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Summary

Mesogranulation is a cellular pattern of horizontal flow on the solar surface, intermediate
in scale between granulation, the dominant convective flow pattern (typical size ∼ 1 Mm),
and supergranulation (typical size ∼ 30 Mm). The physical origin of mesogranulation
is not well understood. This thesis presents the investigation of the origin of mesogran-
ulation as a self-arrangement of granules. We show that granulation can be described
as a cellular automaton and present one- and two-dimensional models of the granulation
pattern. The models do not aim at a perfect reproduction of the granulation structure,
but rather focus on capturing the local interaction between the granules that leads to the
self-arrangement phenomenon.

• In the one-dimensional model (Chapter 2) the granules are defined as the spaces be-
tween interface points representing the intergranular downflow lanes. Those points
move in space (along a line) according to a size-pressure relation (large granules
tend to spread, small to shrink), motivated by the observed properties of solar gran-
ulation. The results are compared with a random-motion scheme for the intergran-
ular lanes. This is done to study which granule interaction rules lead to a better
approximation of the phenomenon. When two interface points get close enough to
each other, they merge, marking the disappearance of a granule. New granules ap-
pear by the splitting of a parent granule i.e., new intergranular lane appears within
the granule.

• In the two-dimensional model (Chapter 3), the granules are represented by trian-
gular areas. The time evolution is spawned by the motion of the triangles’ ver-
tices. Like in the one-dimensional case, two motion schemes are applied: the size-
pressure relation and the random walk. Additionally, four different rules for the
granule splitting are applied to check the robustness of the result.

• We find that our simple cell models are able to simulate the granulation quite well,
producing granule size and lifetime distributions similar to those obtained from ob-
servations and hydrodynamical simulations. The local interaction rules produce
granules that appear, disappear and translate on the surface much like the real gran-
ules do.

• Mesogranules are observationally defined as areas of horizontal velocity diver-
gence. In the two-dimensional model, we apply a Local Correlation Tracking (LCT)
algorithm to determine the horizontal translation velocities of the granules in the
same way as done in simulations and observations. The velocity divergence areas
can also be detected through patterns formed by "corks", passive pseudo-particles
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Summary

advected by the flow, which tend to outline the boundaries of mesogranules. Hence,
another definition of mesogranulation in the models is based on the age of the in-
tergranular lanes: intergranular lanes that live longer than a given threshold time
are stipulated to accumulate enough corks to outline mesogranules. We find meso-
granular structures present in both the one- and two-dimensional models, regardless
of the granule interaction and splitting rules, which shows that mesogranulation is
a very robust feature of such cell-systems. The mesogranular scale in the models
is not forced externally, it evolves from the granular interaction. This scale is not
intrinsic however, it depends on the definition and analysis parameters. A given
definition and parameters select mesogranular size and lifetime scale from a con-
tinuum of scales.

• We compare the two-dimensional LCT results with those obtained in the same way
from a realistic three-dimensional hydrodynamical simulation (Chapter 4 and 5)
and find a very good agreement. This strongly reinforces the assumption that meso-
granulation is not an intrinsic property of the system in the sense that it represents
a persistent flow pattern with a fixed scale, but rather is a self-arrangement effect of
the locally interacting granules, with its scale depending in the analysis parameters.
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1 Introduction

1.1 Solar surface patterns

Of all the celestial bodies in our solar system, the Sun has always been the most fascinat-
ing one for humanity, and as the source of virtually all energy accessible on Earth, it is
by far the most important one. Initially an object of religious worship, the Sun’s evolu-
tions on the sky were watched and variously interpreted, according to the custom of the
times. With time and development of modern science we have come to know our star
a little better; both ground and space based observations providing a multitude of data
for stimulating and testing of theories and ideas. With increasing resolution and quality
of observations it has been possible to distinguish between many different features and
phenomena that can be seen on the Sun, with different wavelengths allowing insight into
different depths of the solar atmosphere and helioseismology providing information about
the structure of the solar interior. The complexity of the global interaction of plasma, radi-
ation and the magnetic field still eludes our understanding, leaving many questions open.
The key examples are the details of the internal structure of the Sun, operation of the
solar dynamo, that is the generation and evolution of the solar magnetic field, the exact
abundance of various elements, and the coronal heating processes. Nevertheless, many
aspects of solar physics have been understood.

Various physical processes manifest themselves in the surface patterns they create,
which can be recognized in the intensity images, the plasma velocity field, or the mag-
netic field distribution. There exists a multitude of length- and timescales on which these
processes take place. The first surface structures detected were the sunspots, the largest
of which can be seen with the naked eye as dark patches on the Sun. The sunspots are
of magnetic origin and are the largest of the magnetic features on the solar surface; they
are up to tens of megameters in size and persist for days to months. Smaller magnetic
patterns include pores and faculae. The magnetic features usually appear in the active
regions, which are surface areas of enhanced magnetic activity resulting from magnetic
flux emergence.

The best known non-magnetic feature on the solar surface is the granulation (Fig. 1.1).
It can be recognized both in the continuum intensity images and in the plasma velocity
field. The granulation is the most prominent and best understood of the non-magnetic
patterns, it has been very well reproduced in the hydrodynamical numerical simulations
(Spruit et al. 1990, Stein & Nordlund 1998). The granular flow is driven by surface radia-
tive cooling of the plasma, which maintains a superadiabatic temperature gradient at the
top of the convective zone and causes the vertical overturn of material, hence transport-
ing the energy towards the surface. In the convection zone, the plasma is optically thick,
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1 Introduction

meaning that the mean photon free path is much smaller than the local pressure scale
height. This changes upon reaching the surface, where the plasma density decreases and

Figure 1.1: The granulation pattern on the solar surface. The dark colder downflows
surround hotter bright upflow regions. Image taken with the Swedish Vacuum Solar Tele-
scope, La Palma.

the photons are free to escape through the solar atmosphere into space, effectively cooling
the surface. The cold material is denser than the hot plasma underneath and begins to
sink back into the interior, forming downflow plumes. These downflows outline the cells
and surround the upflow areas. When the upflowing plasma in the cell center reaches the
surface, it outflows horizontally while cooling down, eventually reaching and feeding the
downflow plumes. Owing to the compressibility of the plasma, the ascending material
expands while the descending plasma is compressed. For such system to be stationary
the mass flux must be conserved, hence the narrow downflows are characterized by larger
plasma velocities (roughly twice the upflow velocities). Therefore, the faster and more
compact downflow plumes are able to penetrate down through the upflowing material and
rearrange the existing cell pattern, effectively driving the granulation (Stein & Nordlund
1998).

A prominent example of the leading role of downflow plumes are the so-called ex-
ploding granules. These granules expand during their lifetime and eventually develop a
new downflow in the center, which breaks up the cell and rearranges the local flow con-
figuration (Rösch 1960, Hirzberger et al. 1999). The mechanism for this is the following:
there exists a critical granule cell size of ∼1 Mm (Hirzberger et al. 1997, 1999), and
when the cell exceeds that size, the upflow in the cell center diminishes. This is caused
by a pressure buildup at the top of the cell, which is proportional to the granule size and

8



1.1 Solar surface patterns

which deflects the upflowing plasma horizontally. Such pressure also works to inhibit the
upward plasma motion, and when the granule exceeds the critical size, the accompanying
pressure buildup is large enough to locally stop the plasma upflow. Without the upflow
from below, the plasma at the top of the cell cools radiatively until it is dense enough
to sink back into the interior, forming a new downflow plume and breaking up the gran-
ule. This process is called "buoyancy braking" (Hurlburt & Toomre 1982). It is quite
common that the offspring granules created by the fragmentation also grow to the critical
diameter of ∼1 Mm and become fragmenters themselves, forming the so-called Trees of
Fragmenting Granules (TFGs). Such TFG structures can have lifetime of many hours
(Roudier et al. 2003, Roudier & Muller 2004). A somewhat different interpretation of the
granulation cell pattern evolution in terms of the downflow plumes have been suggested
by Rast (2003): numerical simulations suggest that a downflowing plume initiates time-
limited upflows confined to the plume’s near surroundings, the amplitude and range of
the response flow depending mainly on the dimensionality of the plumes (2D lanes and
3D vertices) and less on their detailed internal structure. A spatial arrangement of these
downflows on the solar surface leads to the formation of the granulation cell pattern, with
the upflow in the cell center being the sum of all the contributions from the response flows
initiated by the dowflows surrounding the granule. The critical granule cell size can then
be explained as the maximum cell size that given downflows can sustain. When the gran-
ule expands, the downflows are pushed apart and hence the response upflow in the cell
center diminishes below that needed to sustain the circulation.

Another distinctive granule type are the so-called dissolvers, that is the cells whose
size does not exceed the critical one or vary much over the cell’s lifetime. The dissolvers
do not undergo the fragmentation process and disappear by being squeezed out of exis-
tence by the neighboring cells when the upflow in their center diminishes. There exist
other granule types distinguished by the way they appear or disappear, like merging gran-
ules or granules that grow out of a point in an intergranular lane, but the fragmenters and
dissolvers constitute the majority of cells, and the granule fragmentation mechanism is
the primary source of new granules (Müller et al. 2001, Hirzberger et al. 1999). The
average granulation cell diameter is ∼1 Mm, the average granule lifetime is ∼10 minutes
(with the fragmenters being statistically larger and longer-lived than dissolvers) and the
typical granular upflow velocities are of the order of 1 km/s (Title et al. 1989, Hirzberger
et al. 1997, 1999, Müller et al. 2001). Even though it is possible to describe granula-
tion in terms of different granule types and their mutual interactions, one should keep in
mind that due to the low viscosity the plasma flow is in general quite turbulent, making
granulation a very dynamical phenomenon.

The largest of the cell patterns on the Sun (if one neglects the giant cells, whose ex-
istence is controversial) is the supergranulation, known since the 1960s (Fig. 1.2). The
supergranular cell size is ∼30 Mm, with lifetimes of the order of one day. The first indi-
cation of the existence of the supergranular flow scale came from Hart (1956), who found
a velocity pattern fluctuating across the solar surface while measuring the solar rotation.
Later Leighton et al. (1962) were able to show that the supergranular flow is predom-
inantly horizontal using Doppler effect measurements. The horizontal flow velocities
range from 300 m/s to 500 m/s, exceeding the vertical velocities of about 100 m/s. The
cell-like structure of the supergranular flow is quite similar to granulation, with upflows
in the cell center surrounded by downflow regions. The pattern is conveniently seen in
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1 Introduction

Figure 1.2: A Doppler-image of the supergranulation pattern on the solar disc. The flow is
predominantly horizontal, hence at the disc center the signal is very weak. Image credit:
SOHO/MDI

the chromospheric emission lines (so-called "chromospheric network") due to magnetic
field concentration at the supergranule boundaries. Numerical simulations indicate that
deeper in the convection zone the downflows aggregate into separated plumes, which can
extend several megameters into the solar interior. Such large downflows are distributed
along supergranular cell boundaries (Deubner 1971, Skumanich et al. 1975, Hathaway et
al. 2002) and often coincide with "vertices", i.e. places where a few supergranules meet
(Frazier 1970). In general, supergranulation is interpreted as convective flow (Simon &
Weiss 1968, Vickers 1971, Bogart et al. 1980, Gierasch 1985), with the second ionization
of He at depth around 20 Mm proposed as the driving agent. Nevertheless, the complex
structure and properties of supergranules have invited many alternative interpretations.
For example, significant horizontal flow structures exist within the supergranule cell in-
teriors (mesogranules), the thermal signature of the flow is very weak, and the pattern
seems to be "super-rotating" i.e., rotating faster than the surface plasma and the magnetic
network (Duvall 1980, Snodgrass & Ulrich 1990, Gizon et al. 2003). Hence, super-
granulation was suggested to result from gravity wave modulation of a convective flow
(Lindzen & Tung 1976), a transition with depth of the magnetic field filling factor (Foukal
1977), granular pumping of the solar rip-tide (Cloutman 1979), r-mode-convection cou-
pling (Wolff 1995), spatial correlation between exploding granules (Rieutord et al. 2000),
the superposition of travelling waves (Gizon et al. 2003), and advection and merger of
downflow plumes resulting in a statistical spatial distribution of large downflows (Rast
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1.1 Solar surface patterns

2003). Recently, Stein et al. (2006) presented results from the numerical simulations of
supergranulation, which indicate that the size of the upflows increases continuously with
depth as a result of mass conservation. These deep large upflows expand with height, in-
fluencing and rearranging the downflowing plumes coming from above, and resulting in a
weak supergranular scale flow at the surface. The authors conclude that the morphology
from granules to supergranules and giant cells is self-similar, and that granules are the
only distinct scale of motion, although there is a small increase in the velocity spectral
amplitude at supergranular scales.

Mesogranulation is another cell pattern on the solar surface indicated by observations
(Fig. 1.3). The reported cell sizes of mesogranulation vary from 2 to 10 Mm, with lifetime
estimates from 30 minutes to a few hours. The inferred horizontal velocities are of the
order of 500 m/s, reaching up to 1 km/s, thus exceeding the vertical velocities of about
150 m/s. Detection methods of mesogranules are based on analyzing the plasma velocity
field, and, since granular velocities are an order of magnitude larger than the meso- and
supergranular ones, it is necessary to average over granulation in order to detect larger-
scale patterns. In the first report of the mesogranulation by November et al. (1981), the
temporal averaging window was 60 minutes and the measured quantity was the vertical
plasma velocity field. The authors found a cell-like pattern of upflow and downflow areas
and estimated the cell size to be approximately 7 Mm. The similarities to granulation
led to the suggestion that mesocells are also convective in origin, and the first ionization
of He at around 7 Mm depth was proposed as the driving force (November et al. 1981).
Nevertheless, the weak buoyancy enhancement caused by the He I ionization casts doubt
upon this explanation (Rast 1991, Rast & Toomre 1993). Furthermore, in contrast to
granulation, the reported mesogranular characteristics vary strongly with the averaging
time and other details of the analysis methods applied (Rieutord et al. 2000). Additionally,
the existence of a distinctive mesogranular peak in the power spectrum of the horizontal
velocity field remains controversial: while some researchers report such a peak (Deubner
1988, Ginet et al. 1992, Lawrence et al. 2001), others report a monotonic spectrum of
granular sizes which extends into the reported meso-domain (Wang 1989, Chou et al.
1991, Strauss et al. 1992, Strauss & Bonaccini 1997, Rieutord et al. 2000, Georgobiani
et al. 2007).

A convenient quantity for mesogranulation detection and analysis is the horizontal
velocity divergence, namely

−→∇ · −→Vh ≡
∂Vx

∂x
+
∂Vy

∂y
(1.1)

where
−→
Vh is the horizontal velocity field at the solar surface.

−→∇ · −→Vh is a scalar field,
and the mesogranules are defined as patches of positive divergence, that is horizontal
plasma outflow. Figure 1.4 shows an example of the divergence of a 60-minute average of
the horizontal velocity field and the corresponding mesogranular patches (horizontal out-
flows, bright areas), obtained from a three-dimensional hydrodynamic simulation (MU-
RaM code, Vögler et al. 2005). A way to visualize larger-scale velocity patterns without
explicit time-averaging the data is to track positions of test particles advected horizon-
tally with the flow (so-called "corks"). Cork positions, after evolving for some time τ
from their initial configuration, outline areas of velocity divergence averaged over time τ.
In the solar convection zone the magnetic Reynolds number is large, ranging from 1011 at

11



1 Introduction

Figure 1.3: The original mesogranulation detection result of November (1981). Black and
white areas correspond to upflows and downflows, respectively. The scale on the x and y
axes is the same.

Figure 1.4: Divergence of the 60-minute average of the horizontal velocity obtained from
a hydrodynamical simulation (MURaM code). Bright areas correspond to positive diver-
gence (mesogranules).

the bottom to 105 near the surface. This means that the timescale of the Ohmic dissipation
of the magnetic field is much longer than the advective processes timescale and the mag-
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1.1 Solar surface patterns

netic field lines are effectively "frozen" into the plasma. The small-scale magnetic flux
of both polarities, vertical at the surface due to magnetic buoyancy, is therefore advected
into the velocity convergence regions and can serve as corks. Indeed, magnetic flux con-
centrations can be found in the intergranular network (Lin & Rimmele 1999, Khomenko
et al. 2003) and they are known to outline supergranules (Simon & Leighton 1964). More
recently, magnetic flux concentrations have also been reported to outline mesogranules
(Domínguez Cerdeña 2003, de Wijn et al. 2005). Figure. 1.5 shows an example of the
divergence of a 60-minute-averaged horizontal velocity field (hydrodynamic simulation,
MURaM code) with corks marked in white after evolving for 60 minutes from an uniform
dense distribution. The corks tend to gather in the convergence areas (dark) and outline
the patches of positive velocity divergence (bright).

Figure 1.5: Divergence of the 60-minute average of the horizontal velocity obtained from
a hydrodynamical simulation (MURaM code). Bright areas correspond to positive diver-
gence (mesogranules). White points are corks positions after evolution time of 60 min
from an uniform dense distribution.

