
topography when restricting the temporal coverage to 3.5 Mercury years. Step functions
are used in longitude and latitude direction as local basis functions. The input and output
topographic grids are chosen to have the same resolution. Dark colors indicate areas with
a lower number of observations or no observations at all.

decrease in the total number of observations. The uncertainty is only 1.5 times larger than
the uncertainty which was retrieved by simultaneous analyses for 4 Mercury years. The
retrieved value of the standard deviation of h2 for the linear and cubic spline functions is
about 0.015 (1σ-uncertainty). This is about 5 % for a 2σ-uncertainty, which is a factor
of 2 better than the results which are retrieved by a non-resonant orbit for a simulation
time of 4 Mercury years (sec. 4.4). It is in the same range as for a resonant orbit when
global basis functions expressed as a spherical harmonic expansion are used. Best results
for the tidal Love number are obtained for the cases when the output topographic grid has
the same resolution, ilong = 1, or half the resolution, ilong = 2, of the grid for the input
topography. Combining more grid points in longitude direction causes an increase of the
uncertainty.

Several areas of the surface are observed less. Transforming 3.5 Mercury years into
Mercury’s rotation period means that the simulation lasts 5.25 Mercury days. Three quar-
ters of the surface are less observed, shown in brown color. The standard deviation of the
topography is still in the same range as without temporal restriction. The increase of the
mean standard deviation of the topography due to increasing ilong is still present. Adopt-
ing the weighting scheme to have an equal coverage on the surface with observations
for the tidal cycle of 2 Mercury years does not improve the precision of the tidal Love
number. The tidal Love number is even extracted with larger uncertainty. Therefore, no
weighting scheme due to temporal restrictions is implemented for the further simulations.
The determined standard deviation of the topographic heights with respect to the input
topography at the output grid points are plotted in fig. 5.4 for step functions. The plot
looks similar for both the weighted and equal-weighted topography extraction. Imprecise
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topographic values of the mean standard deviation are assigned to grid points for linear
and cubic spline functions, which are excluded for step functions. This makes the mean
standard deviation much larger than the chosen range in fig. 5.1b.

5.4.3 Altitude and temporal restriction
In the previous sections the temporal and spatial coverage have been restricted indepen-
dently. Now, the effect of applying both restrictions together is investigated. The simula-

Figure 5.5: Standard deviations of the extracted topography with respect to the input
topography when restricting the temporal coverage to 3.5 Mercury years and taking ob-
servations only up to 1000 km spacecraft altitude. Step functions are used in longitude
and latitude direction as local basis functions, and the input and output topographic grids
are chosen with the same resolution. Dark colors indicate areas with a lower number of
observations or with no observations at all.

tion time is chosen to be 3.5 Mercury years and the data coverage is restricted to spacecraft
altitudes less than 1000 km. The extracted uncertainty of the tidal Love number (case G
in fig. 5.1) is slightly larger than for the investigation carried out for the spatial coverage
alone. The slight increase is related to the additional restriction of the number of obser-
vations. In general, the same effects are found as for the independent investigation of the
spatial and temporal coverage. Here, no assumptions of the weighting scheme are made,
as it previously turned out that it does not improve the uncertainty of the tidal Love num-
ber. The global topography for step functions as local basis functions in longitude and
latitude direction is shown in fig. 5.5 for the case when the amount of grid points is equal
in longitudinal and latitudinal direction.

5.4.4 Resonant versus non-resonant orbit
The results for the simulations with a resonant orbit (909.750 MPO cycles within 1 Mer-
cury year; resonance with 4 Mercury years) are plotted in fig. 5.1 as case H for the tidal
Love number and the global mean topography standard deviation. This orbit is very un-
realistic, but it is investigated briefly for comparison to uncertainties retrieved by using
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5 Topography extraction by a local basis function expansion

global basis functions (ch. 4). First, it is important to mention that the mean standard
deviation of the global topography, which has been chosen as a quantity for the precision
of the extracted topography, is outside the usual range for ilong = ilat = 1 and when using
linear and cubic spline functions (fig. 5.1b). When grid points in longitude direction are
binned, this quantity decreases. The optimum is expected to occur for ilong = 4. The

Figure 5.6: Standard deviations of the extracted topography with respect to the input
topography for the case of no temporal and spatial restriction but for a resonant orbit
with 4 Mercury years (909.750 MPO cycles within 1 Mercury year). Step functions in
longitude and latitude direction are used as local basis functions, and the input and output
topographic grid are chosen to have the same resolution. Dark colors indicate areas with
a low number of observations or no observations at all.

tidal Love number is extracted with an uncertainty� 0.01, except when linear and cubic
spline functions are used for the case of the finest resolution of the output grid (equal to the
input topographic grid). These uncertainties are below 5 % with 2σ-uncertainty. The two
exceptions shown in the two upper parts of fig. 5.1a arise from the limited coverage of the
surface. Due to the resonant orbit several parts of the surface are not observed. Figure 5.6
shows these areas. Between the brown regions where no observations are available, some
grid points with topographic altitudes are present, but the majority of them in these re-
gions is hard to determine. A resonant orbit gives much better results than a non-resonant
one for the Love number and for the areas near the spacecraft tracks, but then parts of
the surface are not covered. However, the retrieved uncertainty for a resonant orbit would
allow a better understanding of Mercury’s internal structure and to determine the size of
the outer liquid core with a precision of less than 10 km. This would help to improve
dynamo models for explaining the origin of Mercury’s global magnetic field and would
allow putting more detailed constraints in the models.

In general it can be concluded that the resonant orbit gives good results for the tidal
Love number which are at least five times more precise, except for the two cases which
were explained above. The topography is accurately mapped, but there are several areas
without any observations (fig. 5.6).
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5.4.5 Orbital data coverage restriction
The instruments of the MPO shall be shut-down when Mercury has a true anomaly of 10
to 40 and 310 to 340 degrees. Within these regions MPO will never be in the shade of
Mercury to cool down the instruments. Therefore, simulations are performed for testing
the impact on the extraction of the tidal Love number and of its uncertainty by local basis
functions.

Best results are obtained for using half of the grid points in longitude and the same
number of grid points in latitude direction compared to the number of grid points of
the input topography model. Additionally the altitude restriction is included. The tidal
Love number was determined to 0.7026 ± 0.0549. Including the data restriction due to
thermal constraints gives a tidal Love number of 0.7053 ± 0.0629. Both simulations use
22 different topography models. The uncertainty of the tidal Love number increases by
28 % from the case without thermal constraints. Without data restriction the uncertainty
is about 7.8 %, and with data restriction about 9.0 %.

For the method with local basis functions, the precision of the extraction decreases
approximately linearly with the reduction of the data coverage of the surface. As data
are available in Mercury’s perihelion, where the tidal signal is largest, and as this region
is sampled again at different tidal phase, the effect on the extraction of the tidal Love
number is moderate. The standard deviations of the topography with respect to the input
topography are not much affected either. The regions which are covered less by simu-
lations hardly show an increase of the uncertainty, but as the basis functions are local,
restrictions have less effect than for the approach using the global basis functions.

5.5 Transformation of the extracted topography into a
spherical harmonic expansion

The extracted topography models are also transformed into a spherical harmonic expan-
sion. The description of the topography as a spherical harmonic expansion is impor-
tant as the long-wavelength topography shall be compared and analyzed with the long-
wavelength gravity field of Mercury. The topography is transformed by the approach of a
projection where the extracted topographic grid is transformed into a spherical harmonic
expansion by

Clm =
1

4 π

∫ ∫
T (θ, λ) Plm (cos θ) cos (mλ) sin θ dθdλ , (5.51)

S lm =
1

4 π

∫ ∫
T (θ, λ) Plm (cos θ) sin (mλ) sin θ dθdλ , (5.52)

where Plm (cos θ) are the associated Legendre functions and T (θ, λ) the extracted topo-
graphic altitudes at the grid points. Three different cases are investigated (fig. 5.7): a)
simultaneous analysis without any restrictions for a non-resonant orbit (�), b) simultane-
ous analysis with restrictions by the maximum spacecraft altitude where observations can
be taken up to 1000 km for a non-resonant orbit (×), and c) simultaneous analysis without
an restrictions for a resonant orbit (◦). The transformation is compared for three different
grid definitions: I) ilong = 1, II) ilong = 2, and III) ilong = 4. The mean degree error is

71



5 Topography extraction by a local basis function expansion

(a) (b)

(c)

Figure 5.7: Harmonic degree amplitude
√

Vl (eq. 3.1) of static input topography (·) and
mean degree error El (eq. 5.53) of the input topography (4), as well as mean errors of
the transformed output topography for step functions: for a non-resonant orbit without
data restrictions (�), for a non-resonant orbit with limiting measurements up to 1000 km
spacecraft altitude (×), and for a resonant orbit with 4 Mercury years (◦). No grid points
are combined in latitude direction (ilat = 1). In panel a) no grid points are combined in
longitude direction (ilong = 1), in b) 2 grid points are combined (ilong = 2), and in c) 4 grid
points (ilong = 4).

similarly derived as eq. (4.7),

El =

√√
l∑

m=0

(
Cinv

lm −Clm

)2
+

(
S inv

lm − S lm

)2
, (5.53)

where the index inv indicates topography coefficients obtained by the transformation.
Figure 5.7a shows one specific input topography model (·) and the uncertainty of the

transformation when the input topography are directly transformed back into a spherical
harmonic expansion (4). This precision is the upper limit of the precision which can be
obtained by transformation of the output topography. The standard deviations for the 22
different topographies is marginally small with less than 2 cm uncertainty. Even degrees
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(a) (b)

(c)

Figure 5.8: Mean errors of the transformed output topography applying now linear func-
tions, else similar to fig. 5.7.

are more accurately extracted than the odd ones. The function of the odd degrees has a
maximum value at the equator, while the even ones are zero there. A large uncertainty
can be predicted for the equatorial region, as there the laser tracks are widely spaced to
each other. The surface weighting factor sin θ makes this effect even more pronounced.

Figure 5.7 includes the results of the performed transformations when step functions
are used as local basis functions in longitude direction whereas in fig. 5.8 the local basis
functions are linear functions and in fig. 5.9 are cubic spline functions. The parameters of
the different orbits are given in tab. 3.1.

The transformation of the results for step functions in longitudinal direction has a
dependency on the binning parameter ilong and on the different orbit restrictions. The
mean errors of the degrees are in the range from 5 cm for low degrees up to 20 cm for the
maximum degree of 64 when a non-resonant orbit and equal number of grid points of the
input and output topography are used. The mean errors increase to 30 cm for low degrees
up to 80 cm for the maximum degree in the case of a resonant orbit and the binning
parameter ilong = 4 (fig. 5.7). The uncertainties El are rather large compared to the results
obtained with linear and cubic spline functions.

The errors of the transformation for linear functions increase with increasing ilong from
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(a) (b)

(c)

Figure 5.9: Mean errors of the transformed output topography applying now cubic spline
functions, else similar to fig. 5.7.

an error of about 6 cm for ilong = 1 to 30 cm for ilong = 4. Such an increase has also
been found in sec. 5.3.2. The errors of the transformation for cubic spline functions in
longitudinal direction do not depend as much on ilong as the errors for linear functions and
are approximately 10 cm for ilong = 1, 2 and less than 20 cm for ilong = 4. The effect
is not larger than several millimeters for different tests which are performed. Restricting
observations to 1000 km spacecraft altitude has a minor effect. The uncertainties only
increase by several millimeters. Different orbits do not significantly affect the analyses,
while increasing ilong has large effect.

If the obtained results are compared with the results of sec. 4.4, the errors of this ap-
proach are smaller than for the direct determination of the spherical harmonic coefficients.
The errors for the cubic spline functions and for the binning parameter ilong < 4 are half
as large as for the direct determination (sec. 4.4).

Figures 5.7 to 5.9 also show that the mean error for degree 2 is significantly larger
(approximately 30 cm) than the other mean errors for all the tests. Analyzing the different
coefficients of degree 2 shows that the coefficients C20 and C22 have an offset. This offset
corresponds to the permanent tidal deformation of Mercury due to the solar gravitation.

74



5.5 Transformation of the extracted topography into a spherical harmonic expansion

From eq. (2.22) and (5.51) it follows that the quantity of C20,tide is given by approximately

C20,tide ≈ −h2
MSun

MMerc

a4

R3

1
4π

∫ π

0

∫ 2π

0

1
16

(
3 cos2 θ − 1

)2
√

5
π

sin θdθdλ

≈ −0.3 m

for h2 = 0.7. A more detailed evaluation will follow as future work.
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6 Extraction of the tidal signal at orbit
crossovers in the polar regions

The previous chapters contain approaches where the basis functions are either globally
expressed as a spherical harmonic expansion (ch. 4) or locally expressed as a rectangular
grid (ch. 5). Both approaches are based on a simultaneous extraction of the static topogra-
phy and the time-dependent variations of the topography. The parameters describing the
time-dependence of the topography are the tidal Love number h2 and the 88-day forced
libration amplitude Φlib. The following investigations neglect a more detailed analysis
for the global static topography and the forced libration amplitude (sec. 2.4). The pre-
sented approach investigates in more detail crossovers and uncertainties which limit the
uncertainty of a crossover. By determining the uncertainty of a crossover, estimations
are conducted to investigate a possible uncertainty for the tidal Love number which is
assumed to have a peak-to-peak amplitude of 60 cm in the Polar Regions of Mercury.

Smith et al. (2001a) show that an extraction of snow-depth variations for Mars is pos-
sible in the polar region by using the laser altimeter data (MOLA, sec. 2.3.3) of the MGS
spacecraft. The snow-depth variation has an amplitude of 1 m which is approximately the
amplitude of the tidal Love number on Mercury.

6.1 Introduction
Chapter 4 and 5 show approaches for extracting the global topography simultaneously
with the Love number, and additionally in a second step the libration amplitude (Koch
et al. 2008, 2009a). Both time-dependent variations (sec. 2.4), tidal Love number h2 and
libration amplitude Φlib, have their maximum amplitude in the equatorial plane. While
the amplitude of the libration decreases to zero closer to the poles, there is still some tidal
elevation to be expected in the Polar Regions. The tidal amplitude is three times smaller
than in the equatorial region, but still present.

Equation (2.22) describes the distribution of the tidal signal Ψ on Mercury’s surface
depending on the solar hour angle Λ

3
2

cos2 Ψ − 1
2
≈ −1

4

(
3 cos2 θ − 1

)
+

3
4

sin2 θ cos 2 (Λ + λ) . (6.1)

The first term on the right side of the equation is the long periodic, zonal part of the tide,
while the semi-diurnal (sectorial) part of the tide is included in the second term. The
whole equation depends on the co-latitude θ, and has a maximum for the cosine-term at
the poles (θ= 0 and 180 ◦) and for the sine-term at the equator (θ=90 ◦). Equation (6.1)
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becomes
3
2

cos2 Ψ − 1
2
≈ −1

4

(
3 cos2 θ − 1

)
, (6.2)

if θ ≈ 0 degree or θ ≈ 180 degrees. Mercury also shows a tidal effect at its poles because of
its eccentric orbit which leads to a variation of the strength of solar gravitation (sec. 2.1).
Orbit crossovers, which are concentrated in the Polar Regions of Mercury, can be used for
extracting time-dependent topographic variations. For the computation of a topographic
height difference between two laser tracks passing a crossover at different times, three
groups of parameters have to be investigated:

1. Uncertainties related to the measurement have to be analyzed. This includes uncer-
tainties of the spacecraft position, the range uncertainty, and pointing uncertainties
(sec. 6.2.1).

2. The small-scale topography between the next neighboring laser shots and the cross-
over has to be considered as uncertainty, as it is not measurable (sec. 6.2.2).

3. Additional investigations have to be carried out for the uncertainties arising from
the interpolation method for the topography between the next neighboring laser
shots and the crossover (sec. 6.2.3).

The main limitation of the analysis is based on whether the instrumental and positioning
uncertainties are the main error source. In that case a more detailed analysis of system-
atic errors with non-Gaussian distribution is needed. These errors will be studied during
calibration of the instrument. The instrument temperature is one of those systematic un-
certainties. The latter is effected by Mercury’s surface temperature variation which can
be described by trigonometric functions and by Mercury’s orbital parameters. A more
detailed analysis has to be part of future work (ch. 8).

The yet unknown small-scale topography of Mercury is estimated in more detail by
using investigations of the Moon, Mars, Venus, and other terrestrial bodies. The distri-
bution of the small-scale topography is expressed as power spectral density (fig. 2.3) to
show the direct relation to the approach of ch. 4 and 5. There, the input topography is
expressed as a spherical harmonic expansion where the spectral density is a function of
the spherical harmonic degree (sec. 3.1).

Different interpolation methods can be used here. To take into account more observa-
tions at larger distances to a crossover, higher-order interpolation methods are analyzed.
Simple interpolation such as linear interpolation is useful when only neighboring obser-
vations of the respective crossover are taken into account. A higher-order interpolation
can give a better fit of the surface, while low-order interpolations may reflect less detail
of the surface structure. More variation than that of a simple slope is shown in general for
variations within 300 m distance. Two laser shots are separated by 300 m for the orbit of
MPO in the equatorial region if it is mapped by BELA with a 5 Hz shot frequency. For
the Polar Regions this value decreases due to slower motion. In that part of the orbit, the
300 m represent the worst case. As the whole analysis is a worst case study, the largest
possible value is chosen. The slope variation is not known. The easiest approximation is
to use low order interpolation methods, even if they smooth the topography (sec. 6.3.1).

Small-scale topography and interpolation uncertainties have to be expressed in higher
orders because the tidal signal which shall be retrieved is assumed to be only 30 cm.
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This is only half of the predicted amplitude of the tidal elevation in the Polar Regions of
Mercury. The uncertainty of the laser altimeter is assumed to be about 1 m after post-
processing. The determination of the tidal amplitude cannot directly be achieved from
one single topographic difference measurement at a crossover. Therefore, the approach
is based on a statistical analysis of all possible crossovers where the contributions of
different sources of uncertainty are included by an error propagation (sec. 6.2.4).

6.2 Setup of the analysis
Different error sources have to be taken into account for the analyses of topographic mea-
surements at orbit crossovers: a) interpolation uncertainties, b) uncertainties due to the
small-scale topography between the observations, and c) positioning and instrumental
uncertainties. The complete mathematical approach on which the analysis is based will
be explained in detail.

6.2.1 Positioning and instrumental uncertainties
Positioning and instrumental uncertainties which affect the determination of crossovers
will separately be described. At the end a final equation summarizes the previously men-
tioned uncertainties that are then used for the error estimation (sec. 6.2.4) by an error
propagation which assumes that all used uncertainties are purely Gaussian.