Even though the evidence for a distinct convective flow on the mesoscale is weak,
the existence of mesoscale patterns, supported by both observations and hydrodynamical
simulations, seems undisputed. Additionally, the realistic three-dimensional hydrody-
namical granulation simulations reach only a few megameters into the simulated solar
surface, and the existence of the mesopatterns in these "shallow" models seems to rule
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1 Introduction

out He ionization as a necessary ingredient for mesogranulation (Ploner et al. 2000).
The idea that mesoscale patterns may arise naturally from the granulation is not new, and
over the years various effects have been proposed as possible mesogranulation causes.
Among these, the exploding granules deserve special attention. An exploding granule
leads to a positive velocity divergence at the granule position i.e., a horizontal outflow.
The average granule lifetime is about ten minutes and the diameter of an exploder rarely
exceeds 2 Mm, hence individual exploding granules cannot sustain the mesogranular pat-
tern. Nevertheless, a sequence of neighboring exploder events could last long enough to
produce a larger coherent velocity structure. Oda (1984) studied the surface distribution
of fragmenting granules during a 4-minute time interval, and interpreted them to outline
a meso-size pattern, while Hirzberger et al. (1997) found that fragmenters exist predom-
inantly in the mesogranule centers. Simon et al. (1991) showed that a simple kinematic
model of exploder events can reproduce cork patterns equivalent to those associated with
mesogranulation. They modelled exploding granules as horizontal outflows with a Gaus-
sian velocity profile, advecting initially uniform cork distribution. They concluded that
a sequence of exploder events, normally distributed around a mesogranule center, can
produce a cork pattern equivalent to the mesogranular one. On the other hand, a random
distribution of exploders on the surface does not produce any coherent patterns in the
kinematic model. The question whether exploders are organized on the solar surface was
further explored by Roudier and coworkers (Rieutord et al. 2000, Roudier et al. 2003,
Roudier et al. 2004). They analyzed recurrently fragmenting granules ("Trees of Frag-
menting Granules", TFGs) and found that such TFGs are constantly present on the Sun.
Moreover, they found that over 60% of the area covered by granules belonged to TFGs
and that the lifetime of such granule families can reach many hours. From the power law
behavior of the TFG’s lifetime histograms they deduce that no characteristic timescale is
present. The velocity field produced by a TFG, when averaged over the TFG’s lifetime,
yields a divergence area, with most of the TFGs covering an area of a diameter of ∼6
Mm. Additionally, when performing the cork advection analysis, the authors found that
the corks tend to accumulate in the areas of low granule splitting rates. All these features
of the TFGs bear close resemblance to mesogranules and most probably each velocity
divergence area (i.e. mesogranule) can be associated with a TFG. Nevertheless, that alone
does not explain the mesogranulation phenomenon, but rather reformulates the question
to what is the nature and origin of the TFGs. Summarizing, our perception of mesogran-
ulation has evolved from a typical convective flow to a self-organization phenomenon of
the granular field, with the recurrently fragmenting granules (TFGs) possibly playing a
key role in the production of the mesoscale velocity patterns.

1.2 Cellular automata

The phenomenon of self-organization is exhibited by a wide family of systems, known
as "cellular automata". In this work we show that granulation can be seen as a cellular
automaton, hence we present a brief introduction to these systems.

The concept of cellular automata was originally introduced by von Neumann and
Ulam as a possible idealization of biological systems (Ulam 1952, von Neumann 1963,
1966), aiming at modelling biological self-reproduction. Cellular automata are mathemat-
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1.2 Cellular automata

ical idealizations of physical systems in which space and time are discrete, and physical
quantities, in the simplest cases, take on a finite set of discrete values. A cellular automa-
ton consists of a lattice, usually infinite in extent, with a discrete variable at each lattice
site ("cell"). It evolves in discrete timesteps according to given local interaction rules,
with the value of the variable at one site being affected only by the values of variables at
sites in its neighborhood at the previous timestep. The neighborhood of a site is usually
taken to be the site itself and all immediately adjacent sites, and the variables at each site
are updated simultaneously. As a consequence of their locality, cellular automata define
no intrinsic length scale other than the cell size and no intrinsic time scale other than the
duration of a single timestep. Even the simplest one-dimensional cases of cellular au-
tomata exhibit an intriguing property of "self-organization", where larger scale patterns
evolve from the local interaction of many simple units ("cells"). The second law of ther-
modynamics yields that isolated microscopically reversible physical systems tend with
time to states of maximal entropy, or "disorder". However, dissipative systems involving
microscopic irreversibility (like cellular automata), or those open to interaction with their
environment, may evolve from "disordered" to more "ordered" states, which can exhibit
quite complicated structure (snowflakes, for example). Most cellular automata mappings
are irreversible (many initial states may evolve to the same final state) and not surjective
(not all possible configurations occur), so that the set of generated configurations con-
tracts with time, which is reflected in decrease in its entropy (Packard & Wolfram 1985,
Martin et al. 1984). The nature of cellular automata makes them ideal for numerical com-
puting due to the necessity of solving simultaneously a large number of relatively simple
equations. Moreover, numerical simulations of physical phenomena lead to discretiza-
tion of all the involved variables, thus entering the natural domain of cellular automata.
Physical systems which contain a large number of similar components with local interac-
tions can be directly modelled as cellular automata, but, in general, any physical system
satisfying differential equations may be approximated as a cellular automaton (Wolfram
1983). Nontrivial cellular automata are obtained when the interaction rules are nonlinear,
as when the system exhibits some form of "growth inhibition". In the simplest cases, the
cellular automaton is a lattice in space. For example, the sites may represent points in a
crystal lattice, with values given by some quantized observable, or corresponding to types
of atoms, etc. At a more macroscopic level, the sites may correspond to a region contain-
ing many molecules, and the value at each site may label one of several possible phases or
compositions. In this way, cellular automata can be used as discrete models for nonlinear
chemical systems involving a network of reactions coupled with spatial diffusion (Green-
berg et al. 1978), or provide models for kinetic aspects of phase transitions (Harvey et al.
1982). Many biological systems have been modelled by cellular automata (Lindanmayer
1968, Kitagawa 1974, Ulam 1972, Rosen 1981). The development of structure and pat-
terns in the growth of organisms often appears to be governed by very simple local rules
(Thompson 1961) and therefore may be described with the cellular automata approach,
an example being the leaf and branch arrangement (Stevens 1974). Furthermore, cellular
automata approach has been applied to a wide variety of phenomena, like thundercloud
electrification (Selvam 1998), spread of epidemic diseases (Quan-Xing et al. 2006), neu-
ron interaction (Furtado & Copelli 2006), the influence of electoral surveys on the voting
process (Alves et al. 2002) and social models of opinion formation (Bordogna & Albano
2006), to name just a few.
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Figure 1.6: Example of patterns produced by a one dimensional cellular automaton. Time
is on the inverted y-axis (top is time beginning). Courtesy of David J. Eck.

One-dimensional cellular automata may be divided into four classes, with the au-
tomata within one class exhibiting qualitatively similar behavior (Wolfram 1984). Such
a small number of classes implies considerable universality in the behavior of cellular
systems, rendering many construction details of cellular automata irrelevant in deter-
mining their behavior. In almost all cases, cellular automaton evolution is irreversible.
Trajectories in the configuration space for the cellular automata therefore merge with
time, and after many timesteps, trajectories starting from almost all initial configurations
converge onto "attractors", which typically contain only a very small fraction of possi-
ble states. Such evolution to attractors from arbitrary initial conditions allows for "self-
organization", where patterns may evolve from structureless initial states. The form and
extent of the emerging structures depends on the nature of the attractors, and the four
classes of cellular automata behavior characterize the type of these attractors (Wolfram
1983, 1984). The first three types are roughly analogous to the limit points, limit cycles
and chaotic attractors found in dynamical systems. Cellular automata of the fourth class
behave in a more complicated manner, and are conjectured to be capable of universal
computation, so that their evolution may implement any finite algorithm. The different
classes of cellular automata behavior allow different prediction levels of the outcome of
the automaton evolution from given initial states. In the first class, the outcome is de-
termined independent of the initial state. In the second class, the value at the particular
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1.2 Cellular automata

site at large times is determined by the initial values of sites within a limited region. In
the third class, the value at a particular site depends on an ever-increasing number of ini-
tial sites, and random initial values lead to chaotic behavior. On the other hand, in class
four cellular automata, a particular site value may depend on many initial site values, and
may apparently be determined only by an algorithm equivalent in complexity to explicit
simulation of the automaton evolution (Wolfram 1984). Hence, no meaningful prediction
is possible and only explicit simulation yields the behavior of such systems. The divi-
sion into the four classes of one-dimensional cellular automata mentioned above serves
the conceptual understanding of possible evolution scenarios of such systems rather than
being a strict rule. Some cellular automata exhibit features of more than one class, with
separate regions yielding different type of structures (Wolfram 1984, Packard & Wolfram
1985). Figure. 1.6 present an example of such a one dimensional automaton.

A well-known example of a two-dimensional cellular automaton of the fourth class is
the Game of Life, developed by John Horton Conway in 1970. The universe of the Game
of Life is an infinite two-dimensional orthogonal grid of square cells, each of which is in
one of two possible states, "live" or "dead". Every cell interacts with its eight neighbors,
which are the cells that are directly horizontally, vertically, or diagonally adjacent. At
each step in time, the following transitions occur: any live cell with fewer than two live
neighbors dies, any live cell with more than three live neighbors also dies, any live cell
with two or three live neighbors continues to live, and any dead cell with exactly three
live neighbors comes to life. Started with an initial configuration of dead and live cells,
the system evolves to exhibit many different larger scale patterns of live cells, including
static patterns ("still lives"), repeating patterns ("oscillators"), and patterns that translate
themselves across the board ("gliders"). Other, more complex patterns can evolve for
long periods before stabilizing or disappearing, they can repeatedly produce gliders etc. In
general, the set of relatively simple rules of Life leads to very complex dynamics (Gardner
1970). The Game of Life has also been shown to have the property of computational
universality, implying that suitable initial configurations can specify arbitrary algorithmic
procedures (Berlekamp et al. 1982). Hence, such automaton can be seen as a computer,
able to evaluate any computable function, with the initial configuration being the input
data which is processed in time by the rules of the automaton. It can therefore simulate any
other system, given the proper initial state configuration. The proof of the computational
universality is based on the existence of automaton structures which emulate components
of a standard digital computer. It should be noted that only infinite cellular automata may
be capable of universal computation. Figure. 1.7 shows an example of the patterns arising
in the Conway’s automaton. It seems that two-dimensional cellular automata bear some
local resemblance to one-dimensional cases, and the same four classes of behavior can
be identified (Packard & Wolfram 1985). Nevertheless, many of the phenomena found in
the two-dimensional cases depend on the geometry of the lattice, involving complicated
boundaries and interfaces, rendering formal prediction of the system’s behavior even more
difficult than in the one-dimensional cases. Cellular automata in which the lattice itself
is subject to change in time are labelled "dynamic environment" automata, and in general
the more degrees of freedom the system has the more complex the resulting structures
are (Packard & Wolfram 1985). Due to the intrinsic unpredictability of the behavior of
most (non-trivial) cellular automata, particularly in two spatial dimensions, it is hard to
generalize their behavior beyond the four classes already mentioned. Lacking the proper
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Figure 1.7: Example of a realization of the John Conway’s Game of Life. Blue are the
"live" cells.

description language, and, many times, also a clear definition of "self-organization", the
investigation of most automata reduces to the direct computation of their evolution.

Solar granulation is an example of a physical phenomenon that can be modelled in
terms of cellular automata. Even though the plasma flow is very turbulent, the convective
cells (granules) persist for up to several minutes as distinct structures and can be described
statistically in terms of their lifetime and size. It is also true that the granules interact only
locally with each other, although the detailed nature of this interaction is not entirely clear.
It is known that the exploding granules grow during their lifetime and effectively either
overflow or squeeze their neighbors. Although these two possibilities are quite different
in nature, they both lead to the same result, namely that the downflow lane surrounding
such an exploder is also translated in space, and the spatial structure of the neighboring
granules is rearranged accordingly. The evolution of the dissolvers is easier to compre-
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1.2 Cellular automata

hend. The center upflow, which spawns the granule by supplying hot plasma from below,
diminishes with time, and the granule diminishes accordingly, producing the effect of the
surrounding downflow lanes closing in on the hot center till it disappears altogether, i.e.
the downflows merge. Hence we employ the following picture in constructing a cellu-
lar automaton model of granulation: the granules interact only locally at their common
borders (downflow lanes) through the horizontal pressure they exert on each other. When
the pressure on one side of a downflow is lower (the granule on that side is smaller), the
downflow is pushed in that direction, effectively working to shrink or move the smaller
granule. Additionally, granules disappear or fragment when their size reaches a critical
value (as already mentioned in previous section, solar granulation can be justifiably seen
as composed only of dissolvers and fragmenters). The fragmenting process constitutes
a growth inhibitor for the granules, ensuring an equilibrium state in which the average
granule size and lifetime remain constant in time. Granulation as a cellular automaton
is a dynamic environment system, in which the position and the very existence of cells
(granules) is subject to change. The values assigned to cells in case of granulation can
be their size and/or position, or rather the translation of the position in time (i.e. ve-
locity). By analogy to other cellular automata, one can expect such a system to exhibit
self-organization, with granular size and translation velocities arranged spatially on scales
larger than the granulation cell size.

This thesis presents an investigation of the mesogranulation phenomenon as a sur-
face self-arrangement effect of the granulation. We present cellular automaton models,
both one- and two-dimensional, that capture the granulation characteristics in terms of
cell lifetime and size distributions, and we are able to show that mesogranulation emerges
naturally in such a system. We compare the results with those from a realistic hydrody-
namic simulation and find good agreement, additionally showing that mesogranulation is
a robust feature, not depending strongly on the detailed granule interaction rules. In Chap-
ter 2 we describe a simple one-dimensional granulation model, which helps to understand
the concept and is an intermediate step towards the two-dimensional model. Chapter 3
describes the two-dimensional cellular model of granulation and the emerging mesogran-
ulation properties. Many versions of the model are presented and analyzed to check how
different cell interaction rules affect the mesogranular properties. Additionally, different
mesogranulation detection methods are applied. It turns out that mesogranulation emerges
naturally in such a cell system. In Chapter 4 we analyze mesogranulation emerging in a
three-dimensional hydrodynamical simulation. This allows for comparison of mesogran-
ule properties coming from the cell model and the more realistic simulation, and we find
astonishingly good agreement between the two. Chapter 5 deals in more detail with the
spatial scale of mesogranulation and how it depends on different analysis methods and
parameters. In Chapter 6 we compare the results obtained from the cellular and hydro-
dynamical models with solar observations. We discuss the similarities and differences,
additionally addressing other phenomena like the spatial distribution of granule types and
the long-lived downflows. Chapter 7 contains the final conclusions.
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2 One-dimensional model

2.1 Model description

The model has one spatial dimension and traces the evolution of artificial granules in
time, hence producing plots of granule positions versus time. The model is quite simple
and does not aim at quantitative reproduction of solar granulation, but rather serves to
introduce the concept of parameterizing granulation as a cell system. It also allows a
comparison with two-dimensional hydrodynamic simulations (depth plus one horizontal
coordinate) by Ploner et al. (2000) and Steiner (2003). The granules are defined as the
regions between the intergranular lanes, which are simple points in this model. These
points start from an initial distribution and move along the spatial dimension in time,
therefore producing lines that run along the time axis. Thus, at any given time, there is
a number of granules present in the simulation, their sizes being the distances between
neighboring points. The spatial domain is periodic: a point "escaping" through the end of

Figure 2.1: A sketch illustrating the one dimensional model construction, see text.

the domain appears at the beginning of it and vice versa. We consider a "cell competition"
model, meaning that the movement of any given point (intergranular lane) at each time
step is determined by a "pressure" exerted on it by the granules that the point separates.
The point moves towards lower pressure. In a nearly stationary flow situation (evolving
slowly compared with the acoustic timescale) one can stipulate a relation between granule
size and the pressure at its boundary: the larger the granule is, the higher the pressure
excess above its center must be to deflect the rising plasma horizontally and sustain the
granular circulation. Form the Bernoulli principle it follows that this pressure excess is
accompanied by corresponding pressure excess at the cell boundary (intergranular lane),
which in turn deflects the plasma downwards (Stein et al. 1998, Stein & Nordlund 1998).
We therefore assume the following rules of intergranular lane movement in the model: let
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xi be the spatial position of i-th point, then

d2xi

dt2
= −α(Pi+1 − Pi) = −β(Lk

i+1 − Lk
i ) (2.1)

where Pi is the pressure exerted on the point xi by the granule defined by the interval
[xi−1,xi] and Li is the size of that granule (see Fig. 2.1). α and β are proportionality con-
stants, k is the pressure-size dependence exponent (a free parameter in the model), unless
stated otherwise, k = 1. Hence, intergranular lanes are points of pressure discontinuity
in the model. When two points meet, they merge, marking a disappearance of a granule.
This accounts for dissolving granules. On the other hand, when an expanding granule
reaches a critical size, it is assumed to split in two, with a new point (intergranular lane)
appearing. From observations and numerical simulations it is known that fragmenters are
statistically larger and less uniform in size then dissolvers (Hirzberger et al. 1997, Ploner
1998, Müller et al. 2001). In order to reproduce this property, in our model the critical
splitting size S crit for fragmenters is set to:

S crit = 4 + 2R1 +
R2

2
[Mm] (2.2)

where R1 is an uniformly distributed random number in the range [0,1] and R2 is a nor-
mally distributed random number with both variance and standard deviation equal to unity.
The random components R1 and R2 of the critical splitting size S crit are evaluated individ-
ually for each granule in each timestep. The position xn of the new-born intergranular
lane is chosen randomly within the middle third part of the splitting granule. The formula
is

xn = xi−1 +
1
3

S crit(1 + R3) (2.3)

where xi−1 is the position of the left-hand intergranular lane of the splitting cell and R3 is
an uniformly distributed random number in the range [0,1]. The model does not account
for disappearance of intergranular lanes, that is for granule merging. Hence lanes can
appear, but not disappear other than by lane merging (a dissolving granule disappearance).
Figure. 2.2 present an example of a granule evolution plot.