Instrumental uncertainties are a sum of different single components. The first compo-
nent is the uncertainty of the spacecraft position. Positioning uncertainties of the space-
craft will be observed by the radio science experiment (Milani et al. 2001), which tracks
the position of the spacecraft. Further uncertainties are measured from the star tracker
camera which is needed for the orientation of the spacecraft itself. The positioning un-
certainty is the most important one. The spacecraft position is abbreviated as S C. The
uncertainty is assumed to be 1 m (sec. 2.2.3). This uncertainty is assumed to be known
with a precision of 0.1 m after post-processing the observations of the radio science ex-
periment MORE of the BepiColombo mission (personal communication with Iess, 2006;
Milani et al. (2001)). An uncertainty of 1 m is assumed as worst case to ensure that the
estimations are not too optimistic. Furthermore, there are instrumental uncertainties of the
laser altimeter itself. Instrumental uncertainties of laser altimeter observations are ana-
lyzed by Gardner (1982, 1992). He found that the main uncertainties arise by the pointing
jitter, beam divergence, and surface slope within the laser footprint. Uncertainties of laser
altimeter records are described in more detail in sec. 2.3.1.

When the altimeter does not point towards nadir, the main angular offsets are known
and can be corrected within the analyses. Therefore, they are set to zero and only the
pointing jitter remains. Pointing jitter is the sum of the pointing uncertainties of the
instrument which are not known. These uncertainties are marginally small. Gunderson et
al. (2006), Thomas (2006) and Thomas et al. (2007) specify the instrumental parameters
in more detail. A brief overview for the BepiColombo laser altimeter is given in sec. 2.3.5
and in tab. 2.4.

The topography height for one measurement can be derived as

T = S C − R − Ra cos(α) , (6.3)
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where T is the topographic height at the sampling point, S C is the radius from the center of
mass of Mercury to the spacecraft, R the radius of the reference sphere which is assumed
to be equal with the aeroid of the planet, Ra the range of the altimeter, and α the off-nadir
angle of the instrument which is set to zero for simplification.

The analyses of topographic difference measurements at crossovers need several ob-
servations along two tracks. The topographic difference on the one hand is based on
uncertainties from the determination of the crossover, and on the second hand on tidal el-
evation changes. The number of observations depend on the chosen interpolation method
(sec. 6.2.3). Altimetry measures topographic points along a track. The distance between
two observations depends on the radial velocity of the spacecraft and the shot frequency
of the instrument. The distance between two observations has to be assumed to be known
(sec. 6.2.2). All observations used for determining a crossover are assumed to have the
same range of uncertainties. The observations affecting the determination of a crossover
are taken within 1 s. Huge variations of uncertainties within this time-duration are not
expected as the spacecraft does not change its position or orientation. Therefore the posi-
tioning and pointing uncertainties along one spacecraft track can be assumed to be nearly
stable. It is more critical to assume that the uncertainties are approximately the same for
all the different tracks. Therefore worst case values are chosen for the study. Assuming
a similar range uncertainty for all positions is realistic, as observations are taken at the
same part of MPO’s orbit. Non-Gaussian uncertainties are neglected, although they are
important, but are beyond the scope of this work. The pointing direction of the instrument
can vary within the different tracks, but this can be corrected due to the observed off-nadir
angle α. More important is that the pointing jitter does not become larger than the given
maximum value which is chosen for the analyses. This value is given by Gunderson et al.
(2006) and Thomas (2006).

6.2.2 Uncertainties related to small-scale topography

The second uncertainty which affects the uncertainty of a measurement at a crossover is
the small-scale topography between the centroids of two laser records. The small-scale
topography of Mercury is described in more detail (sec. 2.1) where the introduction of
Mercury as a planet, its orbit, its surface, its internal structure, and its weak magnetic
field has already been given.

Mercury is assumed to be an end-state planet which is geologically very old. Atmo-
spheric erosion can be neglected because Mercury does not have any significant atmo-
sphere, only an exosphere. Mercury’s surface can be assumed being similar to the surface
of the Moon or the rough surfaces of the Southern Highlands of Mars.

A detailed description of the Moon’s topography can be found in McEwen and Robin-
son (1997), Neumann (2001), Rummel (2005) and Wieczorek (2007). For Mars, Aharon-
son et al. (2001) have measured the power spectral density of the topography for two types
of areas: a) the Southern Highlands, which are geologically old and thus heavily cratered,
and b) the Northern Lowlands, which resemble an ocean floor dominated by geological
features from sedimentation. Figure 2.3 shows the different types of areas expressed as a
power spectral density.
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The small-scale topography of the Northern Lowlands is described by

P
(
1
λ

)
= 1

m2(
cycles

km

) (
1 km
λ

)−β
= 103 m3

(
103m 2π

2π λ

)−β
= PSTk−β; F0 ≈ 3.3 10−5 m3−β , (6.4)

where k is 2π/λ and β = 3.4.
Generally, the two types of Martian topography described by Aharonson et al. (2001)

can be characterized by three parameters (see eq. (6.5) below):

1. The roll-over scale λro,SH/NL = 2π/kro,SH/NL indicating the transition from the large
scales dominated by relief-building tectonics and volcanism to the small scales
dominated by planation processes such as sedimentation and erosion. The sub-
scripts SH and NL denote “Southern Highlands” and “Northern Lowlands.”

2. The pre-factor Pro,SH/NL indicating the power spectral density at the roll-over scale.

3. The spectral indices βLS/SS,SH/NL of the power spectral density as a function of the
wave number k = 2π/λ, which usually follows a power law. The subscripts LS and
SS denote large-scale (λ > λro) and small-scale (λ < λro) topography.

With these parameters the power spectral density is expressed as

P (k) = Pro,SH/NL

(
k

kro,SH/NL

)−βLS/SS,SH/NL

. (6.5)

The parameters are λro,SH ≈ λro,NL ≈ 10 km, βSS,SH ≈ βSS,NL ≈ 3.4, βLS,SH ≈ 2.0,
βLS,NL ≈ 1.4, Pro,SH ≈ 7.5 × 106 m3, and Pro,NL ≈ 2.3 × 105 m3.

The large-scale power spectral density of the Martian Southern Highlands is approxi-
mately – within a factor 2 – concordant with the scaling law for the degree power used in
the presented results of ch. 4 and 5

Vl =
A2

l2 ; A ≈ 2000 m . (6.6)

If wave numbers kl = l/RMerc are defined, RMerc ≈ 2440 km, the degree power is the
integral over the power spectral density of the topography from kl to kl+1

Vl =

∫ kl+1

kl

dkP (k) =

∫ kl+1

kl

dkP0k−β

=
P0

1 − βk1−β
l

( l + 1
l

)1−β
− 1

 ≈ P0

l
k1−β

l

= P0k1−β
1 l−β =: A2l−β . (6.7)

This means, the parameter A is A = k1−β
1 , or if β = 1, then A = P0/k1 = P0RMerc. From

Pro,SH ≈ 7.5 × 106 m3 and λro,SH ≈ 10 km, P0 = 0.075 (2π)2 m3 is computed, and thus
A2 ≈ 7.4 × 106 m2 or A ≈ 2720 m. From the comparison of the impact crater size-
frequency distributions of Mars, Mercury, and the Moon in fig. 21 of Head et al. (2007),
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6 Extraction of the tidal signal at orbit crossovers in the polar regions

one can conclude that Mercury should be somewhat subdued in comparison to the Moon.
Therefore, the number A ≈ 2000 m is a conservative estimate.

The amplitude of the small-scale topography at wave numbers larger than kBELA =

π/300 m−1 ≈ 0.01 m−1 is calculated as

∆T 2 (k > kBELA) =

∫ ∞

kBELA

PSTk−βdk =
PSS

β − 1
k1−β

BELA = 0.45 m2

⇒ ∆T (k > kBELA) ≈ 70 cm , (6.8)

where the values given for ∆T apply for PST = 10−4 m3−β and β = 3.4 describing the
topography of the Southern Highlands of Mars.

The topography is split into a long-wavelength part TLS (x) including wave numbers
k < kBELA and a short-wavelength part TS S (x) including wave numbers k > kBELA, respec-
tively

T (x) = TS S (x) + TLS (x) . (6.9)

6.2.3 Uncertainties caused by interpolation
The position of a crossover is assumed not to be identical with the position of a laser
record in most cases. If it was identical, the tidal amplitude and the tidal Love number h2

could be determined very precisely. Using only the two neighboring laser records for in-
terpolating the topography to the crossover has large uncertainties. A better description of
the surface can be achieved by higher order interpolation methods, as spline interpolation
or a polynomial interpolation which more precisely approximate the laser records.

Low-order interpolation methods, as step function or linear interpolation, can be used
for approximations. As shown in sec. 6.2.2, Mercury has an old surface which can be
described similar to the Moon’s surface or Martian Southern hemisphere which is highly
cratered. The surface has then larger altitude variations between two laser records than
the approximated amplitude of the tidal Love number of 30 cm (sec. 6.1).

6.2.3.1 Cubic spline interpolation

The uncertainty contribution of a cubic spline interpolation S (x) to the topography func-
tion TLS (x) is given in, e.g., Freund and Hoppe (2007) as

∆TCS =| F (x) − S (x) |≤ 2.5 L4 supr
∣∣∣T (4)

LS (x)
∣∣∣ , (6.10)

where L ≈ 300 m is the shot-to-shot distance for measurements of BELA when MPO
is in periherm and a shot frequency of 5 Hz is assumed. This is the largest shot-to-shot
distance. For all other parts of the orbit of MPO, the laser shots are closer to each other.
The value of 300 m is chosen to be a worst case, when observations can continuously be
taken all over the orbit.