2.2 Granule properties

The time scale of the model is fixed by the requirement that the mean granule lifetime
agrees with that given by the two-dimensional (the vertical plus one horizontal dimension)
hydrodynamical simulation of Ploner (1998). We choose Ploner’s simulation in order to
compare the obtained values with his detailed granulation characteristics. Figure. 2.3a
present lifetime histograms of dissolvers and fragmenters of a simulation equivalent to
that of Fig. 2.2 but run in a larger domain (400 Mm x 20 hours) to include more granules.
The mean lifetimes are τdiss = 74.1 timesteps for dissolvers and τexpl = 73.3 timesteps
for fragmenters. Thus, after scaling the mean timestep lifetime value 73.7 with mean
granule lifetime 8.2 minutes (after Ploner, 1998) one can evaluate the timespan of Fig. 2.2
to be 4000 timesteps = 445 min = 7.4 h. Fig. 2.3b shows the size distributions of dis-
solvers and fragmenters, with mean values sdiss = 1.08 Mm and sexpl = 2.73 Mm, while
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Figure 2.2: Example of a granule evolution plot of a cell-competition model (Eq. 2.1).
Dark lines represent the time evolution of intergranular "lanes". Two lanes merging mark
a disappearance of a granule (dissolving granule), while an appearing of a new lane splits
an existing granule (exploding granule).

Fig. 2.3c is a scatter plot of granular lifetime versus size. The size of a granule is taken
as the average over its lifetime. Figure. 2.4 presents the corresponding granule properties
from the two-dimensional hydrodynamical simulation of Ploner (1998). From Fig. 2.3 it
is clear that there is little overlapping of granule sizes between dissolvers and fragmenters.
Nevertheless, the long lived granules approach the mean size regardless of the way they
disappear. Therefore the mean size seems to be the "natural" granule size. The distribu-
tions in Fig. 2.4 show similar separation of sizes between dissolvers and fragmenters in
the hydrodynamical simulation. In Fig. 2.3c the maximum size of a dissolver for a given
lifetime is bounded by a smooth curve. It can be explained as follows: granules are born
in pairs when the "parent" granule fragments. Of such pair, on average one is a dissolver
and one is an fragmenter. This can be certified in Fig. 2.2 and with the fact that the num-
ber of fragmenters and dissolvers in the simulation is practically the same (within 0.1%).
The bounding curve in Fig. 2.3c is obtained when one evaluates the size-lifetime relation
of a dissolver formed in a dissolver-fragmenter pair by fragmentation of a stationary par-
ent granule with a fixed size (evolution of a point between two straight parallel walls).
This upper limit for the granule size of the short-lived dissolvers means, that during the
evolution of such granules the granule lanes never diverge from each other. This can also
be verified by close examination of Fig. 2.2. No bounding curves are present in case of
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Figure 2.3: Histograms of granule lifetime (a) and size (b); (c) is a scatter plot of size
versus lifetime. Solid line/circles are dissolvers, dotted line/crosses are fragmenters.

fragmenters, because both the times of appearance and vanishing of an fragmenter contain
random components (see the "Model description" section). Nevertheless, if a fragmenter
has a short lifetime, it means it was large enough to fulfill the splitting criterion soon after
it was born. This is reflected in the fragmenter distribution in Fig. 2.3c, with the largest
fragmenters being also the shortest-lived ones. The distribution of granules in the hydro-
dynamical simulation (Fig. 2.4, bottom panel) does not show grouping similar to that of
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2.2 Granule properties

Figure 2.4: Granule properties from the 2D simulation of Ploner (1998). Top left: his-
tograms of granule lifetimes, top right: histograms of granule sizes, bottom: a scatter plot
of size versus lifetime. Bold solid line/circles are fragmenters, thin solid line/dots are
fragmenters. Dashed line: dissolvers and fragmenters together.

the cell-competition model (Fig. 2.3c). First, the number of granules in Fig. 2.4 is much
less than in Fig. 2.3c, hence it is possible that more data points are needed in Fig. 2.4 to
clearly distinguish between the dissolver and fragmenter grouping regions in the figure.
Nevertheless, the bounding region in Fig. 2.3c is a direct effect of the cell-competition
rule of Eqs. (2.1) or (2.4), which in turn is a greatly simplified attempt to describe a very
dynamical turbulent phenomenon of the granular flow. Therefore, it is not expected that
the more realistic results from hydrodynamical simulations show such clear indications
of the pressure-size relation of Eqs. (2.1) or (2.4).

Table 2.1 summarizes the averaged granular parameters derived from the model. (Note:
since we scale lifetime in our model to match the results of Ploner (1998), only the rela-
tion between the dissolver and fragmenter lifetimes is relevant.) Although the model is
very simple and does not include a gross part of the phenomena thought to be relevant
to granulation, it reproduces quite well the simulated granules of Ploner (1998) (com-
pare Fig. 2.3 and Fig. 2.4, parameters also included in Table 2.1). This indicates that
although granulation is a dynamical flow of convective origin, it can be parameterized by
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Table 2.1: Granulation characteristics.

parameter diss expl diss+expl
lifetime(min)
Ploner(1998)

8.2
8.6 ± 5.6

8.2
7.9 ± 5.8

8.2
8.2 ± 5.7

size(Mm)
Ploner(1998)

1.1
1.3 ± 0.5

2.7
2.7 ± 0.8

1.9
2 ± 1.0

a simplified cell system without loss of the statistical characteristics of the granules.
It is interesting to observe that the patterns arising from the model run with the left

hand side of Eq. 2.1 changed to velocity, that is for

dxi

dt
= −α(Pi+1 − Pi) = −β(Lk

i+1 − Lk
i ) (2.4)

do not change significantly. xi is the spatial position of i-th point, Pi is the pressure exerted
on the point xi by the granule defined by points [xi−1,xi] and Li is the size of that granule
(see Fig. 2.1). α and β are proportionality constants, k is the pressure-size dependence
exponent (a free parameter in the model). Figure. 2.5 shows granule scatter plot of size
versus lifetime run with Eq. 2.4.

Figure 2.5: Scatter plots of granule size versus lifetime for Eq. 2.4. Circles represent
dissolvers, crosses are fragmenters

2.3 Mesogranulation

2.3.1 Detection and characteristics

A convenient way to detect mesogranulation in observational data and hydrodynamical
simulations is by means of "corks", test particles being passively advected by the hor-
izontal flow at a given height. The corks are introduced into the fluid and after a few
granule lifetimes they tend to gather in the long-lived intergranular lanes, which mark
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2.3 Mesogranulation

places of horizontal velocity convergence (downflows). These structures have lifetimes
much longer than average granule lifetime and outline areas of horizontal fluid divergence
which are suggested to represent mesogranules (Simon et al. 1991, Ploner et al. 2000,
Rieutord et al. 2000, Roudier et al. 2003, Cattaneo et al. 2001). Averaging the horizon-
tal velocity over the cork evolution time (given time interval since the moment of cork
introduction) can indeed produce a mesostructure with uniform radial outflow from the
center of a mesocell, although the instantaneous velocities within the mesocell area do
not have to be either radial or uniform (Rieutord et al. 2000). In our toy-model there
are no explicit fluid velocities, but motivated by the results of the two-dimensional HD
simulation (Ploner et al. 2000) we argue that an intergranular lane that lives long enough
will accumulate enough corks to become a mesogranular border-lane. This is how we
define mesogranulation in the model, and we mark intergranular lanes that have lifetime
longer than a given threshold time t0 as mesogranular. Whenever two lanes merge, we
keep the lifetime of the older one. Figure. 2.6 is the same as Fig. 2.2 but with the meso-
granular lanes marked as thick for t0 = 440 timesteps (corresponding to 50 min). The
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Figure 2.6: Plot of Fig. 2.2 with mesogranular lines marked as thick for lifetime t0 = 440
timesteps (50 min). Timespan of the domain is 445 min.

mesogranules can also be divided into meso-exploders and meso-dissolvers, according
to the means of their decay. As such, it is interesting to see whether the properties of
the t0-defined mesogranulation are qualitatively different from those of granulation. Fig-
ure. 2.7a-b present lifetime and size distribution of mesogranules from the model run
depicted in Fig. 2.6, respectively (again run in the large domain to include more meso-
granules). Figure. 2.7c is a scatter plot of mesogranular lifetime versus size. Table 2.2
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Table 2.2: Mesogranulation characteristics for threshold time t0 ∼ 50 min

parameter mesodiss mesoexpl mesodiss+mesoexpl
lifetime(min)
Ploner(1998)

91.8
−

111.6
−

101.7
60 − 120

size(Mm)
Ploner(1998)

2.8
−

5.8
−

4.3
7

contains a summary of averaged mesogranular characteristics for threshold time t0 ∼ 50
min. The lifetime value 60 − 120 min given by Ploner (1998) is not an average, but a
range in which most of the lifetimes were found. Provided that the calculation domain is
large enough to include a statistically sufficient number of mesogranules (ex. 400 Mm x
19 h), we do not find any deviation of detected mesogranular values between many simu-
lation runs. Comparing Figures 2.3 and 2.7 leads to the conclusion that mesogranulation
detected in this manner bears some similarities to granulation. Like the granules, the
mesogranules approach the mean size with increasing lifetime regardless of whether they
are mesodissolvers or mesoexploders. This is not surprising, since the mode of death does
not depend on the history of a granule/mesogranule and has little effect on the mean size
provided that the structure lives long enough. The mean size is such that a (meso)granule
can remain so for a long time because it is neither probable that it splits, nor does it face
being squeezed by the neighbors.

In Fig. 2.7c there is a separation of meso-fragmenters and meso-dissolvers similar to
that of Fig. 2.3c for granules, and similar arguments can be employed to explain it. Like
granules, the mesogranules in the model can only be born through fragmentation of the
parent object. The splitting mechanism is not explicitly built into the mesogranule evolu-
tion, but rather follows from the granular motions. The fact that in Fig. 2.7c the largest
meso-exploders are the shortest-lived ones can be explained as follows: if a mesogran-
ule is large, then the probability of its splitting is proportionally larger than for a smaller
meso-exploder, because it is more likely that long-lived intergranular lanes already exist
within the mesocell interior. Hence it takes less time for these lanes to reach the critical
mesogranular lifetime t0, therefore splitting the cell. What is more interesting, Fig. 2.7c
also shows a tendency for short-lived meso-dissolvers to be grouped and bounded simi-
larly to dissolvers in Fig. 2.3c. This behavior of mesogranules is an indirect indication of
an average mesoscale network existence, since it is the network that bounds the evolution
of these new-born meso-dissolvers, setting the lifetime-size dependence. Like in case of
the granules, the bounding curve of the maximum size-lifetime dependence is equivalent
to a lane evolution between two straight parallel walls according to rules of equation 2.1 or
2.4. This means that in the one-dimensional model the t0-defined mesogranule evolution
can be roughly approximated with the size-pressure scheme of equations 2.1 (2.4).

2.3.2 Dependence on parameters

The mesogranular features present in the simulation may depend in principle on the model
parameters y (see Eq. 2.1) and t0 (threshold time). However, we have found that the av-
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Figure 2.7: Mesogranule lifetime (a) and size (b) histograms, (c) is a scatter plot of
size versus lifetime. Solid line/circles are meso-dissolvers, dotted line/crosses are meso-
exploders.

erage mesoscale size and lifetime virtually do not change for y between 1 and 3. This
is an indication that mesogranulation in our model is a feature of the cellular structure
and is independent of the detailed properties of the granule interaction. Figure. 2.8 shows
how the average mesogranular lifetime and size change with t0 in the range between 15
min and 4 hours. Fig. 2.8 indicates that the choice of the threshold time t0 influences
the detected mesogranular features. Apart from the first hour, the increase of size and
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Figure 2.8: Dependence of the average mesogranule lifetime (a) and size (b) on the thresh-
old time t0.

lifetime of mesogranules in the cell-competition model is linear. The increase of the de-
tected meso-characteristics with the threshold time in such simple one-dimensional model
is not surprising. The larger t0 is, the fewer intergranular lanes have reached this value
and are present in the domain at a given moment. Hence, the larger the separation be-
tween the lanes i.e., the mesogranular size. A mesogranule can only disappear when two
mesolanes merge, or a new mesolane appears. When the distance between the mesolanes
is larger, it takes longer for them to meet and merge, hence the increase of the lifetime.
The same logic applies to splitting of mesogranules, if the t0 is large, it takes longer for
the intergranular lanes within a mesogranule to become mesolanes and split the existing
mesocell. Concluding, the t0-defined mesogranulation in the model has no intrinsic time-
and length-scale, since the measured values depend on the choice of the threshold time t0.

2.4 Comparison with a random-walk model

We will now study how strongly the granule interaction rules affect the mesogranular
properties. Therefore, we have constructed a random-walk granulation cell model, for
which the previous rules of lane movement (Eq. (2.1) or (2.4)) are replaced by a random
displacement (with normal distribution). To keep the time scale comparable with the cell-
competition model the velocities of lane movement have to be larger, since a randomly
walking lane changes the direction of motion much more frequently and hence travels
a shorter distance in a given direction then a pressure-driven lane. The average lane
velocities found in the random-walk model are of order of 2 kms−1, a factor of 3 larger
than in the cell-competition case (∼0.7 kms−1). One way to compare the effects of the
different interaction rules is to consider the number of the oldest lanes in the simulation,
i.e. lanes that start at t = 0 (zero-lanes). Their number can decrease in time only by
merging of such lanes, in which case we keep the lifetime of the older one. In case of
lanes performing a random walk in the domain one expects their number to decrease as√

t−1 since the rms displacement of a random lane is proportional to
√

t (Chandrasekhar,
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2.4 Comparison with a random-walk model

1943). Figure 2.9 shows the number of zero lanes versus time for the cell competition
and random-walk models, fitted with function N(t) = A

√
t−1 (dashed line). Obviously,

for both models the decrease of the number of zero-lanes is consistent with the
√

t−1

law. Hence we conclude that the difference between the two models lies predominantly
in the small-scale interaction, and the resulting average motion of the zero-lanes in the
cell competition case is indistinguishable from a random one. Fig. 2.10 presents the

Figure 2.9: Time evolution of the number of zero-lanes in (a) cell-competition and (b)
random-walk model

random model example of the granule and mesogranule evolution, equivalent of Fig. 2.6
for the cell competition model, while Fig. 2.11a-b show granulation lifetime and size
distributions of a random walk model. Figure. 2.11c is a scatter plot of granular lifetimes
versus size which can be compared with Fig. 2.3c. Similarly, Fig. 2.12 is the random
model equivalent of Fig. 2.7, presenting mesogranular scale characteristics. In Fig. 2.12c
one can see that short-lived meso-dissolvers in the random model are bounded, similarly
to meso-dissolvers of the competition model in Fig. 2.7c. Again, one can see that as
an indication of the mesoscale network existence. It can also be seen that the envelope
bounding the mesodissolvers extends to longer lifetimes in case of the competition model
(Fig. 2.7c). This means that the "coherence" time (the time interval during which the
mesodissolvers can be approximated as evolving between straight parallel walls) of the
meso-network is shorter for the random-walk model, hence it is less regular than in the
cell-competition case. This can be seen directly by comparing Fig. 2.6 and Fig. 2.10.
Table 2.3 summarizes the granule and mesogranule statistics for the random walk model
(threshold time t0 ∼ 50 min).
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Figure 2.10: Random walk model equivalent of Fig. 2.6. Timespan of the domain is 445
min

Table 2.3: Granulation and mesogranulation characteristics for random walk model (the
threshold time t0 ∼ 50 min)

parameter diss expl diss+expl
lifetime(min)
Ploner(1998)

8.0
8.6 ± 5.6

8.4
7.9 ± 5.8

8.2
8.2 ± 5.7

size(Mm)
Ploner(1998)

1.4
1.3 ± 0.5

2.5
2.7 ± 0.8

2.0
2.0 ± 1.0

parameter mesodiss mesoexpl mesodiss+mesoexpl
lifetime(min)
Ploner(1998)

43.7
−

66.4
−

55.0
60 − 120

size(Mm)
Ploner(1998)

2.9
−

8.0
−

5.4
7
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Figure 2.11: Granule lifetime (a) and size (b) histograms, (c) is a scatter plot of size versus
lifetime. Solid line/circles are dissolvers, dotted line/crosses are exploders. Random walk
model equivalent of Fig. 2.3
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Figure 2.12: Mesogranule lifetime (a) and size (b) histograms, (c) is a scatter plot of
size versus lifetime. Solid line/circles are mesodissolvers, dotted line/crosses are meso-
exploders. Random walk model equivalent of Fig. 2.7
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2.5 Discussion

Comparing Figures 2.3 and 2.11 one can notice that although the average granule size
in the cell competition and random walk models is roughly the same, there is more over-
lapping of dissolver and exploder sizes in the latter. This is due to the fact that in the
random-walk model the systematic effect of competition is missing, and hence the fate
of the offspring granules bears less dependence on the position of the new lane. There-
fore, for short-lived granules it is less clear which become dissolvers and which exploders
than it is in the cell-competition case. Since the granule statistics derived from an hy-
drodynamic simulation of Ploner (1998) show little overlapping, this would favor the cell
competition model as the one giving better approximation to the phenomenon.

Figure. 2.13 presents the dependence of mesogranular lifetime and size on t0 for the
random walk model, equivalent to Fig. 2.8 of the cell-competition case. Apart from a
slight nonlinearity for t0 < 1h in Fig. 2.8, which is not present in the random model
results, the dependence of the mesoscale characteristics on the threshold time is similarly
linear for both models. For a given t0 the mesogranular sizes given by the cell-competition
model are smaller than those produced in the random model. On the other hand, for a
given t0 mesogranular lifetimes are larger for the competition model than for the random-
walk one. In the random walk model (Fig. 2.13a) the average mesogranule lifetime yields
the threshold time t0, while in the cell-competition model (Fig. 2.8a) these lifetime values
are slightly larger than the t0. For t0 = 1h the random-walk meso-lifetime is half of the
cell-competition one (∼50 min and ∼100 min, respectively).
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Figure 2.13: Mesogranule lifetime (a) and size (b) dependance on the threshold time t0

for the random walk model.

2.5 Discussion

The main conclusion from the one-dimensional model is that the granulation size and
lifetime properties can be reproduced with such a simplified cell system. Moreover, the
t0-defined mesogranulation emerges as a robust property of the model, only weakly de-
pending on the detailed granule interaction schemes. The simple rules of splitting and dis-
appearing of granules result in a self-arrangement of the system and emergence of larger
scale pattern. The differences between the random walk and the cell-competition cases
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2 One-dimensional model

lie predominantly in the small scales (Fig. 2.9) and the resulting statistical properties of
mesogranules are quite similar for the two models. The dependence of the mesogranular
size and lifetime on the threshold time is also roughly the same for the two versions of the
model, and suggests that there is no characteristic scale associated with the phenomenon
in the one-dimensional case. The lifetime-size dependence of the short-lived mesodis-
solvers in the cell-competition model, visible in the scatter plot in Fig. 2.7c, corresponds
to the similar behavior of dissolving granules in the model (Fig. 2.3c). Such grouping
effect is the result of the pressure-size relation of equation 2.1 (2.4), with the bounding
curve of the region in which the cell characteristics tend to group corresponding to the
size-lifetime relation of a dissolver, created in a dissolver-fragmenter pair by splitting of a
parent granule of a constant size. In other words, such dissolver-fragmenter pairs evolve
as if bound by straight parallel walls. The existence of this effect also for mesodissolvers
indicates the effective existence of an average mesogranular network, and suggests that
mesogranule evolution in the cell-competition model ca also be roughly approximated
by the size-pressure relation of equation 2.1 (2.4) applied to mesocells. Interestingly, a
self-similar behavior of the cellular flow structures has been conjectured by recent hy-
drodynamical simulations (Stein et al. 2006). In the random-walk model traces of this
effect can be found only for the very short-lived mesodissolvers, which suggests a much
shorter "coherence" time of the mesonetwork. Nevertheless, this model is too simple to
draw conclusions about the three-dimensional phenomenon on the Sun. Even if the gran-
ular arrangement and mesogranulation emergence is a surface effect, it still requires at
least two dimensions to describe it properly. The one-dimensional model qualifies as a
class one cellular automaton, meaning that the resulting mesogranular lane pattern does
not depend on the initial configuration of granules. The model has been run many times,
always starting with a different randomized initial state, and it always converges quickly
to the patterns seen in Figs. 2.6 and 2.10. This is predominantly due to the granule split-
ting mechanism, which prevents indiscriminate cell growth. The splitting and vanishing
of cells also introduce a timescale in the model, which is the average granule lifetime.
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3 Two-dimensional model

3.1 Motivation

As seen in the previous chapter, statistical properties of solar granulation in one dimen-
sion can be reproduced by a simple cellular automaton model. In principle, this should
also be possible in two spatial dimensions. Such a two-dimensional model is much more
interesting due to the fact that solar granulation pattern on the surface is two-dimensional.
The granular flow itself is a three-dimensional convective phenomenon and as such can-
not be reproduced by a surface model. Nevertheless, we do not aim at describing the
hydrodynamical plasma flow, but rather at a parameterization of the cellular flow pattern
in terms of mutually interacting two-dimensional cells. The model presented here is a
two-dimensional extension of the one-dimensional cellular automaton model described in
the previous chapter. One more spatial dimension poses many more challenges in con-
structing the model, most obvious of them being the shape of the cells. For simplicity
we parameterize the granules as triangles. The cell evolution is parameterized through
the motion of the vertices, which translate on the plane according to a given set of rules.
As in the one-dimensional case, we present two distinct types of vertex interaction, the
random walk and cell-competition schemes. The splitting and vanishing of cells in two
dimensions present additional questions which must be dealt with. For example, to keep
the triangular cell structure, the splitting procedure has to affect two adjacent cells simul-
taneously. Since one method of mesogranulation detection involves the age of the struc-
tures, the age inheritance rules when splitting and removing cells have to be set properly.
The details of the model construction are discussed in the following sections. The one-
dimensional model results encourage the construction of the two-dimensional version by
producing larger scale patterns similar to mesogranulation. As will be seen in this chapter,
the two-dimensional model also exhibits this property.

3.2 Model description

3.2.1 Initial conditions

We model granules as space-filling triangles on a square plane. We start with a square grid
of points which constitute the vertices of triangular cells. Each initial vertex position has
a random component to avoid artificial pattern formation and shorten the initial transient
state phase of the model. The size of the grid d (d2 being the number of vertices) is a free
parameter. Figure. 3.1 is an example of an initial plane triangulation for d = 12. The outer
square outlines the domain. The domain is periodic, meaning that the outermost vertices

37
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Figure 3.1: Example of initial plane triangulation for number of vertices d2 = 144

on opposite sides of the domain are connected with each other to form triangles in the
same manner as vertices inside the domain do. These "periodic" connections are visible
on Fig. 3.1 as those that cross the domain boundary.

3.2.2 Data structure

Each vertex in the model has a unique index N and six arrays assigned to it: a position
array [X,Y], vertex age array, link array (containing indices of vertices connected to the
vertex), two link-type arrays (one for each spatial dimension), determining the type of
connections of vertex N to vertices in the link array, and a connection age array, contain-
ing the age of connections to vertices in the link array. The values in the link-type and
connection age arrays describe connections with vertices whose index occupies a corre-
sponding location in the link array. The values in the link-type array can be either 0, −1
or 1. Zero means that the connection is within the domain, while 1 is a cross-boundary
connection directed from vertex N through the right/uppper boundary and −1 means a
connection through the left/lower boundary. It follows that vertices on the opposite sides
of a cross-boundary connection have opposite corresponding link-type values (1 and −1).

3.2.3 Time evolution

Movement of vertices in the domain is restricted to motion towards one of the neighbor-
ing vertices, that is along triangle sides. When a vertex crosses a domain boundary it
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3.2 Model description

reappears on the opposite side, with its link type arrays and link type arrays of vertices
connected to it updated accordingly. We apply two kinds of motion schemes: random
motion and cell-competition. Moreover, each scheme has two different versions of vertex
movement: constant velocity and constant acceleration. We label them shortly CA, CV ,
RA and RV for cell competition constant acceleration, cell competition constant velocity,
random walk constant acceleration and random walk constant velocity, respectively. The
RV algorithm is as follows: for each vertex a neighbor is chosen randomly and the ver-
tex is moved towards that neighbor by a random displacement δ (a uniformly distributed
random number between 0 and 0.28, the domain size is 12 × 12). For the CV scheme,
the vertex is moved towards its closest neighbor by a constant displacement (δ = 0.05).
If the step is larger than the distance between the vertex and the neighbor towards which
it is being moved, we merge the vertices (see Section 3.2.4 for vertex merging process
description). In case of constant acceleration schemes, the movement of a vertex in each
timestep is the projection of a vector sum of all previous displacements of the vertex on
the triangle side along which the vertex is moved plus δ (which is the same as in constant
velocity case for corresponding models). To prevent "cell flipping", which happens when
a vertex crosses a connection between two other vertices (thus destroying the triangular
topology), we introduce the following scheme, illustrated in Fig. 3.2. For each vertex
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Figure 3.2: Illustration of the procedure preventing cell-flipping. For details see text.

in the domain that is being moved (A) we find all its neighbors, i.e. all other vertices
connected to it (B - H). Next, for each neighbor (illustrated in the case of vertex B in
Fig. 3.2) we find all vertices connected both to the moving vertex (A) and the neighbor
(B), and for each of them we calculate the cross products of the pair of vectors pointing
towards vertices A and B, respectively (shown as black thick arrows). Then we calcu-
late the corresponding cross products with the position of vertex A after its displacement
and determine the product of both. If for any of the vertices this value is negative, i.e.
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3 Two-dimensional model

the angle between both vectors has changed sign, or the post-movement cross product is
zero, then we cancel the movement of A for this timestep. In this case, for the constant
acceleration schemes we also reset the sum of all previous displacements of the vertex to
zero, otherwise those models have a tendency to "freeze" after some time, with only a few
vertices actually moving.

3.2.4 Cell vanishing - vertex merging

In order to allow for vanishing of cells, we have to define a procedure and criteria for the
merging of vertices. After a vertex has moved towards one of its neighbors, the distance
between them is measured. If it is below a critical value ∆ (free parameter, unless stated
otherwise ∆ = 8 · 10−5; the domain size is 12 × 12), the vertices are merged so that one
of the vertices and all the associated array structures vanish and are removed form the
data structure. For all common neighbors of the merging vertices, the reference to the
disappearing one in the link and other arrays is removed. For all other vertices connected
to the disappearing vertex, its reference in the associated link arrays is changed to the
remaining, "merged" vertex. In "pathological" cases, as illustrated in Fig. 3.3, when the
merging vertices (A and B) have more than two common neighbors (C - E), we have to
remove all vertices which are connected to only one other vertex besides A and B (in this
case, vertex D). Otherwise, vertices like D would be connected to only two vertices after
A and B had merged, thus breaking the triangular topology. As the age of vertices and
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Figure 3.3: "Pathological" case of a vertex merger. For details see text.

lanes (connections) in the model is used to detect mesogranulation in a way similar to
the cork method applied in observations and simulations, it is important to define the age
inheritance rules properly. Corks are artificial particles which are advected passively on
a horizontal plane by the velocity field. They tend to accumulate in downflow regions
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3.2 Model description

i.e. downflow lanes and vertices separating granules (Cattaneo et al. 2001, Rieutord et
al. 2000, Roudier et al. 2003, Ploner et al. 2000). We postulate a relation between the
number of corks accumulated in a downflow structure and its age: the older the structure
the more corks it is likely to attract. It follows that when two lanes or vertices merge, the
corks naturally remain in the merged lane or vertex. Hence, when two vertices A and B
merge (Fig. 3.3), we keep the older age of the connections A-E and B-E as the age of the
new connection of the merged vertex with E, and similarly for C. The age of the merged
vertex is also the older age of vertices A and B. The merged vertex inherits the neighbors
of both A and B (with link and age arrays updated accordingly). We do not allow vertices
to have multiple references to another vertex (a link array has to have unique entries);
therefore, the domain has to be bigger than 3× 3 vertices. This also leads to errors in case
of "domain collapse", when merging of vertices produces a few giant cells and vertices
from opposing ends of domain become connected also through the domain. Such case is
neither interesting nor sought for, and with proper cell splitting rules it never occurs.

3.2.5 Cell splitting - vertex appearance

Since the construction of the two-dimensional model allows for many different schemes
for cell splitting, it is reasonable to investigate what differences those schemes produce,
both in the granulation characteristics, as well as in the emerging mesogranulation fea-
tures. Hence, we apply four different cell splitting schemes: critical cell side length,
critical cell area, critical cell area plus the longest side, and random splitting. We label
them L, A, AL and R, respectively. Thus, a cell-competition constant acceleration model
with random splitting is labelled CA/R etc.

3.2.5.1 Critical cell side length (L)

When a connection between two vertices A and B (see Fig. 3.4) exceeds a critical length
(an uniformly distributed random number between 2 and 3.5, evaluated individually for
each connection in each timestep; the box size is 12 × 12), the following splitting pro-
cedure is initiated: first, two unitary vectors −→e1 , −→e2 perpendicular to

−−→
AB are determined

(thick arrows). Next, the common neighbor of A and B with the smallest LAB (sum of
distances to A and B) is found (C in Fig. 3.4). Knowing the dot product of

−−→
AC with −→e1 and

−→e2, we use the dot product of the connections to the remaining common neighbors (i.e.
vectors

−−→
AE,
−−→
AF,
−−→
AD in Fig. 3.4) with vectors −→e1 , −→e2 and minimize LAB to determine the

closest common neighbor of A and B on the opposite side of
−−→
AB that vertex C is (vertex

D in Fig. 3.4). The new vertex X is inserted halfway between vertices A and B, splitting
both triangles that share the side [A,B]. The link array associated with X has four entries,
namely A, B, C and D. Since the appearance procedure is initiated in the code after the
displacement loop but before the periodic-boundary check, the new vertex can be techni-
cally treated as laying within the domain. If it is positioned outside domain boundaries,
the periodic-boundary code will update all the associated arrays. Therefore the link-type
array of X consists of zero for A, and the same link-type value for B, C and D as vertex A
has for those vertices. Link array of A (B) is updated with the number of X in place of B
(A). The link-type arrays of A are updated with zeros for X. The link arrays of C and D
are extended by one position for the number of X. All other arrays of A, B, C and D are
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Figure 3.4: Illustration of the splitting process, with new vertex X appearing between
vertices A and B. Dashed lines are the new connections appearing.

adjusted accordingly (link-type, age etc.) Since the connections of the new vertex X to A
and B inherit the age of the former A-B connection, the only new structures appearing are
the connections X-C, X-D and the vertex X.

3.2.5.2 Critical cell area (A)

In this scheme the cell is split when it exceeds a critical area value (a uniformly distributed
random number between 1.5 and 2.5; the box size is 12× 12). The splitting partner cell is
chosen to be the neighbor with the largest area. The rules of new vertex position and age
inheritance of new structures are like in the "critical side length" splitting case.

3.2.5.3 Critical cell area plus the longest side (AL)

The cell is split when it exceeds a critical area value, and the splitting occurs through
the longest side of the cell (in Fig. 3.4 the "splitting connection" A-B is chosen to be the
longest side of the cell), regardless of the area of the neighbor sharing the side with the
cell. The rules of new vertex position and age inheritance of new structures are like in the
"critical side length" splitting case.

3.2.5.4 Random splitting (R)

In this scheme the splitting is not based on any cell characteristics. Therefore, to keep the
number of cells present in the domain constant throughout the simulation, the number of
the splitting events in each timestep is equal to the number of vanishing events that took
place in this timestep. The cell that is split is chosen randomly (each cell having the same
probability of being chosen), as well as the side through which the splitting occurs. The
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3.3 Granule properties

rules of new vertex position and age inheritance of new structures are like in the "critical
side length" splitting case.