The fourth derivative of the function TLS (x) can be estimated from the Fourier spec-
trum of the topography

T (4)
LS (x) ≈

√
2
π

∫ π
L

0
dkk4− β2 cos (kx) (6.11)
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⇒
〈∣∣∣T (4)

LS (x)
∣∣∣2〉 ≤ 1

2π

∫ π
h

0
dkPS T k8−β =

PS T

2π (9 − β)

(
π

L

)9−β

⇒ 2.5L4
∣∣∣T (4)

LS (x)
∣∣∣ ≤ 2.5

√
PS T

2π (9 − β)
π

9−β
2 L

β−1
2 . (6.12)

This leads to an interpolation uncertainty of

∆TCS = 10.4 0.00057 3001.2 m ≈ 56 m . (6.13)

Interestingly, the estimate of the fourth derivative diverges, if TS S (x) is included. Addi-
tionally, the residual uncertainty ∆TCS when approximating TLS (x) is quite large and not
sufficient for a determination of the tidal Love number from a crossover analysis.

6.2.3.2 Polynomial interpolation

Another approach for the interpolation of the crossover is based on a polynomial interpo-
lation, for which Freund and Hoppe (2007) give a residual uncertainty of

T (x̄) − P0 1 ··· n (x̄) =
ω (x̄) T (n+1) (ξ)

(n + 1)!
. (6.14)

The mean distance of approximately 300 m between two laser shots in the frame of the
BELA instrument is used. Then the following expression can be found, where n has to be
optimized for an minimum value √

k2n+3−β
BELA

2n + 3 − β
ω (x)

(n + 1)!
. (6.15)

High polynomial interpolation show the effect of Runge’s phenomena which states that
within an interpolation interval (n + 2) maxima and minima will be present, especially
close to the borders of the interpolation. The interpolation is done for a) n = 1 for a
linear polynomial interpolation, b) n = 2 for a quadratic polynomial interpolation, and c)
n = 3 for a cubic polynomial interpolation. They can be written as

T n=1
int =

√
k5−β

5 − β

√
PST

2π
L ∆L − ∆L2

2
, (6.16)

T n=2
int =

√
k7−β

7 − β

√
PST

2π
L2 ∆L − ∆L3

6
, (6.17)

T n=3
int =

√
k9−β

9 − β

√
PST

2π
2 L3 ∆L − L2 ∆L2 − 2 L ∆L3 − ∆L4

24
. (6.18)

Equations (6.16) to (6.18) include the uncertainty based on the interpolation. They are
assumed to be the standard deviation of the interpolation.

According to the Nyquist theorem, BELA cannot sample wave numbers k > kBELA.
The uncertainty for a topography difference measurement at a crossover introduced by the
small-scale topography TS S (x) depends on the distances ∆LI and ∆LII from a crossover
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6 Extraction of the tidal signal at orbit crossovers in the polar regions

to the next measurement locations belonging to the crossing spacecraft tracks I and II.
This uncertainty can be estimated by making use of the autocorrelation function and the
Wiener-Khintchine theorem〈

|TS S (x) − TS S (x + ∆L)|2
〉

= 2 [RS S (0) − RS S (∆L)] , (6.19)

where

RS S (∆L) =
1
π

∫ ∞

π/h
PS S (k) cos (k∆L) dk . (6.20)

Applying partial integration gives

RS S (∆L) =
PS T

π

k−β+1
BELA

β − 1

[
cos (kBELA∆L) +

∆L kBELA

2 − β sin (kBELA∆L) (6.21)

+
∆L2

2 − β
∫ ∞

kBELA

dkk2−β cos (kBELA∆L)
]
. (6.22)

This leads to 〈
|TS S (x) − TS S (x + ∆L)|2

〉
=

= ∆TS S = (kBELA∆L)
√

CBELA (β) R0
BELA


√

1 +
∆L2

(L − ∆L)2


−1

, (6.23)

with

CBELA (β) ≤ β

β − 3
, (6.24)

R0
BELA =

PS T

π

k1−β
BELA

β − 1
, (6.25)

where PS S is computed by eq. (6.5). β is assumed to be larger than 3. The above expres-
sion takes into account the measurements at x and x + L.

The uncertainties for the small-scale topography and the uncertainties based on the
interpolation method are combined to one general equation which depends on ∆L where
∆L is the distance to the closest observation on one track:

σ∆L =

√
(∆TSS)2 +

(
T n=i

int

)2
. (6.26)

6.2.4 Error propagation of the uncertainties

An overview over the included uncertainties is given in sec. 6.2.1 to 6.2.3. Here, the error
propagation is computed for those uncertainties which affect a crossover. First the main
equations of the above sections are summarized and afterwards the derivatives are finally
shown. The general approach is described in detail in Niemeier (2002).
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6.2.4.1 Basic equations for the error propagation

The analytical approach is based on the above mentioned uncertainties. The following
steps are carried out:

• Measurement Ti, j

The observation Ti, j can be described as the ith measurement on track j which
includes all positioning and instrumental errors (eq. 6.3).

• Crossover TC; j

The topographic measurement at a crossover depends on the observations on track
j and their uncertainties as well as on the uncertainties related to the interpolation
and the small scale topography.

• Crossover difference ∆TC

The topographic height changes at the crossovers can be determined as a difference
between two chosen orbits j and j + 1:

∆TC = TC; j − TC; j+1 . (6.27)

• The uncertainty of the topographic difference σ∆TC at a crossover is computed from
the rules of error propagation.

• The mean uncertainty of the topographic difference measurements at all crossovers
σ̄2

∆TC
is:

σ̄2
∆TC

=
σ2

∆TC

N
. (6.28)

6.2.4.2 Derivatives for the error propagation

The correlation between the single uncertainties is neglected for the error propagation
here. This is only partly true; especially for the positioning and instrumental errors cor-
relations are expected. Further analyses have to be performed where correlations are
considered. The variance matrix has the following structure

P = diag
(
σ2

S C; j;σ
2
Ra; j;σ

2
α; j;σ

2
∆L; j;σ

2
S C; j+1;σ2

Ra; j+1;σ2
α; j+1;σ2

∆L; j+1

)
. (6.29)

The functional matrix has the following structure

F =

[
∂∆TC

∂S C j
;
∂∆TC

∂Ra j
;
∂∆TC

∂α j
;
∂∆TC

∂σ∆L j

;
∂∆TC

∂S C j+1
;
∂∆TC

∂Ra j+1
;
∂∆TC

∂α j+1
;
∂∆TC

∂σ∆L j+1

]
. (6.30)

The estimation of the measurement uncertainty at the crossover by error propagation has
the structure

σ2
∆TC

= F P FT . (6.31)
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The partial derivatives of eq. (6.27) are

∂∆TC

∂S C j
= 1 , (6.32)

∂∆TC

∂S C j+1
= −1 , (6.33)

∂∆TC

∂α j
= −Ra j sin(α j) , (6.34)

∂∆TC

∂α j+1
= Ra j+1 sin(α j+1) , (6.35)

∂∆TC

∂Ra j
= − cos(α j) , (6.36)

∂∆TC

∂Ra j+1
= cos(α j+1) , (6.37)

∂∆TC

∂σ∆L j

= 1 , (6.38)

∂∆TC

∂σ∆L j+1

= −1 . (6.39)

6.3 Results
The statistical estimation is divided into three different parts, which are separately inves-
tigated. First the error propagation at one single crossover is analyzed in more detail, i.e.
which uncertainty of sec. 6.2 may have the largest impact. It will then be shown that there
is no dependency of ∆L which is previously defined as the distance between two laser
shots. At the end, a closer look is taken to the uncertainty which can be achieved when
averaging the measurements at all crossovers in the whole polar region. This can directly
be translated into the achievable precision for the tidal Love number (Koch et al. 2009b).

6.3.1 Error propagation at a crossover
The error propagation is described in more detail in sec. 6.2.4. The different components
of the crossover uncertainty are explained in sec. 6.2.1 to 6.2.3. It will be shown that
the uncertainties based on the interpolation and small-scale topography have the largest
effect. In a second step the error propagation of all components is computed for different
interpolation methods. The achieved uncertainties at the crossovers can then be used in a
second step for the determination of a mean uncertainty (sec. 6.3.2).

The results for the single components are listed in tab. 6.1. The uncertainties caused
by the positioning, pointing, and instrumental errors are assumed to be equal for all laser
shots contributing to the determination of the tidal amplitude at a crossover because the
shot points affecting a measurement at a single crossover are taken within less than 1 s.
The variation of the positioning, pointing, and instrumental uncertainties are assumed to
be marginally small within a time-duration less than 1 s. The crossing track is assumed
to be in a similar range as for the first track. A more detailed description for solving the
idealized simulation will be given in ch. 8.
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Table 6.1: List of the uncertainties of the single error components at one crossover in
meter. The uncertainties of the small-scale topography ∆T and the interpolation f n

int are
shown for different distances from the crossover ∆L up to the center between two shot
points which is assumed to be 150 m. The uncertainties for the Polynomial interpolation
are shown for the orders n = 1, 2 and 3