3.3 Granule properties

In this section we present the statistics of granulation cell size and lifetime distributions
for selected versions of the two-dimensional model. The statistics for the remaining model
versions can be found in the Appendix. The lifetime of a cell is the time (in timesteps)
from its birth by parent-cell splitting to its demise (either by splitting or by vanishing).
The size of a cell is taken as the average size over the cell’s lifetime (sum of size in each
timestep divided by the number of timesteps). We present statistics for two kinds of cells,
distinguished by the way the disappear in the simulation: dissolvers (those who vanish
by vertex merging) and fragmenters (those that split). For each model, four figures are
shown: lifetime distribution, size distribution, scatter plot of the cell size versus lifetime
and a domain snapshot. The lifetime of granules is normalized with the average granule
lifetime for the given model.

The reported lifetime and area histograms of solar granules are close to exponential
(Title et al. 1989, Brandt et al. 1991, Hirzberger et al. 1996, 1997, 1999, Müller et al.
2001). A similar behavior in the cellular model can be seen in the random-walk and the
random splitting versions. In other model versions the distributions tend to peak around
a certain value, and the small short-lived cells are not the most abundant ones. On the
other hand, we find that the granule characteristics of the cell-competition models agree
better with those obtained from a two-dimensional hydrodynamical simulation (Ploner
1998, PhD thesis) than their random-walk counterparts, which was the case in the one-
dimensional model as well. The main difference between the two schemes is, similarly to
the one-dimensional case, the statistical separation of the dissolver and fragmenter sizes.
Hence, while the cell-competition model versions reproduce the statistical separation be-
tween the dissolvers and fragmenters better than the random-walk versions, they do not
produce the cascade of very small, short-lived cells. The opposite is true for the random-
walk model versions. Naturally, one should not expect the cellular model to perfectly
reproduce the properties of real granules. Additionally, since the solar granule analysis
methods involve algorithms with a somewhat arbitrary detection level threshold, while in
the cellular model we are able to extract the exact properties of each triangle, the compari-
son between the two becomes difficult. It is important to stress again that the fundamental
aim of the cellular model is not the perfect reproduction of the properties of solar granu-
lation. Rather, it serves to verify how much the emerging mesogranular properties depend
on the detailed granule interaction rules.

The existence of very small fragmenters in the models in which the splitting criterion
is based on the cell size ( i.e. X/A and X/AL) can be understood when one remembers that
the splitting always affects two neighboring triangular cells. The fragmentation procedure
is initiated when a given cell exceeds the critical area, but the splitting partner can be of
any size. In the X/L versions, it is the cell side length that determines whether a cell
splits or not, therefore it may happen that one or even both splitting cells have small area.
In the random splitting models there is no criterion for splitting, hence there is almost
no difference in sizes between dissolvers and fragmenters. The fact that in those models
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3 Two-dimensional model

fragmenters are statistically still a bit larger is due to the fact that the majority of cells that
end as dissolvers are the initially small cells. The vertices of such cells are closer to each
other, hence it takes less time for the random walk process to bring those vertices together
(the distance covered by a random walk process scales as

√
t, t being time). Hence, a cell

that is initially larger persists on average longer, and therefore is more probable to become
a fragmenter.
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Figure 3.5: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CV/AL version.
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Figure 3.6: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RV/AL version.

45



3 Two-dimensional model

0  2 4 6
0

50

100

150

200

250
a

average granule lifetime

blue (dissolver) mean =0.85  
red (fragmenter) mean = 1.15 

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300
b

size

dissolver (blue) mean 0.47
fragmenter (red) mean 0.87 

0  2 4 6
0

0.5

1

1.5

2

2.5
c

average granule lifetime

si
ze

red crosses − fragmenters
blue dots − dissolvers   

0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12
0

1.2

2.4

3.6

4.8

6

7.2

8.4

9.6

10.8

12

d

Figure 3.7: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RV/A version.
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Figure 3.8: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CA/L version.
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Figure 3.9: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RV/R version.

When examining the cell characteristics it is apparent that some model versions pro-
duce patterns which are less desirable than others when approximating granulation (see
domain snapshots for the CV/A, CA/A and RA/R versions in the Appendix for example).
The constant acceleration versions differ only marginally from the constant velocity ones,
hence it is not necessary to include both for the same splitting scheme in further anal-
ysis. Therefore we retain only the CV/AL, RV/AL, RV/A, RV/R and CA/L models for
mesogranulation investigation.
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3.4 Mesogranulation: definition

Solar mesogranulation was originally detected as a pattern in the vertical velocity (Novem-
ber 1981). Since the upflowing plasma diverges horizontally upon reaching the surface,
there exists a close correspondence between the upflow and outflow regions on the solar
surface, which may also be used to detect and analyze mesogranules (Simon et al. 1991,
Ploner et al. 2000, Rieutord et al. 2000, Roudier et al. 2003, Cattaneo et al. 2001). As
discussed in the previous sections, the cork pattern outlines horizontal velocity divergence
areas, thus providing another way to visualize mesogranulation. The construction of the
model presented in this chapter is a two-dimensional extension of the one-dimensional
model concept of Chapter 2, with the age of the vertices and intergranular lanes being
a measure of the number of corks they would accumulate. The idea is the following:
the corks tend to gather in the long-lived intergranular lanes, which mark places of hor-
izontal velocity convergence (downflows). These structures have lifetimes much longer
than average granule lifetime and outline areas of horizontal fluid divergence which are
suggested to represent mesogranules. Therefore, we argue that an intergranular lane that
lives long enough will accumulate enough corks to become a mesogranular border-lane.
Hence, one method of the mesogranulation detection in the model is based on the age of
the intergranular structures. Additionally, in the two-dimensional model we can readily
apply the methods used in the analysis of observations and HD simulations to obtain the
horizontal velocity field and find mesogranules directly as the velocity divergence areas.

3.4.1 Intergranular lane age

As explained in Section 3.2.4, the rules for the age determination of lanes and vertices in
the model are constructed in a way that corresponds to the cork method of mesogranu-
lation detection used in observations and simulations. Therefore, once a given structure
(vertex or connecting lane) gets older than a given time t0 (a free parameter), it is marked
as "mesogranular". The time in the models is scaled with the average granule lifetime. In
the following figures mesostructures are marked as thick and red in contrast to blue gran-
ulation features. Figure. 3.10 and Fig. 3.11 show snapshots from the CV/AL and RV/AL
model versions, respectively. The mesogranulation evolution time t0 equals 10 · τav (τav

is the average granule lifetime) in each case. The main difference between the red (meso-
granular) patterns in Figures 3.10 and 3.11 is that in the CV/AL model (Fig. 3.10) the
structure seems to be more uniformly spaced. One measure of the regularity of the pat-
tern is the width of the distribution divided by the mean value of the distances between
the closest mesovertices (the red dots in the figures). Figure 3.12 shows the histograms of
such distances for the chosen models, while Table 3.1 contains the values of the standard
deviation divided by the mean of the distributions. Table 3.1 along with Fig 3.12 suggest

Table 3.1: Values of the standard deviation divided by the mean value for the mesovertex
distance distributions from Fig. 3.12

Model version CV/AL RV/AL RV/A RV/R CA/L
(Std.deviation)/mean 0.5 0.97 0.86 1.05 0.66
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Figure 3.10: Snapshot from a CV/AL model version. Mesostructures corresponding to 10
average granule lifetime evolution time are marked in red.
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Figure 3.11: Same as Fig. 3.10, but for RV/AL model version.

that the cell-competition models produce the most uniformly spaced mesovertex pattern,
while the largest spread is found for the random models. Naturally, the histogram of dis-
tances between the closest mesovertices only tell us how uniformly they are distributed
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3.4 Mesogranulation: definition

Figure 3.12: Histogram of the distances between the closest mesovertices in the different
model versions.

on the surface, and does not necessarily reflect on the properties of mesogranular cells.
These are defined as the area confined by the mesolanes and there is no simple relation
between mesovertices and mesogranular cells. The analysis of the mesogranulation size
and lifetime characteristics follows in Section 3.5.
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3 Two-dimensional model

3.4.2 Horizontal velocity divergence areas

A different way of detecting mesogranulation in the model is to analyze the horizontal ve-
locity divergence field. In this method patches of velocity divergence are associated with
the mesogranular flow, the size and lifetime of the patches characterizing the temporal and
spatial scales. In the case of observations, the horizontal velocity field is usually obtained
with a Local Correlation Tracking (LCT) algorithm, which is based on tracking bright-
ness patterns throughout the domain (November et al. 1988, Berger et al. 1998, Welsch et
al. 2004). In our model we apply two methods of obtaining the horizontal velocity field:
direct cell tracking, and a LCT algorithm analogous to that applied in observational data
analysis.

3.4.2.1 Cell tracking

The cell tracking methods takes advantage of the fact that in the cell model we explicitly
know the position of each vertex constituting a triangular cell. This allows us to track
the cell’s movement, which is done in the following way: in each timestep we record the
position of each cell’s geometrical center. The translation of this point from one timestep
to the next is taken as the horizontal velocity vector; all such vectors are stored for all cells
throughout the simulation. Next, we divide the domain into a number of square bins. The
velocity vectors lying within one bin during a chosen time interval (called the averaging
time) are added up to produce a temporally and spatially averaged velocity vector, which
is then assigned to the bin center. The default number of bins is 15× 15, which was found
to be optimal. If the number of bins is too large, many of them contain no velocity vectors
at all. Too few bins, on the other hand, can average out the interesting velocity variations.
The averaging time interval is chosen to be the mesogranulation threshold time t0 used
for the lane-age method, so that the resulting velocity divergence field can be compared
with the intergranular mesolane pattern present in the domain at a given timestep. The
divergence of the velocity is calculated using the velocity vectors from four neighboring
bins as illustrated in Fig. 3.13. The formula is as follows:

∇ · −→VH =
(VxD − VxB) + (VxC − VxA)

2d
+

(VyD − VyC) + (VyB − VyA)

2d
(3.1)

with Vxi and Vyi being the x and y velocity components at the point i, and d being the bin
length. The velocity divergence value is assigned to the point X, which is the common
vertex of the bins used for calculation. Fig. 3.14 and Fig. 3.15 show the division of the
domain into bins and an example of the resulting velocity divergence field for a CV/AL
model. In Fig. 3.15 the mesogranulation averaging time t0 is 7.5 · τav, where τav is the
average cell lifetime (7.5 · τav is roughly one hour if τav = 8 min is taken from solar
observation). White lanes are the mesolanes (intergranular lanes older than t0 = 7.5 · τav).
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Figure 3.13: Illustration of the velocity divergence calculation procedure.
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Figure 3.14: Example of domain bin division for velocity divergence calculation (see
text).
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3 Two-dimensional model

Figure 3.15: Example of a velocity divergence map for a CV/AL model. t0 = 7.5·τav. Blue
color indicates convergence while red signifies divergence. Overplotted in white are the
mesolanes determined by the lane age criterion with the same value of t0. The divergence
areas correspond well with the mesogranules defined by mesolanes.
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3.4 Mesogranulation: definition

3.4.2.2 Local Correlation Tracking

We use a public LCT algorithm developed and described by Welsh et al. (2004). The code
computes the horizontal velocity field by tracking granule motions in the domain using a
Fourier-transform based cross correlation function of subsequent intensity patterns. We
apply the LCT algorithm to timeseries of granulation intensity images, which are images
like the one in Fig. 3.1, to which a shading algorithm (Eq. 3.2) had been applied. The
timeseries are 100 · τav to 150 · τav long, depending on the model. The LCT window
is a gaussian, with the full width at half maximum set to the average granule size. The
resulting velocity field agrees well with the cell tracking method velocities described in
the previous section. Figure. 3.16 presents an example of the velocity divergence field
for the CV/AL model acquired with the cell tracking method and with the LCT algorithm,
respectively. Averaging time is 7.5 ·τav. One can see a clear correspondence of divergence
and convergence areas for the both methods in Figure 3.16.

Figure 3.16: Velocity divergence field for the CV/AL model; comparison between the cell
tracking (left) and LCT methods (right) of acquiring the velocity.

3.4.3 Velocity divergence patches versus mesolanes: comparison

Given the two methods of defining mesogranulation in the model, it is interesting to see
how the mesofeatures emerging from both methods relate to each other. The intergran-
ular lane age method is constructed to correspond to the cork advection method, while
corks are used in data analysis to outline areas of velocity divergence. Hence, we can
verify whether the mesolanes determined by the lane-age method at a given time actually
outline the corresponding divergence patches obtained from the t0-averaged horizontal ve-
locity. This is done in two ways: by calculating the cross-correlation function between the
mesolane features and the velocity convergence areas present at a given time in the model,
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3 Two-dimensional model

and by actually advecting cork particles with the LCT-obtained velocities and comparing
their resulting positions with the mesolanes.

In order to calculate the cross correlation function (the cross correlation coefficient as
a function of the relative shift of the images), the divergence and the mesolane images
need to be of a correct form (grayscale intensity). Figure 3.17 shows an example of
such images used for cross correlation calculation. The mesolane image (Fig. 3.17, right

Figure 3.17: Example of a velocity divergence image (left) and a corresponding mesofea-
ture image (right), CA/AL model.

panel) is produced from images like the one in Fig. 3.10 with an algorithm that records
the positions of red features (mesofeatures) in the image and then transforms them into a
grayscale intensity image. It works in the following way: first, all features in the image
except the mesolanes are removed and the color of the mesolanes is changed to black.
Next, we assign to each pixel I(i, j) in the image matrix I which is not black (i.e is not a
mesolane) a following brightness value:

I(i, j) = min[min(I(i + 1, j), I(i − 1, j)) + A, min(I(i, j − 1), I(i, j + 1)) + A] (3.2)

where min(a,b) signifies the lower value of the numbers a and b. The parameter A con-
trols the gradient of the shading, the larger the value the higher the gradient. In case
of Fig. 3.17 (b) A = 3. We run the above algorithm for i and j increasing from mini-
mum to maximum value as well as for i and j decreasing from maximum to minimum to
achieve symmetric shading. Both the maximum and minimum pixel numbers i and j lie
well within the image matrix I(i, j), so that there are no problems with the initial values
I(i − 1, j) etc. The image matrix I(i, j) is much larger than the resulting shaded image
and has values of 255 ("white") everywhere except mesolanes. Figure. 3.17 (left) is the
velocity divergence plotted in a grayscale colormap. The horizontal and vertical pattern
seen in the divergence image is a consequence of a linear data interpolation algorithm
applied.

To reduce the noise, the cross correlation function between the velocity divergence
and the mesolane images was averaged over 63 independent runs for each version of the
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3.4 Mesogranulation: definition

model: at the end of each run, the correlation function between the two corresponding
images (like those in Fig. 3.17) was calculated and then a mean of 63 cross correlation
functions was produced. Fig. 3.18 shows the averaged cross correlation function for the

Figure 3.18: Averaged cross correlation function between velocity divergence and
mesolanes for the CV/AL model. t0 = 7.5 · τav.
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Figure 3.19: (left) histogram of an average of the 63 correlation functions between ve-
locity divergence and mesolanes, (right) histogram of an average of the 63 correlation
function histograms CV/AL model (see text).

CV/AL model, t0 = 7.5 · τav. To estimate the significance of the peak of the cross correla-
tion function in Fig. 3.18, we calculate 63 correlations of image pairs like in Fig. 3.17 but
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3 Two-dimensional model

Figure 3.20: Decrease of correlation between velocity divergence and mesolanes with the
velocity divergence averaging time. The curve is an exponential fit, CV/AL model. The
e-folding time is 2.4 · τav

with the velocity divergence image coming from a different dataset than the mesolane im-
age (hence unrelated). Next, we average those 63 correlations of unrelated images in two
different ways to produce two histograms: a histogram of an average of the 63 correlation
functions, and a histogram of an average of the 63 correlation function histograms. Fig-
ure. 3.19 shows both histograms, it follows that the correlation value of 0.27 is significant
at best at the 2σ level and there is correlation between velocity divergence and mesolanes
in the CV/AL model.

It is instructive to study how the cross correlation between velocity divergence struc-
tures and mesolanes decreases with evolution time. We take a given mesolane intensity
image and vary the time over which the velocity divergence was averaged to produce the
divergence image. For each velocity divergence averaging time, 63 independent model
runs are included to produce an averaged cross correlation function as in Fig. 3.18. Fig-
ure. 3.20 shows the decrease of correlation with the velocity divergence averaging time
for the CV/AL model. On the x axis is the time subtracted from the end of the full 7.5 · τav

of evolution (0 means that the velocity divergence was averaged over full 7.5 ·τav, 1 means
the velocity divergence was averaged over the first 6 ·τav only, and so on). The correlation
decrease in Fig. 3.20 is not quite exponential, but the fit provides some idea about the
timescale. The rather short e-folding time 2.4 · τav means that the mesolane positions are
determined mostly by the most recent velocity field and are advected over the surface and
change their spatial position more than the velocity divergence patches. Alternatively, the
longer the velocity divergence averaging time, the more of the small-scale noise is re-
moved from the divergence images, leaving only the large patches that are well correlated
with the mesolanes.

The close to exponential form of the correlation decrease in Fig. 3.20 can be under-
stood when we consider a following example: suppose we have two gaussians f1 = A1e−x2

and f2 = A2e−(x−δ(t))2
, whose spatial separation δ(t) is a function of time in a form δ(t) =
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a
√

t. Calculation their convolution yields:

( f1 ∗ f2)(x) =
∫

x
e−x2

e−(x−δ(t))2
dx =

∫
x

e−2x2
e−2xδ(t)e−δ(t)

2
dx = e−a2t

∫
x

e−2x2
e−2xδ(t)dx (3.3)

Therefore, the signal Ft of such drifting gaussians is exponential in time:

Ft =

∫
t
e−a2t

∫
x

e−2x2
e−2xδ(t)dxdt = −a−2e−a2t

∫
x

e−2x2
e−2xδ(t)dx (3.4)

The same conclusions are true for the other versions of the model, there is a significant
correlation between the horizontal velocity convergence areas and mesolanes for t0 =

7.5 · τav (one hour) and the decrease of this correlation (like in Fig. 3.20) is quite fast. The
equivalents of Fig. 3.18 to 3.20 for those models can be found in the Appendix.

The velocity field obtained by tracking the granules also allows for cork advection
analysis. Once the cork results are obtained, we can overplot their final position (position
after evolving for the time equivalent to the mesolane minimum age) on the corresponding
mesolane image to verify if their positions match. We start with a dense uniform distri-
bution of corks, no additional corks are introduced during the advection process. The
cork evolution time equals t0 = 7.5 · τav (equal to the mesolane minimum age, ∼1 hour).
Figure. 3.21 presents corks position overplotted on the corresponding velocity divergence
field for the CV/AL, RV/AL and RV/R models, respectively. The corks accumulate in
velocity convergence regions, while being pushed out of the divergence areas. The ve-
locities are larger in the random models owing to the nature of random motion: the path
of a vertex integrated over a granule lifetime in a random model is longer than in a cell-
competition model, therefore the calculated velocity is also larger. This explains why the
corks travel a longer distance in the random models. This also explains why in the random
models the corks in some places are not as well aligned with the convergence areas as in
the cell-competition models. The cork positions are strongly influenced by the last few
timesteps, which can push the corks significantly, while the velocity divergence field will
not be so strongly affected. Looking at the images in Fig. 3.21 it is instructive to notice
that the structure of the divergence field evolves from a larger, seemingly regular cell-like
pattern in the CV/AL case, to more chaotic small-scale pattern in the most random case of
RV/R. Since the observed solar mesogranulation images (velocity divergence) are most
similar to the CV/AL case, this fact favors the cell-competition granule interaction rules
as a better description of the real granule interactions than the random walk model.

To study how the cork pattern relates to the corresponding mesolane positions, we
present two kinds of pictures: one is the corks overplotted on a single mesolane image
taken at the last timestep of the 7.5 ·τav cork evolution time. The other is corks overplotted
on the mesolane positions averaged over the whole 7.5 · τav of the cork evolution time.
Figures 3.22-3.24 present the images for the CV/AL, RV/AL and RV/R models, respec-
tively. In both types of images the corks tend to accumulate away form the bright regions
(mesogranule centers). Visual inspection of Fig. 3.22-3.24 indicates that the corks are
better aligned with the most recent position of the mesolanes rather than with their t0-
averaged locations. This is not surprising since the definition of mesolanes corresponds
to the cork convergence areas. Nevertheless, the correspondence of corks and mesolane
positions in both types of images is far from perfect and there is no one-to-one relation
between these structures. Figure. 3.21-3.24 help to realize that the mesogranules defined
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3 Two-dimensional model

by the lane age differ from those defined by the velocity divergence field. This is also
seen in Fig. 3.15, where the white mesolanes are overplotted on the corresponding ve-
locity divergence field. Even though a significant correlation between the mesolanes and
convergence regions (i.e. downflows) exists, it is apparent that the shape, size and posi-
tion of mesogranules defined by the both methods differ. The mesolane pattern changes
more rapidly due to the arbitrary age condition, which leads to an abrupt "on-off" behav-
ior which is not present in the divergence field. The position of the mesolanes in the last
mesolane image in a t0 timeseries is a good approximation of the position of the t0-old
corks, as seen in Figures 3.22-3.24. Nevertheless, since the LCT-obtained velocity diver-
gence method is the same as used in observations to define mesogranules, it is a more
relevant way to analyze mesogranulation in the model. The intergranular lane age method
results depend more directly on the construction details of the model (triangular topology,
age inheritance rules etc.), and hence are more likely to reflect the properties of this model
only.
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3.4 Mesogranulation: definition

Figure 3.21: Cork positions overplotted on the corresponding time-averaged velocity di-
vergence field, CV/AL (top), RV/AL (middle) and RV/R (bottom) models.
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Figure 3.22: Cork positions overplotted on the last mesolane image (top) and a time-
averaged mesolane image (bottom) , CV/AL model.
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Figure 3.23: Cork positions overplotted on the last mesolane image (top) and a time-
averaged mesolane image (bottom) , RV/AL model.
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Figure 3.24: Cork positions overplotted on the last mesolane image (top) and a time-
averaged mesolane image (bottom) , RV/R model.
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3.5 Mesogranulation: results

This section presents the statistical results of mesogranule areas and lifetimes extracted
from the model by the two methods described in the previous sections. One method de-
fines mesogranules as regions confined by the mesolanes, while the other as horizontal
velocity divergence patches. In both methods, the analysis consists of uniquely identify-
ing the mesogranules in a timeseries of images. In the intergranular age method we obtain
the mesogranule properties by tracking the cells in time. Hence we are able to directly
extract the mesogranule lifetimes and areas, the latter defined as the average area over
cell’s lifetime. In case of the velocity divergence method we include two types of results:
the tracking and snapshot statistics. The tracking method is analogous to the mesolane
tracking method. In the snapshot statistics we consider statistically independent velocity
divergence images and extract the area properties of mesogranules from each image in-
dividually. The lifetime information is then obtained by calculating the cross correlation
coefficient between a given divergence image and the images at later times. The time in-
terval after which the correlation coefficient drops to the noise level is taken as a measure
of the lifetime of the structures.

3.5.1 Intergranular lane age method

The mesogranular size and lifetime statistics presented here are obtained using a 37.5 · τav

(5 hours) long time series of images like that shown in Fig. 3.17 b. The size of a meso-
granular cell is taken as the average area over the cell’s lifetime (sum of area in each
timestep divided by the number of timesteps). The obtained mesogranule properties may
depend on t0 (the threshold time for the lanes to be marked as mesolanes, the averag-
ing time in case of the velocity divergence field), hence we set t0 equal to 7.5 · τav (one
hour) for the presented analysis and consider the dependence on t0 in the next section. We
use a segmentation algorithm to uniquely label each mesogranule and track it throughout
the timeseries. Figure. 3.25 shows an example of a segmented mesogranule image. The
tracking algorithm works as follows: first, in each mesogranule image the mesocells are
uniquely labelled with a number. Next, for each pair of subsequent mesogranule images,
the algorithm finds the mesocells that share the most area in both images. Unless a split-
ting has occurred, such cells are taken to be the same mesogranule. The time resolution
of the timeseries is sufficient so that the mesocells do not significantly shift their posi-
tion between subsequent images, and the above scheme works properly. Mesogranules
defined by the mesolane method appear and disappear in the model in the similar way
as the granules do: a mesogranule can either contract to a point or split in two or more
new mesogranules. These evolution properties follow from the granule evolution, no new
parameters are introduced.

For technical reasons, we remove in each image all features whose area is smaller
than 10 pixels. Such features arise due to the image processing algorithm, usually they
are small mesogranules (or parts of mesogranules) with the mesolanes very close to each
other (a few pixel distance). The algorithm can lead to an artificial connection of the
mesolanes, resulting in a splitting and production of smaller features with an area of
only a few pixels. Hence, in order to prevent such an artificial cascade of very small
mesogranules, we remove these small features.
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3 Two-dimensional model

Figure 3.25: Example of a segmented image used to obtain mesogranule statistics.

There is a bias in the mesostatistics data due to the fact that the mesogranules which
still exist in the domain at the end of the dataset, and thus have not covered their full life
span (here called SE cells), are also included in the statistics. To check the significance
of the bias we applied two other rules of data acquisition in case of the CV/AL model:
(A) we excluded the SE cells from the statistics, and (B) we extracted the statistics from
a 7.5 · τav shorter dataset and used the remaining 7.5 · τav of the data to extract the correct
values for the SE cells. The mean and median vales of mesolifetimes and sizes for all
models are presented in Table 3.1.A. For the CV/AL model we also present the case (A)
and (B) values, along with the same values extracted from a 150 · τav long dataset (all the
other values come from a 37.5 · τav long dataset). As seen in Table 3.1.A, the SE cells do
not affect the obtained values significantly. Hence, for the other versions of the model we
do not apply any special treatment to the SE cells.

The mesostatistics for the random walk model versions are biased due to the following
reason: as already mentioned, when a mesogranule contracts and becomes less than 10
pixels in size, it is removed from the segmented image (Fig. 3.25) and substituted with a
intergranular lane. Nevertheless, it is still present in the original images from which the
segmented images are produced. In the cell-competition models such small mesogranules
will vanish in the next few timesteps due to the cell-competition movement rule, but in
the random walk case the vertices of the small cell can move apart in the next timesteps,
enlarging the cell above 10 pixel size. Such an event will produce a new mesogranule in
the segmented image and will be recorded as a splitting event of one of the neighboring
mesogranules. Since in the random motion scheme the vertices have no preferred direc-
tion of motion, it often happens that such small features oscillate around the 10 pixel size,
hence confounding the results. To prevent this, we introduce the "S-splitting" rule, which
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states that an offspring cell with an area equal or greater than 90% of the parent cell inher-
its the identity of the parent. This prevents such reappearance of small mesogranules from
being recorded as a splitting of a neighbor, but the small mesogranule is still recorded as a
new one, thus increasing the number of small short-lived cells. Figures 3.26 to 3.35 show
the mesogranule statistics for the selected models, with the mesogranular threshold time
t0 equal to 7.5 · τav (one hour). The corresponding figures for the S-splitting method can
be found in the Appendix.

Figure 3.26: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. CV/AL model.
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Figure 3.27: Mesogranular lifetime histogram with an exponential fit. CV/AL model. The
e-folding time equals 3.5 · τav.

Figure 3.28: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. CA/L model.
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Figure 3.29: Mesogranular lifetime histogram with an exponential fit. CA/L model. The
e-folding time equals 3.4 · τav.

Figure 3.30: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. RV/AL model.
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Figure 3.31: Mesogranular lifetime histogram with an exponential fit. RV/AL model. The
e-folding time equals 0.8 · τav.

Figure 3.32: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. RV/R model.
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Figure 3.33: Mesogranular lifetime histogram with an exponential fit. RV/R model. The
e-folding time equals 1.3 · τav.

Figure 3.34: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. RV/A model.
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3 Two-dimensional model

Figure 3.35: Mesogranular lifetime histogram with an exponential fit. RV/A model. The
e-folding time equals 1.2 · τav.

The mesogranule lifetime and size histograms for all the analyzed model versions can
be approximated by an exponential, as illustrated in corresponding figures for lifetime
distribution in each case. The most abundant are the smallest, shortest-lived cells. The
exponential distribution is a memoryless random distribution, which means that the rate
at which mesogranules disappear is constant, and a cell is just as likely to disappear in the
first second of its existence as it is in the n-th.

The S-split rule increases the average lifetimes of mesogranules, while decreasing
the average area. This is due to the following: the S-split rule preserves the identity
of a mesogranule when a splitting event cuts off an area smaller than 10% of the cell,
therefore increasing the lifetime of such mesogranule. On the other hand, without the
S-split rule, the large area offspring of such an unequal splitting is recorded as a new
mesogranule and increases the number of large cells, hence increasing the average area.
In the scatter plots of the cell-competition versions of the model one can see traces of
a relation between mesogranule size and lifetime, particularly for the small (short-lived)
cells. In the random cases the number of detected mesogranules is much larger, many of
those being artifacts of the mesogranule detection/tracking algorithm, as discussed earlier
in this section. In particular, the number of very short-lived cells of all sizes in the no-S-
split random versions is produced by constant reappearing of small mesogranules, which
oscillate around the 10 pixel detection threshold. The other reason for a larger number of
mesogranules in the random versions of the model is that the average granule size in those
versions is smaller, hence more granules/mesogranules in the domain. The properties of
mesogranules in all the analyzed model versions are very similar, suggesting that the
statistical characteristics of mesogranulation defined by the mesolanes in the model do
not depend strongly on the detailed granulation interaction rules.
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3.5 Mesogranulation: results

Table 3.1.A: Mesogranulation properties for the selected models. All values in
average granule lifetime (τav) and area (Areaav) units, respectively. Symbols: "-S"
= S-split rule, "ns" = only cells larger than 2 · Areaav and living longer than 2 · τav

were included, "CV/AL-L" = values extracted from a 150 · τav long timeseries, "no
SE" = no SE cells included (see text), "*" = including correct values for the SE cells
(see text)."E-fold. time" = the e-folding time of the exponential fit to the lifetime
histograms.

- Median area Mean area Median lifetm. Mean lifetm. E-fold. time

RV/A 1.2 2.2 0.2 0.7 1.2
RV/A-S 0.5 1.1 0.2 1.3 2.2
RV/A ns 3.6 4.1 3.1 3.3 1.6
RV/A-S ns 3.3 3.8 5.3 5.9 4.2
RV/R 1.2 2.3 0.3 0.8 1.3
RV/R-S 0.6 1.3 0.4 1.5 2.9
RV/R ns 3.9 4.6 3.2 3.9 1.9
RV/R-S ns 3.6 4.2 5.0 6.1 4.0
CV/AL 2.8 3.5 3.0 4.4 3.5
CV/AL no SE 2.5 3.5 3.0 4.3 -
CV/AL * 2.8 3.5 3.4 4.7 -
CV/AL-L 3.1 3.9 3.3 4.7 -
CV/AL-L * 3.1 3.9 3.4 4.9 -
CV/AL ns 4.8 5.2 6.7 7.8 6.7
CV/AL ns no SE 5.1 5.5 6.8 7.7 -
CV/AL ns * 4.9 5.3 7.2 7.9 -
CV/AL-L ns 5.1 5.5 6.5 7.8 -
CV/AL-L ns* 5.1 5.5 6.7 7.9 -
CV/AL-S 2.4 2.6 4.3 7.5 3.4
CV/AL-S ns 4.0 4.3 10.4 13.2 11.7
RV/AL 1.3 2.6 0.2 0.6 0.8
RV/AL-S 0.5 1.2 0.2 1.2 2.0
RV/AL ns 3.5 4.2 2.9 3.2 1.2
RV/AL-S ns 3.5 4.0 4.7 5.5 3.6
CA/L 1.7 2.3 2.4 3.6 3.4
CA/L-S 1.2 1.6 3.9 6.2 4.3
CA/L ns 3.6 4.1 5.0 5.9 3.8
CA/L-S ns 2.9 3.2 12.0 12.7 14.2

3.5.1.1 Mesogranulation properties: dependence on the threshold time t0

The important question concerning mesogranulation is whether it has distinctive time and
size scales, which are independent of the data analysis methods applied, and particularly
of the choice of the threshold time t0. Figures 3.36-3.37 show the dependence of meso-
granular characteristics on the threshold time in the CV/AL and RV/R model versions
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3 Two-dimensional model

(150 · τav long datasets). Since the emerging mesogranulation properties are qualitatively
quite similar for all granule interaction rules, we chose only these two model versions as
the most opposite in nature for this analysis. The "ns" means that only cells larger than
2 ·Areaav and living longer than 2 ·τav were included. The mean mesogranule size and life-
time increase with threshold time t0 for both model versions, suggesting that mesogran-
ulation defined by the mesolanes in the model has no intrinsic scale. The corresponding
figures for the S-splitting method for the two model version can be found in the Appendix.
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Figure 3.36: Dependence of mesogranular median (diamonds) and mean (asterisks) life-
time (left) and size (right) on the threshold time. Top row CV/AL model, bottom row
CV/AL ns model.
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Figure 3.37: Dependence of mesogranular median (diamonds) and mean (asterisks) life-
time (left) and size (right) on the threshold time. Top row RV/R model, bottom row RV/R
ns model.
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3 Two-dimensional model

3.5.2 Horizontal velocity divergence patch method

Mesogranulation statistics presented here are extracted from the divergence of the LCT
horizontal velocity. The datasets are 150 · τav long timeseries of granulation intensity
images (images like the one in Fig. 3.1, to which the shading algorithm given by Eq. 3.2
was applied), from which the horizontal velocity was obtained with the LCT algorithm
(see Section 3.2.2 for details). When analyzing velocity divergence areas one must set
a threshold for mesogranule labelling, that is the cutoff level above which image pixels
are treated as belonging to a mesogranule. This obviously influences the retrieved area
statistics; higher cutoff levels produce smaller cells and vice versa. The cutoff is set in
the following way: a t0 (averaging time) running mean is employed for each dataset to
produce a time sequence of t0-averaged velocity divergence maps. For each map the
rms (root mean square) value is recorded, and then the time average of the rms over
the whole dataset is calculated. This produces an average rms value Λ for a given t0.
The cutoff value is then set to be a fraction of Λ. Figure. 3.38 shows an example of
two velocity divergence patch images for the cutoff level 0.5Λ and 0.7Λ for the CV/AL
model, t0 equals 7.5 · τav. For the mesogranulation analysis we choose the cutoff level

Figure 3.38: Velocity divergence patch image for the cutoff level 0.5 ·Λ (left) and 0.7 ·Λ
(right), CV/AL model.

to be 0.5 · Λ. In the analysis all patches smaller than 0.66 of the average granule area
are disregarded. This number has been chosen to roughly correspond to the 10 pixel size
objects removed from the images in the intergranular lane age method. Mesogranules
are analyzed in two ways: one method is based on tracking mesogranules in time, hence
allowing for explicit extraction of mesogranule lifetimes. The tracking algorithm is the
same as used in the mesolane method (see Section 3.5.1). The size of mesogranules
is then taken as a lifetime-averaged area of the cell. The other method is the snapshot
analysis: each mesogranule image (t0-averaged velocity divergence map) in the dataset is
treated as independent, and the instantaneous mesogranule areas are extracted from each
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3.5 Mesogranulation: results

such image separately. The latter approach avoids the problems posed by the tracking
algorithm, when, for example, a divergence patch lies just above/below the threshold,
appearing and disappearing consecutively from one image to the next. Without tracking
mesogranules in time, it is not possible to explicitly measure the lifetime of each cell. A
measure of the time persistence of mesogranules in the snapshot analysis can therefore
be the decay time of the coefficient of cross-correlation between subsequent divergence
maps.