Positioning uncertainty σS C : 1.00
Pointing jitter uncertainty σα : 4 10−7

Range uncertainty (for σRa = 0.2 m) : 0.20
Range uncertainty (for σRa = 1.0 m) : 1.00
∆T , β = 3.4, ∆L = 0.0 m : 0.00
∆T , β = 3.4, ∆L = 30.0 m : 1.42
∆T , β = 3.4, ∆L = 60.0 m : 2.78
∆T , β = 3.4, ∆L = 90.0 m : 3.95
∆T , β = 3.4, ∆L = 120.0 m : 4.77
∆T , β = 3.4, ∆L = 150.0 m : 5.06
f n=1
int , β = 3.4, ∆L = 0.0 m : 0.00

f n=1
int , β = 3.4, ∆L = 30.0 m : 0.60

f n=1
int , β = 3.4, ∆L = 60.0 m : 1.07

f n=1
int , β = 3.4, ∆L = 90.0 m : 1.40

f n=1
int , β = 3.4, ∆L = 120.0 m : 1.60

f n=1
int , β = 3.4, ∆L = 150.0 m : 1.67

f n=2
int , β = 3.4, ∆L = 0.0 m : 0.00

f n=2
int , β = 3.4, ∆L = 30.0 m : 0.46

f n=2
int , β = 3.4, ∆L = 60.0 m : 0.90

f n=2
int , β = 3.4, ∆L = 90.0 m : 1.27

f n=2
int , β = 3.4, ∆L = 120.0 m : 1.57

f n=2
int , β = 3.4, ∆L = 150.0 m : 1.75

f n=3
int , β = 3.4, ∆L = 0.0 m : 0.00

f n=3
int , β = 3.4, ∆L = 30.0 m : 0.55

f n=3
int , β = 3.4, ∆L = 60.0 m : 1.01

f n=3
int , β = 3.4, ∆L = 90.0 m : 1.32

f n=3
int , β = 3.4, ∆L = 120.0 m : 1.43

f n=3
int , β = 3.4, ∆L = 150.0 m : 1.28
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The single components are further plotted in fig. 6.1. The uncertainties are plotted
versus the distance from a shot point to the crossover between two shot points ∆L. The
different symbols denote the uncertainty arising from the positioning uncertainty (�), from
pointing jitter (∗), from the range measurement (4), from the small-scale topography (×),
and from the interpolation (∇). The different interpolation methods are presented with
different line styles: green for n = 1, cyan for n = 2, and magenta for n = 3. The range
uncertainty is assumed to be red for 0.2 m, and blue for 1.0 m. Table 6.1 and fig. 6.1 show
that the main influence comes from the small-scale topography which is unknown, and
can only be estimated (sec. 6.2.2).

Figure 6.1: Uncertainties of each single component of the analyses plotted vs. the dis-
tance of the crossover to the closest observation ∆L (at maximum 150 m): the positioning
uncertainty (�), the uncertainty due to pointing jitter (∗), the range uncertainty (4), the
error related to the small scale topography (SST, ×), and the error based on the interpo-
lation method (∇). The range uncertainty is plotted for the cases of 0.2 m uncertainty
(red), and of 1.0 m uncertainty (blue). The polynomial interpolation is made for the linear
case (n = 1; blue), for a quadratic expression (n = 2; cyan), and for a cubic expression
(n = 3; magenta).

Analyses are only performed for distances of ∆L up 150 m which is half of the distance
between two laser shots. When the laser shot is further away than the center point, the next
laser shot is taken. Uncertainties resulting from small-scale topography and interpolation
are investigated up to this point and have there maximum at the center point. Instrumental
and positioning uncertainties are only related to the laser shot itself and do not depend on
the exact position of the crossover. The crossover depends on the uncertainty of the laser
shot which is observed there. The range uncertainty and pointing uncertainty are chosen
to satisfy the recent requirements of the BELA laser altimeter. The pointing uncertainty is
chosen to fulfill eq. (6.3) where the pointing is approximated by a simple computation and
the assumption that the surface is strictly flat at the center of the laser footprint. Then the
pointing uncertainty is smaller than 1 mm and can be neglected. Extending the laser shot
from a point measurement to the laser footprint which is affected by the surface slope,
the uncertainty basing on pointing uncertainties increases. For simplification, the laser
footprint is assumed to be marginally small. The range uncertainty is firstly assumed
to be 1 m for observations without post processing. Post processed data reach a range
uncertainty of 0.2 m. The positioning uncertainties will vary due to gravity forces, solar
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radiation, etc. For this, an uncertainty of 1 m is assumed. Higher precision shall be
possible for some parts of the orbit for other parts a lower one on the other hand.

Figure 6.1 and table 6.1 show that the instrumental and positioning uncertainties are
the main uncertainty up to a distance of 30 m from the closest shot point. The small-scale
topography and the interpolation uncertainty dominate the error of a crossover after 30 m
distance from an observation (fig. 6.1). That means the small-scale topography is the
dominant uncertainty in most cases.

In a second step, the error propagation is computed for all above mentioned and an-
alyzed uncertainties. Figures 6.2 to 6.4 show the retrieved results for one crossover. A
linear polynomial interpolation (fig. 6.2), a quadratic polynomial interpolation (fig. 6.3),
and a cubic polynomial interpolation (fig. 6.4) are used for a small range uncertainty of
0.2 m which can be determined by post-processing of the data, and of 1.0 m which can be
assumed for the raw data. The range uncertainty of 0.2 m is shown in the left panel and
of 1.0 m in the right panel of the figures. These figures illustrate the relation between the
distance of a crossover to its closest observation ∆LI on one track and the uncertainty at a
crossover. The lines show the uncertainty as a function of the distance LI on the one track,
for certain values ∆LII on the other track for the cases when the point of observation on
the second track and the crossover are identical (�), in 30 m distance (◦), in 60 m (∗), in
90 m (∇), in 120 m (4), and in 150 m (×) distance.

(a) (b)

Figure 6.2: The uncertainty at a crossover after computing the error propagation plotted
vs. the distance of the crossover to the closest observation on the one track ∆LI for a
polynomial interpolation with degree n = 1. The left panel shows the uncertainty at
the crossover for a range uncertainty of 0.2 m, and the right one for an uncertainty of
1.0 m. The different lines refer to certain distances ∆LII between the crossover and the
observation point on the second track for the cases ∆LII = 0 m (�), ∆LII = 30 m (◦),
∆LII = 60 m (∗), ∆LII = 90 m (4), ∆LII = 120 m (×), and ∆LII = 150 m.

The different orders of polynomial interpolations include several advantages and dis-
advantages. The cubic polynomial interpolation has an additional oscillation close to the
center point. This effect is called Runge’s phenomena. The Runge’s phenomena causes
(n+2) maxima and minima within an interpolation interval for an interpolation function of
order n. Higher polynomial orders than the cubic one are not simulated because of this ef-
fect. The linear and quadratic polynomial interpolations give results of similar precision.
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(a) (b)

Figure 6.3: Same as fig. 6.2 for a Polynomial interpolation with n = 2.

(a) (b)

Figure 6.4: Same as fig. 6.2 for a Polynomial interpolation of n = 3.

The linear polynomial interpolation gives better results when the distance between the
closest shot point and the crossover (∆L) is larger than 140 m. The quadratic polynomial
interpolation has smaller uncertainties close to the shot point. The quadratic interpolation
leads to a better determination of the topographic height difference at the crossover. It is
used for the following analyses of the mean uncertainty at crossovers, sec. 6.3.2.

6.3.2 Mean uncertainty at the crossovers

The computation of the mean uncertainty is shown in eq. (6.28). The equation contains
the number of effective crossovers N which can be analyzed. Therefore each satellite
track is assumed to be crossed with all the other satellite tracks. This is idealized. A
limitation will be given later in this section. An additional parameter is included which
represents the assumed mission duration. The mission duration is assumed to be at least
2 Mercury years. The nominal mission duration is 4 Mercury years. The number of
Mercury years I which is used as additional parameter is an extra variable to be analyzed.
Approximately J = 910 satellite tracks map the surface within one Mercury year. The
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Table 6.2: Estimated mean uncertainties at the crossovers (σ̄∆TC ) and in brackets the per-
centage of the achievable, relative uncertainty ph2 of the tidal Love number h2 with an
amplitude Ah2 of 30 cm in the Polar region, computed by eq. (6.41) and (6.42). The
columns include the number of orbits (J) which are used for the estimation, and the rows
the number of Mercury years (I)

I J
455 910

2 0.010 m (3.3 %) 0.005 m (1.7 %)
4 0.007 m (2.3 %) 0.004 m (1.3 %)

number of satellite tracks within one Mercury year is fixed through the orbital parameters
of MPO. The number must be around 910 orbital cycles of MPO within 1 Mercury year.
Two cases are also assumed here. First, each track crosses all the others, and second only
that half of the orbits is used which are closest to Mercury’s peri- and apohelion. This
minimizes J approximately to 455. N can be rewritten and then introduced in eq. (6.28)

N = I J2 , (6.40)

σ̄∆TC = ±σ∆TC√
I J

. (6.41)

The estimation is performed for the worst case, when a range uncertainty of σRa = 1 m,
and the quadratic polynomial interpolation method are used, and when the crossover is
on both tracks at largest distance ∆LI/II = 150 m. The uncertainty is then 8.2 m. The
results are summarized in tab. 6.2. The columns include the different numbers of satellite
tracks J which are used in eq. (6.40). The rows contain the number of Mercury years I as
observation time. The mean uncertainty for crossovers is shown.