3.5.2.1 Tracking statistics

The following Figures 3.39-3.44 present mesogranulation size and lifetime statistics for
the selected model versions, obtained by tracking individual mesogranules present in the
simulation. The averaging time t0 equals 7.5 · τav (∼1 hour). The size of a mesogranule
is the average size over the cell’s lifetime. The presented statistics are obtained with the
S-split method, which states that an offspring cell with an area equal or greater than 90%
of the parent cell inherits the identity of the parent. This decreases the number of very
short-lived cells, since such an unequal splitting will not be recorded. Nevertheless, the
number of short-lived cells is still artificially multiplied by events where the mesogranule
(or its part) lies close to the threshold level and "flickers" between subsequent divergence
maps, with each reappearing being recorded as a new mesogranule.
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3 Two-dimensional model

Figure 3.39: Histograms of mesogranule lifetime (a), size (b), and a scatter plot of size
versus lifetime (c). CV/AL model, t0 = 7.5 · τav.
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Figure 3.40: Histograms of mesogranule lifetime (a), size (b), and a scatter plot of size
versus lifetime (c). CA/L model, t0 = 7.5 · τav.
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3 Two-dimensional model

Figure 3.41: Histograms of mesogranule lifetime (a), size (b), and a scatter plot of size
versus lifetime (c). RV/AL model, t0 = 7.5 · τav.
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Figure 3.42: Histograms of mesogranule lifetime (a), size (b), and a scatter plot of size
versus lifetime (c). RV/R model, t0 = 7.5 · τav.
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Figure 3.43: Mesogranule lifetime and size histograms from Fig. 3.39 (CV/AL model)
with a power law fit. The power law exponents are −1.27 for lifetime and −3.38 for the
area.
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Figure 3.44: Mesogranule lifetime and size histograms from Fig. 3.41 (RV/AL model)
with a power law fit. The power law exponents are −1.54 for lifetime and −2.67 for the
area.
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The size and lifetime histograms of mesogranules in Figs. 3.39-3.42, obtained by
tracking the positive velocity divergence patches, obey a power law distribution as seen
in the examples for the CV/AL and RV/AL models (Figs.3.43-3.44). This means that
there is no characteristic scale of mesogranulation obtained with the tracking method for
a given averaging time t0. This result is different from the intergranular lane age method
from Section 3.5.1, where the mesogranule size and lifetime histograms were exponential.
Since the same tracking algorithm was used for both methods, the difference lies in the
mesogranule definition. Table 3.2 shows the power law exponents of the fits to the size
and lifetime distributions for the selected models. The power law behavior of Figs. 3.39-
3.42 is also true for the properties obtained without the S-split method.

Table 3.2: Values of the exponents of the power law fits to the mesogranule area and
lifetime distributions for the selected models (Figs. 3.39-3.42) .

Model version CV/AL RV/AL RV/R CA/L
Lifetime fit exponent -1.27 -1.54 -1.43 -1.27
Size fit exponent -3.38 -2.67 -2.72 -1.75

Tracking statistics: dependence on the averaging time Again, it is interesting to see
how the average mesogranule properties depend on the choice of the averaging time t0.
Figures 3.45-3.52 present this dependence for mesogranules defined as positive velocity
divergence patches. The "ns" model versions mean that only cells larger than two average
granule areas and living longer than two average granule lifetimes were included in the
analysis. This was done to check how the statistics are influenced by the number of small
short-lived cells that may appear as artifices of the tracking algorithm.
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3 Two-dimensional model

Figure 3.45: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, CV/AL model version.
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Figure 3.46: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, CV/AL − ns model version.
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Figure 3.47: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, CA/L model version.
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Figure 3.48: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, CA/L − ns model version.
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Figure 3.49: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, RV/AL model version.
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Figure 3.50: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, RV/AL − ns model version.
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Figure 3.51: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, RV/R model version.
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Figure 3.52: The dependence of the mean (asterisks) and median (crosses) mesogranule
area (top) and lifetime (bottom) on the averaging time t0, RV/R − ns model version.
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Figures 3.45-3.52 reveal that the mean mesogranule area stays more or less constant
while the mean lifetime increases with the averaging time t0. The only exception seems
to be the RV/AL case (Fig. 3.49) where both values tend to increase slightly with t0.
Nevertheless, this effect diminishes when we exclude small short-lived mesogranules
(Fig. 3.50). Hence, as opposed to the intergranular lane age method, the velocity di-
vergence method produces mesogranules that do not have an intrinsic lifetime, but have a
spatial scale that does not depend on the choice of the averaging time t0. Nevertheless, the
value of the average mesogranule area is not intrinsic, since it depends on the definition
and value of the threshold.

3.5.2.2 Snapshot statistics

This section presents the mesogranule snapshot characteristics, for which each mesogran-
ule image (t0-averaged velocity divergence map) in the dataset is treated as independent,
and the instantaneous mesogranule areas are extracted from each such image separately.
In this way the difficulties associated with the application of the tracking algorithm can be
avoided, but we lose any explicit information about the lifetimes of the cells. The cutoff
level for mesogranule detection equals 0.3Λ.

A measure of the time persistence of mesogranules in the snapshot analysis can there-
fore be the decay time of the coefficient of cross-correlation between the subsequent di-
vergence maps. Given a divergence map at time T , we cross-correlate it with all the
divergence maps at later times. The time interval t, for which the cross-correlation co-
efficient between divergence images at times T and T + t drops down to noise level, is
taken as the mesogranule lifetime. Figure 3.53 presents the snapshot area histograms for
the various model versions. The area distributions of mesogranules obtained with the
snapshot method are exponential.

To understand why the size distributions are exponential, consider a following one-
dimensional example: let’s say there are N neighboring cells in a line. For a random
walk model, the velocities of the cell motions are randomly distributed, as is the velocity
divergence. Hence, the probability Pi that the velocity divergence at each cell site is
above threshold is the same for each cell, regardless of the neighbors. To have a positive
divergence area we need n sites in a row to have a positive divergence value, which yields
P(n) = Pn

i = en·ln(Pi). Therefore, in such case the shape of the size distribution of the
divergence areas is exponential. In the cell-competition case, the velocities of the cell
motions are randomly distributed above a certain spatial scale of a few cells. This is
verified by the behavior of the zero-lanes in the one-dimensional model (Fig. 2.9), which
are randomly advected in the domain for both the random walk and the cell-competition
model versions. Hence, the above reasoning applies also to the cell-competition case. In
the two-dimensional model the formulas will be more complicated, but the logic is the
same and the resulting size histograms of the velocity divergence areas should also be
close to exponential.
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Figure 3.53: The snapshot statistics of the mesogranule area for the selected model ver-
sions.
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Snapshot statistics: dependence on the averaging time The following Figures 3.54-
3.57 present the dependence of the mean (and median) mesogranule area and the correla-
tion decay time on the averaging time t0 for the chosen model versions.

Figure 3.54: Top: the dependence of the mean (asterisk) and median (crosses) snap-
shot mesogranule area on the averaging time t0. Bottom: the dependence of the cross-
correlation decay time on the averaging time t0. CV/AL model version.
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Figure 3.55: Top: the dependence of the mean (asterisk) and median (crosses) snap-
shot mesogranule area on the averaging time t0. Bottom: the dependence of the cross-
correlation decay time on the averaging time t0. CA/L model version.
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3 Two-dimensional model

Figure 3.56: Top: the dependence of the mean (asterisk) and median (crosses) snap-
shot mesogranule area on the averaging time t0. Bottom: the dependence of the cross-
correlation decay time on the averaging time t0. RV/AL model version.
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Figure 3.57: Top: the dependence of the mean (asterisk) and median (crosses) snap-
shot mesogranule area on the averaging time t0. Bottom: the dependence of the cross-
correlation decay time on the averaging time t0. RV/R model version.
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Just like in case of the tracking statistics, the mean mesogranule area does not depend
on the choice of the averaging time t0. Since the value of the area depends on the threshold
definition and value, it is not intrinsic. The cross-correlation decay time for a given t0

yields roughly the value of t0, particularly so in the random walk cases, hence increasing
linearly with the averaging time. Therefore, the snapshot statistics reveal no intrinsic
scales of mesogranulation, confirming the results obtained with the tracking method.

3.6 Fragmenters and Trees of Fragmenting Granules (TFGs)

A so-called "Tree of Fragmenting Granules" (TFG) consists of all cells which originate
form a single fragmenter cell, with repeatedly fragmenting granules (the offspring of a
fragmenter that become fragmenters themselves) spawning the TFG structure. The inves-
tigation of the fragmenting granules, their spatial distribution on the solar surface, and
whether they conglomerate into TFGs, has been the focus of recent studies of possible
mesogranulation causes (Rieutord et al. 2000, Roudier et al. 2003, Roudier et al. 2004).
The authors analyzed the TFGs and found that they are constantly present on the Sun.
Moreover, they found that over 60% of the area covered by granules belonged to TFGs
and that the lifetime of such granule families can reach many hours. From the power law
behavior of the TFG’s lifetime histograms they deduce that no characteristic timescale
is present. The velocity field produced by a TFG, when averaged over the TFG’s life-
time, yields a divergence area, with most of the TFGs covering an area with a diameter
of ∼6 Mm. Additionally, when performing the cork advection analysis, the authors found
that the corks tend to accumulate in the areas of low granule splitting rates. Since the
cellular automaton model presented in this work exhibits the mesogranulation effect, it
is instructive to investigate the existence and characteristics of the TFGs, and the spatial
distribution of the fragmenting granules. Since the splitting of a fragmenter is the only
way of introducing new cells in the model, it follows that TFGs have to exist in such a
system. Moreover, all granules present in the model at large times can be traced back
to one parent cell. Figure 3.58 shows an example of a few coexisting TFGs in the do-
main (when a splitting occurs, we mark the position of the rectangle enveloping the two
splitting triangular cells).
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Figure 3.58: Example of the Trees of Fragmenting Granules (TFGs) in the CV/AL model
version. Different colors depict different TFGs.
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Fig. 3.59 shows a lifetime histogram of TFGs present in the model over a time interval
of one hour. The histogram can be quite well fitted with a power law f (x) = Axα + B,
with the exponent α = −0.62. The power law behavior is consistent with the findings
of Roudier and coworkers (Roudier et al. 2003, Roudier et al. 2004) and it implies the
absence of a characteristic timescale for TFGs. Concluding, the identity of a particular
TFG depends only on the time at which we start our observation, and what seems to be
two independent TFGs when we start their tracking at time t, will turn out to be two
branches of a single TFG when we start the observation at time t − T , provided that T is
sufficiently large. On the Sun not all granules appear by splitting of a fragmenter, there
are singular events when a granule evolves out of a bright point in the intergranular lane.
Hence, not all granules can be traced back to a single fragmenter, and there will be new
TFGs appearing occasionally from such events. The merging of granules, which happens
on the Sun but not in the cellular model, does not influence the conclusions drawn here,
since the TFG-identity of the parent granules is preserved in the offspring cell.
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Figure 3.59: Histogram of the TFG lifetimes recorded over half an hour in the CV/AL
model version, fitted with power law function f (x) = Axα, where α = −0.62.

3.6.1 Spatial distribution of the fragmenting granules

The occurrence and spatial distribution of the fragmenting granules on the Sun has been
investigated in connection to mesogranulation. Oda (1984) studied the surface distribution
of fragmenters during a 4 minute time interval, and interpreted them to outline a meso-
size pattern, while Hirzberger et al. (1997) found that fragmenters exist predominantly
in the mesogranule centers. Figures. 3.60 and 3.61 show the LCT velocity divergence
field obtained from the cellular model (CV/AL) for the averaging time t0 = 7.5 · τav (∼1
hour), together with the positions of fragmenting granules that occurred during the whole
7.5 · τav (Fig. 3.60) and over the last 5 minutes (Fig. 3.61) overplotted as white dots (when
two adjacent triangles split, we mark the position of the new vertex, see Fig. 3.4). In both
cases we find no preference of fragmenter positions, neither in the positive divergence
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3.6 Fragmenters and Trees of Fragmenting Granules (TFGs)

(mesogranule) nor in the negative divergence areas. The same is true for the spatial dis-
tribution of fragmenters that occurred during the last 10, 20 or 30 minutes of the 7.5 · τav

period.

Figure 3.60: Positions of fragmenting granules over t0 = 7.5 · τav (∼1 hour) period (white
circles) overplotted on the t0-averaged LCT velocity divergence field (red-positive, blue-
negative) , CV/AL model version.
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3 Two-dimensional model

Figure 3.61: Positions of fragmenting granules over 5 minute period (white circles) over-
plotted on the t0 = 7.5 · τav-averaged LCT velocity divergence field (red-positive, blue-
negative) , CV/AL model version.
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3.7 Summary

In this chapter we presented a two-dimensional cellular automaton model of granulation,
and showed that it is able to approximate the statistical size and lifetime properties of both
observed and simulated granules quite well. The observed granulation size and lifetime
distributions are close to exponential (Title et al. 1989, Brandt et al. 1991, Hirzberger
et al. 1996, 1997, 1999, Müller et al. 2001), which is also true for most of the cellular
model versions. Additionally, it is known that the fragmenting granules are statistically
larger than the dissolving ones, while their lifetimes are very similar. This properties are
also true for the granules in the cellular model. Hence, even though in the cellular model
granules are parameterized by triangles, their statistical properties simulate the observed
granulation properties sufficiently well for the purposes of this work i.e., investigation of
mesogranulation as a self-arrangement effect of granulation cells.

Two cell interaction rules were presented: the cell-competition scheme, which approx-
imates the scenario where the large cells spread and squeeze small cells out of existence,
and a random walk scheme in which the motion of granules has no relation to the cell’s
properties. Additionally, four different cell splitting rules were employed to check the
sensitivity of the result to the granule behavior rules. We have shown that mesogranula-
tion emerges naturally in such a cell system, regardless of the employed cell motion and
splitting schemes. Two methods of defining and detecting mesogranules were presented.
The first one is based on the analogy to the cork analysis and the one-dimensional model
presented in Chapter 2. We stipulate that an intergranular lane that lives long enough
would accumulate enough corks to be considered as a mesogranular border lane. Hence,
in this method the intergranular lanes whose age is older than the given time t0 are marked
as mesogranular. In the two-dimensional model we are able to apply the Local Correla-
tion Tracking algorithm to define a horizontal velocity field from the cell motions in the
same way as done in the analysis of the solar observations. Hence, the second method
defines mesogranules as the positive velocity divergence areas.

The histograms of mesogranule areas and lifetimes obtained with the lane age meso-
granule definition are all close to exponential. The exponential lifetime distribution means
that the rate at which mesogranules disappear is constant and independent of the cell life-
time. In the velocity divergence mesogranule definition two ways of obtaining the statis-
tics are applied: the tracking and snapshot statistics. In the first method we track meso-
granules in time from birth till demise, obtaining their lifetimes and lifetime-averaged
areas (like in case of the statistics in the lane age mesogranule definition). The second
method extracts mesogranule areas from each velocity divergence map (mesogranular
image) independently. This avoids the difficulties associated with tracking of granules,
but we lose the information about the lifetime of the cells. In the tracking statistics we
obtain power law distributions of both mesogranule sizes and lifetimes for all model ver-
sions. The snapshot area statistics on the other hand have an exponential form. An ex-
ponential distribution of the mesogranule sizes at any given time does not imply that
the distribution should also be exponential when we track the cells in time and obtain
the lifetime-averaged area values (the tracking statistics). In fact, the tracking statistics
results are determined by the tracking algorithm rules. The fact that for a given meso-
granule definition and analysis method the mesogranulation properties are the same for
the different model versions suggests that, similarly to the one-dimensional case of Chap-
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ter 2, the different cell interaction rules do not differ much in the effect they have on the
mesogranular-scale evolution.