A required relative uncertainty of 3 % is introduced for the tidal Love number h2.
From that a required measurement uncertainty for a single crossover measurement is cal-
culated. The tidal Love number has an amplitude Ah2 of about 30 cm in the polar regions.
The value is chosen to be half of the expected amplitude. The relative uncertainty is
computed by

ph2 =
σ̄∆TC

Ah2

. (6.42)

The mean uncertainty of the tidal Love number (ΣTide) is less than 3 % corresponding to
only 9 mm. Equation (6.41) can also be transformed to compute the mean uncertainty of
the tidal Love number

Σ∆TC = ΣTide

√
I J . (6.43)

The estimated maximum possible uncertainty at a single crossover is listed in tab. 6.3.
Crossing 910 orbits is an ideal case. However, for the nominal mission duration and half
of the satellite tracks assumed to cross gives a similar uncertainty. Taking into account
that the amplitude of the tidal Love number is conservatively estimated to be 30 cm, half
of the orbits give the needed accuracy for an extraction of the tidal Love number with an
uncertainty smaller than 3 %. The other half of the points can then additionally be used
for calibrating the instrument.
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6 Extraction of the tidal signal at orbit crossovers in the polar regions

Table 6.3: Estimated uncertainties at the crossovers (Σ∆TC ) for a determination of the tidal
Love number with less than 3 %. The columns include the number of orbits (J) which are
used for the estimation, and the rows the number of Mercury years (I)

I J
455 910

2 5.791 m 11.582 m
4 8.190 m 16.380 m

6.3.3 Optimum selection of crossover points

In a further step it shall be investigated whether crossovers which are closer to the ob-
servation shall get a higher weight for the analyses. High importance arises for the inter-
polation error which depends on the large-scale topography. The small-scale topography
also causes a dependence on the distance to the closest observation. The error due to the
interpolation can be written as

∆T 2
int

(
∆Li,∆L j

)
= C2

S S T

(
∆L2

i + ∆L2
j

)
+ C2

LS T

(
∆L2

i + ∆L2
j

)
, (6.44)

=
(
C2

S S T + C2
LS T

) (
∆L2

i + ∆L2
j

)
, (6.45)

= C2 L2

4

[
(i − 1)2

I2
max

+
( j − 1)2

J2
max

]
, (6.46)

∆T 2
int

(
∆Li,∆L j

)
= ∆T 2

topo

[
(i − 1)2

I2
max

+
( j − 1)2

J2
max

]
, (6.47)

where i and j are the number of crossovers in order of their distance to the next observation
point. There are in total Imax and Jmax crossovers. CS S T includes the effect due to the
small-scale topography, and CLS T due to the large-scale topography.

The following relations are valid for selecting a subset of crossovers

I ≤ Imax ; J ≤ Jmax . (6.48)

Summing the errors up

I,J∑
i, j

∆T 2
i j = 2 ∆T 2

meas I J +

I,J∑
i, j

∆T 2
topo

[
(i − 1)2

I2
max

+
( j − 1)2

J2
max

]
,

= 2 ∆T 2
measI

2 +
2
3

I4

I2
max

∆2
topo , (6.49)

where each crossover has 2 nearest measurements. The effect for the tidal Love number
is

δr0 h2 =

I,J∑
i, j

(
Ti − T j

) 1
I J

. (6.50)

92



6.3 Results

Additionally the topography variation can be written as ∆Ti, j = ∆
(
Ti − T j

)
. The tidal

amplitude can then be written as

〈∆ (δr0 h2)〉2 =

I,J∑
i, j

∆T 2
i j

I2 J2 =
2∆T 2

meas

I2 +
2 ∆T 2

topo

3 I2
max

, (6.51)

∆ (δr0 h2) =

√
2∆T 2

meas

I2 +
2 ∆T 2

topo

3 I2
max

. (6.52)

by using
∑n

i=0 i2 = 1
3 n (n + 1) (n + 2) ≈ n3

3 for n > 1. The upper derivation shows that
no advantages are achieved by selecting crossovers for the analysis which have a small
∆Li ∆L j.
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7 Discussion of the results

It could be shown that the tidal Love number h2 can be determined accurately from a
simulated laser altimeter data set of Mercury. Three different approaches have been in-
vestigated. Two of these approaches are based on a simultaneous extraction of the tidal
elevation and the global static topography, while one of them is based on a purely ana-
lytical estimate of the uncertainty for the extraction of the tidal signal at orbit crossover
points. The determination of the tidal signal with high precision is the main goal of the
presented approaches.

In the first approach the global topography is decomposed into an ortho-normal set of
global basis functions, where the static component is expressed as a spherical harmonic
expansion, while the tidal signal is described by one time-dependent basis function. In this
approach, the static topography has to be separated accurately from the time-dependent
tidal signal. This implies that the static topography is determined precisely as a by-product
of the extraction of the tidal Love number h2. The spherical harmonic expansion of the
static topography has the advantage that topographic data can easily be compared with
gravity measurements of the radio science experiment MORE because gravity data are
usually also extracted in the form of a spherical harmonic expansion. This first approach,
which uses a direct decomposition of the static topography, however, has the disadvantage
that the computation is very time-consuming. Each topographic measurement contributes
to all elements of the inversion matrix. The number of these elements is of order l4

inv,
where linv is the maximum degree of inversion for the spherical harmonic expansion. To
keep the simulation time within reasonable limits, the maximum degree of inversion has
been limited to linv = 64. Up to this degree, the expansion coefficients Cinv,lm and S inv,lm

can be determined precisely with a degree error of a few centimeters at low degrees and
still less than 1 meter at larger degrees as reported in ch. 4.

With this first approach, not only the tidal Love number h2 but also the amplitude of
forced libration Φlib could be determined with a precision of about 10 % (2σ-uncertainty).
Margot et al. (2007) obtained the libration amplitude with a comparable uncertainty with
Earth-based radio-interferometry. High precision can be reached for a resonant orbit with
full data coverage of Mercury’s surface. Restricting the data coverage significantly in-
creases the uncertainty of the tidal Love number. Using more realistic input data like a
non-resonant orbit and limited to spacecraft altitudes below 1000 km, the uncertainty of
the tidal Love number h2 increases significantly by a factor of 3 (Sec. 4.5). The uncertainty
of the libration amplitude does not depend on the orbit and restriction of the data cover-
age. Strongly increased computational effort would lead to higher precisions. It could be
shown that the decrease of the uncertainty of the tidal Love number h2 and amplitude of
forced libration Φlib scales as a power law with the maximum degree of inversion with an
exponent of approximately −2/3.
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7 Discussion of the results

In the second approach the static topography is decomposed into local basis func-
tions which only extend over one or a few cells of a quasi-rectangular grid in covering
all longitudes and latitudes of Mercury’s surface. The main advantage in comparison to
the global basis function approach is the shorter computation time. A particular laser shot
only contributes to a few coefficients belonging to the surrounding local basis functions.
This means, a particular topographic measurement only contributes to a few elements
near the diagonal of the inversion matrix. In the approach based on global basis func-
tions, most computation time is used for building up the inversion matrix. This time is
substantially reduced by using local basis functions because most off-diagonal elements
of the inversion matrix are zero a priori. Three types of local basis functions have been
used in longitudinal direction, step functions, “hat” functions, and cubic spline functions.
In latitudinal direction, only step functions have been used because the laser shot spacing
in latitude is very small (of order 300 m) so that interpolations into areas of the topography
with data gaps or with low data coverage by linear and spline functions are not necessary.

Only the tidal signal is retrieved simultaneously with the local basis function expan-
sion of the static topography. The extraction of the libration amplitude with this approach
remains to be implemented in the future. The simultaneous extraction of the tidal signal
and the static topography expanded into local basis functions gives 1σ-uncertainties of
order 1 % for the tidal Love number h2 which allows to determine the size of the outer
liquid core with a precision of less than 10 km. Best results for the tidal Love number
are achieved when the output grid has half the resolution in longitude direction in com-
parison to the chosen resolution of the input topography grid (sec. 5.3). In this case, the
longitudinal width of the output grid cell corresponds approximately to the mean longi-
tudinal spacing of the spacecraft ground tracks on Mercury’s surface. For realistic orbit
scenarios i.e. non-resonant orbit and data coverage limited to spacecraft altitudes below
1000 km, the expansion of the topography into cubic spline functions in longitude direc-
tion gave best results. Only for a resonant orbit, the expansion into step functions gives
better results for the tidal Love number. A resonant spacecraft orbit has fairly large data
gaps between the ground tracks. Presumably, the interpolation of the static topography by
linear functions and by spline functions into these data gaps creates artifacts in the tidal
signal.

The mean value of the standard deviation for the topographic heights for all grid points
which are influenced by a laser shot are chosen to be a global measure of the uncertainty
of the extraction of the static topography. This standard deviation is of about 20 m for the
case where the number of grid points in longitude direction are equal or half compared
to the input topography, and of about 30 m for binning four grid points of the extracted
topographic grid in longitude direction compared to the input topography model. Trans-
forming the retrieved topographic grid into a spherical harmonic expansion by using the
approach of a projection gives results which are about as precise as the results of the di-
rect expansion of the measured topography into a spherical harmonic representation. The
uncertainty is marginally small with less than 1 cm which is a precision of 10−5 for the
low degrees and orders. Different realistic orbits and spacecraft altitude restrictions did
not affect much the precision of the analysis when linear or cubic spline functions have
been used. Combining grid points of the input topographic grid for the output rectangular
grid is more important. However, when observations are partly not used for simulating
that BELA is shut down for thermal reasons decreased the precision of the retrieved Love
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number approximately proportionally to the decrease of the number of measurements.
Such shut-downs should only be done outside the peri- and apohelion part of Mercury’s
orbit that the tidal amplitude can be extracted (sec. 5.4.5). Otherwise, the BELA mea-
surements do not cover the regions of maximal tidal signal.

The third approach for the extraction of the tidal Love number h2 is based on topo-
graphic height difference measurements at orbit crossover points which are passed by the
spacecraft at times of different tidal phases. Using a crossover analysis of the tidal sig-
nal in the Polar Regions shows that the uncertainty of the measured tidal Love number
could be less than 3 %. This uncertainty is dominated by the uncertainty of the small-
scale topography between two laser shots. Instrumental and positioning uncertainties are
only dominant when the crossing point is close to the observation points themselves. This
third approach may be applied to double-check results from the two other approaches or
in case that for some reason full coverage of Mercury’s surface with laser shots will not
be achieved.

Baseline for the work with real BELA data will be the second approach including
a still to be developed method to retrieve the amplitude of forced libration. The first
approach of a direct extraction of the static topography as a spherical harmonic expansion
gives rather small uncertainties of less than 1 m for the degree amplitudes up to order 64.
However, the spherical harmonic degree of 64 corresponds to a rather rough description
of the topography as nodes are separated with a distance larger than 250 km. Using local
basis functions the topography is approximated more realistically with a distance between
of the grid points of around 5 to 10 km. As MPO’s orbit is separated at best by roughly
2 km distance, the grid resolution does not really need to be increased.

The retrieved uncertainty for the tidal Love number in ch. 4 and 5 is in the range of
10–14 % (2σ-uncertainty) for the most realistic case where a non-resonant orbit and a re-
striction for observations up to 1000 km spacecraft altitude are included. This uncertainty
allows retrieving the outer core radius with an uncertainty of several tens of kilometers.
The precise knowledge of the internal structure and size of the different layers allows
verifying dynamo theories on the generation of Mercury’s magnetic field. Planetary evo-
lution models can additionally be improved. It should be possible to find out whether the
diffusion of light elements such as sulfur from the inner core to the outer core is driving
the dynamo of Mercury’s magnetic field.
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8 Outlook

The determination of the static topography and its time-dependent variations was pre-
sented in the previous chapters. Two different approaches for expressing the topography
were analyzed. First the topography was expressed as a spherical harmonic expansion
where the basis functions are global (ch. 4), and the tidal elevation amplitude and the
forced libration amplitude and their uncertainties are precisely obtained. The second ap-
proach used local basis functions, where the global topography is expressed as a rect-
angular grid (ch. 5). The tidal Love number h2 is also extracted by using the approach
with the local basis functions. Laser shots affect only locally the topography. These are
the first detailed investigations for analyzing a global data set of laser altimeter records
for time-dependent global parameter of the static topography in planetary science. An-
other analysis was carried out to investigate the possibility of determining the tidal Love
number from crossovers in the Polar Regions of Mercury where the laser shots are denser
than in the equatorial region, and because there the amplitude of the tidal Love number
and forced libration amplitude are largest. As these are the first detailed investigations,
a lot of simplifications are used. Most of the simplifications can be turned into more re-
alistic scenarios in further studies. The most important simplifications which have to be
investigated in more detail in the future will be described in the following.

The approaches for analyzing a global data set seem to be promising. The analyses are
based on idealized data which can be improved in the usage of more realistic orbits than a
pure Keplerian orbit, in the sense that more uncertainties, especially concerning the space-
craft position, can be included. The uncertainties of the spacecraft position and pointing
misalignment are set to a common value which can be improved to use more realistic
values. On changing the analyses into more realistic uncertainties, also the systematic un-
certainties have to be investigated in more detail. Systematic uncertainties will be based
on solar radiation which is reflected at Mercury’s surface. This limits the possibility of
detecting a laser shot with the receiver optics. Furthermore, the temperature variations of
Mercury’s surface and additionally at the spacecraft are a systematic uncertainty which
needs more effort to be investigated. Another source for systematic uncertainties are the
gravitational fields of Mercury, the Sun, and Venus, as it is the direct neighboring planet
of Mercury, and therefore has largest effect on the determination of the spacecraft posi-
tion. However, the effect of the gravity field of Venus was investigated to be marginally
small, and even too small for a significant change in MPO’s position (Van Hoolst and Ja-
cobs 2003). Mercury’s gravity field shall be extracted and is an unknown at present state.
MESSENGER will investigate and provide a good determination of Mercury’s gravity
field. Then its gravity field can be assumed as known, and is not an error source any
more. The effect of Sun’s gravity field shall be investigated by the time-dependent varia-
tions of the topography. Systematic errors can therefore not arise due to this gravity field,
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as the effect is directly considered by extracting the time-dependent variations, expressed
as the tidal Love number h2 or the forced libration amplitude Φlib or both. It is further
important to test instrumental uncertainties and their effect on their determination, espe-
cially for a single laser shot. It is possible to extend the simplifications of Gardner (1982,
1992) to the general equations and investigate them in more detail. This gives a reduction
of uncertainties during analyzing the laser altimeter data set. Then pointing misalignment
can be investigated in more detail without using simplifications of the equations.

The approaches using global and local basis functions can be improved by extending
the input topography model which is right now set up to a maximum harmonic degree
of lmax = 1024 to higher orders. This reduces the effect of the not-modeled part of the
topography from 62.5 m to 32.1 m for an increase of the maximum harmonic degree to
4096. A higher resolution of the input topography shall especially improve the mean
uncertainty of the global topography, which was retrieved to be in the range of the uncer-
tainty of the small-scale topography. The optimum grid size for an increased maximum
harmonic degree for the use of the local basis functions has to be derived either analyti-
cally or numerically by simulations. Such tests are not performed right now. A significant
increase of the accuracy for the time-dependent variations seems to be possible, when the
maximum harmonic degree of the input model is increased. The transformation of the
rectangular grid to a spherical harmonic expansion can be improved by using Gaussian
points as equal spaced points in latitude direction or on changing the analysis method
from a projection to an inversion as done for the global basis functions. If Gaussian grid
points are used as latitudinal points, the analyses will have to be tested again.

When more computational power is available or the code is parallelized, further anal-
yses can be performed up to larger degrees of the spherical harmonic expansion of the
topography. The uncertainty of the time-dependent variations are found to be dependent
on the maximum inversion degree linv. Determining the topography for smaller scales
than 64 will lead to a better knowledge of the time-dependent variations and therefore a
better understanding of the internal structure of Mercury’s interior. An inversion degree
linv of 16 gives good results for the time-dependent variations. Why such a high accuracy
is achieved, is, however, not completely understood and needs more investigations.

The analysis method using local basis functions can be improved in several details.
First the direct determination of the libration amplitude can be introduced. The approach
of global basis functions determines the forced libration amplitude in a second step simul-
taneously with the topography and the tidal Love number. The forced libration amplitude
is weakly non-linearly dependent on the static topography and the tidal Love number. Ini-
tial values for topography and tidal Love number must be known before introducing the
libration amplitude as another parameter to be determined. The approach used for global
basis functions has also to be implemented and investigated for the local basis functions
for retrieving the forced libration amplitude simultaneously with the static topography
and the tidal Love number. Right now the analysis of the forced libration amplitude is
not taken into account. Furthermore, the structure of the set-up of the basis functions
for the libration amplitude has to be addressed, and additionally the inversion matrix, the
right-hand-side vector, and result vector have to be extended for the effect of the libration
amplitude.

Now only step functions are used as interpolation method in latitudinal direction.
Higher order interpolations like linear interpolation or cubic spline interpolation can be
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used. Furthermore data gaps which have been started to analyze should be investigated
in more detail. The periherm shift of the spacecraft is not included at all so far. This can
either be considered for local basis function or global basis functions.

The analysis of crossovers should be extended to the case where non-Gaussian noise
distributions are assumed. This will require a lot of work, as the presented approach
of ch. 6 is purely analytical. The approach can additionally be extended to assuming a
correlation between the single error components, especially related to positioning and in-
strumental uncertainties. The small-scale topography would show a further correlation
when the equations including positioning and instrumental uncertainties contain informa-
tion about the surface slope. A laser shot is presently assumed to be a point measurement
which is an idealized case.

A laser shot contains additional information like the factor between the tidal Love
numbers h2 and k2. This relation is small in comparison to the tidal Love number h2

which is accurately determined with the presented approaches. k2 includes the informa-
tion of potential variations. An accurate determination needs a precise knowledge of the
spacecraft position. Furthermore, this additional uncertainty needs more effort for investi-
gations, then the model has to be increased to use these parameters. The simulations have
to be changed to include this effect. A precise determination of this factor gives more in-
formation about the mass distribution of Mercury’s interior. Furthermore, the simulations
can be extended to determine other libration amplitudes than the 88-day forced libration
amplitude. Other libration amplitudes have been extracted by Earth-based radar interfer-
ometry (Margot et al. 2007). These amplitudes have been studied for the laser altimeter,
but it is more challenging to extract them. Their uncertainty is limited, especially due to
their dependency on the 3 : 2 resonance of Mercury’s rotation period and sidereal year.
The potential how to determine those amplitudes should be studied.

It will be challenging to adopt the program for investigating real data either for the case
of MOLA right now or of real BELA data which will then be available in 2020. More
effort will be necessary to implement functions for analyzing a real data set. Furthermore,
investigations can be made for a joint analyses of the SIMBIO-SYS pictures and the
MORE gravity data.
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Afzal, R.S., Anderson, B.J., Andrews, G.B., Bedini, P.D., Cain, J., Cheng, A.F., Evans,
L.G., Feldman, W.C., Follas, R.B., Gloeckler, G., Goldsten, J.O., Hawkins, S.E., Izen-
berg, N.R., Jaskulek, S.E., Ketchum, E.A., Lankton, M.R., Lohr, D.A., Mauk, B.H.,
McClintock, W.E., Murchie, S.L., Schlemm, C.E., Smith, D.E., Starr, R.D., Zurbuchen,
T.H., 2001. The MESSENGER mission to Mercury: scientific payload. Planet. Space
Sci. 49, 1467–1479.

104



Bibliography

Gunderson, K., Thomas, N., Rohner, M., 2006. A Laser Altimeter Performance Model
and Its Application to BELA. IEEE Trans. Geosci. Remote Sensing 44, 3308–3319.

Harder, H., Schubert, G., 2001. Sulfur in Mercury’s core? Icarus 151, 118–122.

Hauck, S.A., Dombard, A.J., Phillips, R.J., Solomon, S.C., 2004. Internal and tectonic
evolution of Mercury. Earth Planet. Sci. Lett. 222, 713–728.

Head, J.W.,Chapman, C.R., Domingue, D.L., Hawkins, S.E., McClintock, W.E., Murchie,
S.L., Prockter, L.M., Robinson, M.S., Strom, R.G., Watters, T.R., 2007. The Geology
of Mercury: The View Prior to the MESSENGER Mission. Space Sci. Rev. 131, 41–84.

Heimpel, M.H., Aurnou, J.M., Al-Shamali, F.M., Gomez Perez, N., 2005. A numerical
study of dynamo action as function of spherical shell geometry. Earth Planet. Sci. Lett.
236, 542–557.

Helfenstein, P., Shepard, M.K., 1999. Submillimeter-Scale Topography of the Lunar Re-
golith. Icarus 141, 107–131.

Herring, T.A., Quinn, K., 1999. Geoscience Laser Altimeter System (GLAS) - Atmo-
spheric delay correction to GLAS laser altimeter ranges. Algorithm Theoretical Basis
Document Version 1.2, 1–22.

Hofmann-Wellenhof, B., Moritz, H., 2005. Physical Geodesy. Springer Verlag 2, Wien,
2005.

Jehn, R., Corral, C., Giampieri G., 2004. Estimating Mercury’s 88-day libration amplitude
from orbit. Planet. Space Sci. 52, 727–732.

Koch, C., Christensen, U.R., Kallenbach, R., 2008. Simultaneous Determination of global
Topography, tidal Love number and libration amplitude of Mercury by Laser altimetry.
Planet. Space Sci. 56, 1226–1237, doi:10.1016/j.pss.2008.04.002.

Koch, C., Christensen, U.R., Kallenbach, R., 2009a. Extraction of the global topogra-
phy expressed as rectangular grid and the tidal signal from laser altimeter data. Planet.
Space Sci., in preparation.

Koch, C., Christensen, U.R., Kallenbach, R., Hilchenbach, M., 2009b. Study of the inte-
rior structure of planetary bodies by laser altimetry. Advances of Geoscience, accepted.

Krebs, D.J., Novo-Gradac, A.-M., Li, S.X., Lindauer, S.J., Afzal, R.S., Yu, A.W., 2005.
Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mer-
cury. Applied Optics 44, 1715–1718.

Kreslavsky, M.A., Head, J.W., 1999. Kilometer-scale slopes on Mars and their correlation
with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data. J.
Geophys. Res. 104, 21,911–21,924.

Kreslavsky, M.A., Head, J.W., 2003. North–south topographic slope asymmetry on Mars:
Evidence for insolation-related erosion at high obliquity. Geophys. Res. Let. 30, PLA
1-1–PLA 1-4, doi:10.1029/2003GL017795.

105



Bibliography

Kreslavsky, M.A., Head, J.W., Harmon, J.K., 2008. Large-scale topographic roughness
of terrestrial planets: a comparison. 39th Annual Lunar and Planetary Science Confer-
ence, March 10-14, 2008, League City, Texas, abstract no. 1472.

Lucchesi, D.M., Iafolla, V., 2006. The non-gravitational perturbations impact on the Bepi-
Colombo Radio Science Experiment and the key role of the ISA accelerometer: direct
solar radiation and albedo effects. Celestial Mechanics and Dynamical Astronomy 96,
99–127.

Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V., 2007. Large longitude
libration of Mercury reveals a molten core. Science 316, 710–714.

Milani, A., Rossi, A., Vokrouhlický, D., Villani, D., Bonanno, C., 2001. Gravity field and
rotation state of Mercury from the BepiColombo radio science experiments. Planet.
Space Sci. 49, 1579–1596.

Montenbruck, O., Gill, E., 2005. Satellite Orbits. Springer Verlag 3, Heidelberg, 2005.

Murray, C.D., Dermott, S.F., 1999. Solar system dynamics. Cambridge Univ. Press.

Ness, N.F., 1979. The magnetic field of Mercury. Phys. Earth Planet. Inter. 20, 209–217.

Neumann, G., 2001. Some Aspects of processing extraterrestrial Lidar data: Clemen-
tine, Near, MOLA. International Archives of Photogrammetry and Remote Sensing,
XXXIV-3/W4 Annapolis.

Neumann, G.A., Zuber, M.T., Wieczorek, M.A., McGovern, P.J., Lemoine, F.G., Smith,
D.E., 2004. Crustal structure of Mars from gravity and topography. J. Geophys. Res.
109, doi:10.1029/2004je002262.

Niemeier, W., 2002. Ausgleichungsrechnung. deGryuter Lehrbuch, 2, Berlin, 2002.

Oberst, J., BELA-Team, 2007. BELA Science Requirements Document. BC-BEL-RS-
33001-0-3.

Peale, S.J., 1972. Determination of parameters related to the interior of Mercury. Icarus
17, 168–173.

Peale, S.J., 1976a. Does Mercury have a molten core?, Nature 262, 765–766.

Peale, S.J., 1976b. Orbital resonances in the Solar System. Ann. Rev. Astro. Astrophys.
14, 215–246.

Peale, S.J., 2005. The free precession and libration of Mercury. Icarus 178, 4–18.

Peale, S.J. Phillips, R.J., Solomon, S.C., Smith, D.E., Zuber, M.T., 2002. A procedure for
determining the nature of Mercury’s core. Meteor. Planet. Sci. 37, 1269–1283.

Pettengill, G.H., Dyce, R.B., 1965. A Radar Determination of the Rotation of the Planet
Mercury. Nature 206, 1240.

106



Bibliography

Phillips, H.E., Ridgway, J.R., Minster, J.-B., 1999. Geoscience Laser Altimeter System
(GLAS) - Tidal corrections. Algorithm Theoretical Basis Document Version 2.0, 1–18.

Rambaux, N., Van Hoolst, T., Dehant, V., Bois, E., 2007. Inertial core-mantle coupling
and libration of Mercury. Astron. Astrophys. 468, 711–719.

Rummel, R., 2005. Gravity and topography of Moon and planets, Earth, Moon, and Plan-
ets. Springer 94, pp. 103–111.

Santo, A.G., Gold, R.E., McNutt Jr., R.L., Solomon, S.C., Ercol, C.J., Farquhar, R.W.,
Hartka, T.J., Jenkins, J.E., McAdams, J.V., Mosher, L.E., Persons, D.F., Artis, D.A.,
Bokulic, R.S., Conde, R.F. Dakermanji, G., Goss Jr., M.E., Haley, D.R., Heeres, K.J.,
Maurer, R.H., Moore, R.C., Rodberg, E.H., Stern, T.G., Wiley, S.R., Williams, B.G.,
Yen, C.L., Peterson, M.R., 2001. The MESSENGER mission to Mercury: spacecraft
and mission design. Planet. Space Sci. 49, 1481–1500.

Schubert, G., Ross, M.N., Stevenson, D.J., Spohn, T., 1988. Mercury’s thermal history
and the generation of its magnetic field. In: Vilas, F., Chapman, C.R., Matthews, M.S.
(Eds.), Mercury. Univ. Arizona Press, Tucson, pp. 429–460.

Smith, D.E., Zuber, M.T., Neumann, G.A., 2001a. Seasonal variations of snow depth on
Mars. Science 294, 2141–2146.

Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhlemann, D.O., Pet-
tengill„ G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury,
T.C., 1998. Topography of the Northern Hemisphere of Mars from the Mars Orbiter
Laser Altimeter. Science 279, 1686–1691.

Smith, D.E., Zuber, M.T., Solomon, S.C., Phillips, R.J., Head, J.W., Garvin, J.B., Banerdt,
W.B., Muhlemann, D.O., Pettengill, G.H., Neumann, G.A., Lemoine, F.G., Abshire,
J.B., Aharonson, O., Brown, C.D., Hauck, S.A., Ivanov, A.B., McGovern, P.J., Zwally,
H.J., Duxbury, T.C., 1999. The Global topography of Mars and Implications for Surface
Evolution. Science 284, 1495–1502.

Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O., Pet-
tengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury,
T.C., Golombek, M.P., Lemoine, F.G., Neumann, G.A., Rowlands, D.D., Aharonson,
O., Ford, P.G., Ivanov, A.B., Johnson, C.L., McGovern, P.J., Abshire, J.B., Afzal, R.S.,
Sun, X., 2001b. Mars Orbiter Laser Altimeter: Experiment summary after the first year
of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722.

Solomon, S.C., McNutt, R.L., Gold, R.E., Domingue, D.L., 2007. Messenger mission
overview. Space Sci. Rev. 131, 3–39.

Solomon, S.C., McNutt, R.L., Watters, T.R., Lawrence, D.J., Feldman, W.C., Head, J.W.,
Krimigis, S.M., Murchie, S.L., Phillips, R.J., Slavin, J.A., Zuber, M.T., 2008. Return to
Mercury: A Global Perspective on MESSENGER’s First Mercury Flyby. Science 321,
59–62.

107



Bibliography

Solomon, S.C., McNutt Jr., R.L., Gold, R.E., Acũna, M.H., Baker, D.N., Boynton, W.V.,
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