Another difference between the two mesogranule definitions occurs when analyzing
the dependence of the mean mesogranule size on the averaging time t0. Both methods
yield mesogranulation without an intrinsic lifetime, as the mean mesogranule lifetime
increases linearly with the averaging time. Nevertheless, the mesolane method gives also
no intrinsic size, while in the velocity divergence areas analysis the mean mesogranule
size remains constant, independent of t0. This result is obtained with both the tracking and
the snapshot statistics; the mean mesogranule size is roughly constant with respect to t0

for both methods. Since the particular value of the mean mesogranule size depends on the
choice of the threshold level for mesogranule detection/labeling, it cannot be regarded as
intrinsic. It has to be noted that the mesogranular properties also depend on the threshold
definition. The time-averaged value of the rms of the divergence maps (Λ threshold, see
Section 3.5.2) has a value which depends on the averaging time t0. As t0 increases, the
amplitude of the t0-averaged velocity divergence decreases, hence the value ofΛ threshold
decreases as well. Keeping the threshold value fixed for all averaging times produces
a decrease of mean mesogranule size with increasing t0. The Λ threshold definition is
equivalent to those used in analysis of the solar observations (Leitzinger et al. 2005) and
agrees with the intuitive understanding of the problem: when one increases t0 and visually
inspects the resulting divergence maps, the size of the positive and negative divergence
patches does not change with t0, but rather the contrast between them, since the amplitude
of the divergence is decreasing.

An important difference between the model versions for the velocity divergence method
can be seen in the shape of the divergence areas (mesogranules), with the cell-competition
model (CV/AL) producing more uniform circular mesogranules that resemble the ob-
served ones. This fact favors the cell-competition granule interaction rules as a better
description of the real granule interactions than the random walk model.

It is not obvious why the LCT-velocity divergence method yields a spatial scale of
mesogranulation for a given threshold level. This question is addressed in more detail in
Chapter 5. The intergranular lane age method, which does not produce a threshold-time-
independent spatial scale of mesogranulation, is quite a different way of analyzing the
model. Even though this method is based on an analogy to the cork analysis, which is in
turn equivalent to the divergence method, and a significant correlation exists in the model
between the mesolanes and the velocity divergence structures for the threshold/averaging
time t0 = 7.5 ·τav, the two methods are not equivalent. The particular choice of the age in-
heritance rules for merging structures along with the triangular topology of the cells leads
to the formation of patterns whose size, as opposed to the velocity divergence method,
depends on t0. Since the velocity divergence method is the same as used in observations
to define and analyze mesogranules and can therefore be more easily compared with other
results, it seems more relevant than the mesolane method.

Mesogranulation emerging from the cellular automaton model of granulation is a very
robust feature of such a system. It is present for all the model versions, and in that sense
does not depend on the detailed local granule interaction rules (the cell competition and
random walk cellular automaton rules). Moreover, the dependence of the mesogranule
mean lifetime and area on the averaging time is the same for all model versions for the
given analysis method. Additionally, we show that the Trees of Fragmenting Granules
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(TFGs) emerge naturally in the model where granule splitting is the main way of intro-
ducing new cells. Such TFGs have no intrinsic lifetime, with their identity (and hence
lifetime and area covered on the surface) depending only on the times at which we begin
and stop the observation. Another question associated with mesogranulation is the occur-
rence of the fragmenting granules on the surface. Having analyzed the spatial distribution
of fragmenting granules in the cellular model, we do not find any tendency for those cells
to appear more likely either in the divergence nor in the convergence areas. Hence, no
spatial grouping of fragmenters is needed for the mesogranular pattern to appear.

Similar to the one-dimensional model presented in Chapter 2, the two-dimensional
model can be recognized as class one cellular automaton, with the outcome determined
regardless of the initial configuration of cells. This is partially due to the cell splitting
mechanism, which prevents the cells from growing indiscriminately in the versions of the
model where the splitting is based on the cell properties (A, AL, and L splitting versions).
Soon after the start of the model an equilibrium is reached in those versions, with the
average granule size and lifetime remaining constant in time. In the random splitting case
(R) the number of granules that split per timestep is equal to the number of cells that
disappeared by dissolving in this timestep. Each cell has an equal probability of being
split, and the number of such events per timestep is sufficient to split all granules before
they get too large. This results in the average size and lifetime of cells being close to
constant in time in the random splitting versions of the model as well.
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4 Three-dimensional hydrodynamical
simulation results

In this chapter we present mesogranulation results obtained from a three-dimensional
hydrodynamical (HD) simulation of the solar photospheric region (MURaM code). It
is a compressible MHD code incorporating the radiative transfer equations and partial
ionization effects under the assumption of local thermal equilibrium (Vögler 2003 PhD
thesis, Vögler et al. 2005). The simulation domain size is 24×24×2.3 Mm, with periodic
horizontal boundary conditions. The τ = 1 level is located roughly 600 km below the
top of the simulation box. The spatial resolution is 20.8 km in the horizontal and 14 in
the vertical direction. The magnetic field is set to zero. The bottom boundary is open
and allows for mass flow, with the specific entropy of the in- and outflows being constant
over the bottom boundary. The top boundary is closed, with vanishing horizontal viscous
stress. The length of the simulation is 11 hours. Figure 4.1 shows an intensity snapshot
from the simulation. The advantage of using the HD simulation data is that it reproduces
the three-dimensional solar granulation flow very well, therefore allowing us to perform
mesogranulation analysis on a realistic dataset. If mesogranulation is a self-arrangement
of granules, it should be present in the HD simulation.

We define mesogranules in the simulation as patches of positive horizontal velocity
divergence, analogous to the definition used in the case of solar observations and one of
the definitions assumed in the two-dimensional cellular model analysis presented in the
previous chapter. Hence, we can readily compare the results obtained with this method
from the cellular model and the HD simulation. From the moment of obtaining the gran-
ulation intensity timeseries the procedure is identical for both the cellular model and the
HD simulation, with the same code used in both models for mesogranulation analysis.
The intensity images produced in the HD simulation have the cadence of 30 sec. The first
step is to apply the Local Correlation Tracking (LCT) algorithm which extracts the veloc-
ity field from the granular motions (developed and described by Welsh et al. 2004). Then,
we average the velocity field over a given averaging time t0 and calculate the velocity
divergence of such a t0-averaged field. Next, mesogranules are identified as the patches
of positive divergence (horizontal outflows). To produce a timeseries of mesogranulation
images, we apply the same threshold for mesogranule labelling as in the cellular model.
The threshold is a fraction (0.5) of a time-averaged root mean square value of the velocity
divergence maps (see Section 3.5.2). As in the cellular model, we analyze mesogran-
ule properties in two ways, producing the tracking and snapshot mesogranule statistics.
For the tracking method, the individual mesogranules are tracked in time and both the
lifetime and the lifetime-averaged area of mesogranules are extracted. In the snapshot
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Figure 4.1: Example of a intensity snapshot from the simulation with the MURaM code.
Brighter hot plasma upflows in the cell centers (granules) and flows back into the interior
in the darker intergranular lanes.

method mesogranule areas are extracted from each of the t0-averaged velocity divergence
maps (mesogranule images) independently. The timescale of mesogranulation persistence
in the snapshot method is given by the decay time of the coefficient of cross-correlation
between the subsequent mesogranular images (see section 3.5.2).

4.1 Velocity divergence field

Fig. 4.2 presents an example of the LCT-velocity divergence image for the averaging
time t0 = 60 min obtained from the HD simulation. Figure. 4.3 shows an example of
mesogranules present in the simulation (divergence patches lying above the threshold of
0.5Λ, see Section 3.5.2) for an averaging time of t0 = 60 min.
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4.1 Velocity divergence field

Figure 4.2: The LCT-velocity divergence map obtained from the HD simulation for the
averaging time t0 = 60 min.

Figure 4.3: Example of the velocity divergence patches (mesogranules) lying above the
0.5Λ threshold in the HD simulation, the averaging time t0 equals 60 min.
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4 Three-dimensional hydrodynamical simulation results

The velocity divergence field in the HD simulation (Fig. 4.2) is very similar to that
obtained from the CV/AL model (Fig. 3.16 right, Fig. 3.21 top). To further investigate the
structure of the divergence maps in both models we present in Fig. 4.4 plots of average
mesogranule size (obtained with the snapshot method for a fixed averaging time of 1 hour)
versus the rms threshold value for both models.

Figure 4.4: Mean (asterisks) and median (crosses) mesogranule area versus the threshold
value for the CV/AL cellular model (top) and HD simulation (bottom).
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4.1 Velocity divergence field

The behavior of the curves in Fig. 4.4 is very much the same, indicating that the
structure of the velocity divergence field (hence mesogranulation) produced by the CV/AL
cellular model is similar to that in the realistic HD simulation.

4.1.1 Local Correlation Tracking (LCT) velocity versus plasma ve-
locity

The velocity field, in case of solar observations, is usually obtained with a LCT algorithm,
which tracks intensity patterns on the surface. As such, it is not obvious that the velocity
field obtained in such way should correspond to the actual plasma flow velocities in the
granules. Using data from the MURaM hydrodynamical simulation of the solar photo-
spheric region, we show that this is indeed the case, and the LCT velocity approximates
well the real velocity field, averaged spatially over the LCT tracking window. Figure. 4.5
presents the cross correlation between the two velocity divergence fields: one is the LCT
velocity divergence, the other the divergence of the actual plasma velocity averaged spa-
tially over the LCT window size. The cross correlation coefficient equals 0.8. Figure. 4.6
shows the LCT velocity divergence field overplotted with contours of the divergence of
the real velocity averaged spatially over the LCT window size. One can see that the
correspondence of the two velocity divergence fields is quite good.

Figure 4.5: The function of cross correlation between the LCT-velocity divergence field
and the real velocity divergence field averaged spatially over the LCT window size. The
correlation coefficient equals 0.8.
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Figure 4.6: The LCT velocity divergence field overplotted with the contours of the diver-
gence of the real velocity averaged spatially over the LCT window size.

4.2 Mesogranule tracking statistics

In this section we present mesogranule properties obtained from the HD simulation using
the tracking method. Mesogranules are tracked in time in the same way as in the cellular
model (see section 3.5.1). Figure. 4.7 shows the mesogranule properties for the averaging
time t0 = 60 min, while Fig. 4.8 shows the power law fits to the lifetime and area distri-
butions. Like in case of the cellular models, all features smaller than 0.66 of the average
granule area were removed from the mesogranular images (Fig. 4.3). Similarly to the
cellular model, the mesogranule lifetime and size histograms in the HD simulation obey a
power law, with the exponents −1.21 and −2.43, respectively. Hence, the same conclusion
can be drawn, that for a given averaging time t0 mesogranulation present in the simula-
tion has no characteristic scales. Comparing mesogranule properties in Figs. 4.7- 4.8
with those obtained from the cellular model (Fig. 3.39-3.44) it is difficult to distinguish
between them, the characteristics are very similar.
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4.2 Mesogranule tracking statistics

Figure 4.7: Mesogranule lifetime (a) and area (b) histograms, (c) is a scatter plot of size
versus lifetime. The averaging time t0 equals 60 min.
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Figure 4.8: Mesogranule lifetime and size histograms from Fig. 4.7 (CV/AL model) with
a power law fit. The power law exponents are −1.21 for lifetime and −2.43 for the area.
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4.2.1 Dependence on the averaging time

The following Figures 4.9-4.10 present the dependence of mesogranule properties in the
HD simulation on the averaging time t0.

Figure 4.9: The dependence of the mean (asterisks) and median (crosses) mesogranule
lifetime (top) and area (bottom) on the averaging time t0.
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4.2 Mesogranule tracking statistics

Figure 4.10: The dependence of the mean (asterisks) and median (crosses) mesogranule
lifetime (top) and area (bottom) on the averaging time t0. Only mesogranules larger than
two mean granule areas and living longer than two average granule lifetimes are included.
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4 Three-dimensional hydrodynamical simulation results

Like in case of the cellular models (Fig. 3.45-3.52), the tracking analysis of mesogran-
ulation dependence on the averaging time t0 reveals no intrinsic scales of the phenomenon.
The mean mesogranule lifetime increases linearly with t0, while the mean size does not
depend on the choice of t0 (nevertheless, it depends on the choice of the threshold level
value). The same is true when only mesogranules larger than two mean granule areas
and living longer than two mean granule lifetimes are included in the analysis (Fig. 4.10).
Similarly to the cellular model, this was done to check whether the short-lived small cells,
produced occasionally by the tracking algorithm, influence the behavior.

4.3 Mesogranule snapshot statistics

Figure 4.11 presents mesogranulation area histogram obtained from the HD simulation
using the snapshot method. The areas of mesogranules are extracted from each diver-
gence map separately. Like in the cellular model snapshot statistics, the histogram is
exponential. For an example and explanation of the processes leading to the exponential
size distribution of the divergence areas see Section 3.5.2.1.

Figure 4.11: Mesogranule area histogram obtained with the snapshot method, the averag-
ing time t0 equals 60 min.
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4.3 Mesogranule snapshot statistics

4.3.1 Dependence on the averaging time

Figures 4.12 presents the dependence of mesogranule properties obtained with the snap-
shot method on the averaging time t0. The timescale of mesogranule persistence in the
domain is given by the decay time of the cross-correlation coefficient (see section 3.5.2.2).
The behavior of the curves in Fig. 4.12 is consistent with the result obtained with the track-

Figure 4.12: Top: the dependence of the mean (asterisks) and median (crosses) meso-
granule snapshot area on the averaging time t0. Bottom: The dependence of the cross-
correlation decay time on the averaging time t0.
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ing method (Fig. 4.9-4.10) and with the corresponding results obtained from the cellular
model (Fig. 3.54-3.57). The mean mesogranule size does not depend on the choice of the
averaging time t0, while the lifetime grows linearly with t0.

4.4 Summary

We define mesogranules in the simulation as patches of positive velocity divergence, anal-
ogous to mesogranulation definition in the case of solar observations and one of the defi-
nitions assumed in the two-dimensional cellular model analysis presented in the previous
chapter. The mesogranulation size and lifetime distributions obtained from the HD sim-
ulation with the tracking method obey a power law like those obtained from the cellular
model. The snapshot statistics method gives exponential distribution of mesogranule ar-
eas, which was the case in the cellular model as well. Moreover, the dependence of mean
mesogranule size and lifetime on the averaging time is the same in the HD simulation as
it is in the cellular model. Using the same analysis methods we show that both in the HD
simulation as in the cellular model the mean mesogranule lifetime increases linearly with
the averaging time t0, while the mean mesogranule area does not depend on the choice
of t0. This result is obtained with two methods of analyzing mesogranules, the tracking
and the snapshot method. Hence, the properties of mesogranulation, defined as patches
of positive horizontal velocity divergence, are the same in the toy model as they are in the
realistic hydrodynamic simulation.
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5 Spatial scale of mesogranulation

As seen in the previous chapters, the threshold method for analyzing the size of meso-
granules defined as the LCT velocity divergence areas produces a mean mesogranule size
that is independent of the averaging time t0. This is true both for the two-dimensional cel-
lular model as well as for the hydrodynamic simulation. Nevertheless, since the obtained
average mesogranule size value depends on the threshold definition and value, it cannot
be called intrinsic based on those results. In this chapter we present an alternative method
of measuring mesogranular sizes that does not require arbitrary chosen parameters. Addi-
tionally, a more detailed analysis of the hydrodynamical simulation and the cellular model
results allows for better understanding of the length scale of mesogranulation.

5.1 Autocorrelation of the velocity divergence maps

A convenient way to obtain a characteristic spatial scale of structures present in an image
is to calculate the autocorrelation function of the image. Figure 5.1 shows a LCT-velocity
divergence image from the hydrodynamic simulation for the averaging time t0 = 60 min-
utes, while Fig. 5.2 shows a cut along the x and y axis of the mean autocorrelation func-
tion of the images like that in Fig. 5.1 (the function in Fig. 5.2 is an average over 600
autocorrelation functions calculated for the subsequent divergence maps in the dataset).
The autocorrelation function drops from value of 1 at the center to a negative value of
about −0.2. This anticorrelation can be interpreted as an indication of a regular structure
present in the image: when the image is shifted by about half the spatial scale of the
divergence structures, the dark convergence patches overlay the bright divergence areas,
which produces the negative correlation. The distance between the minima on both sides
of the correlation peak is interpreted as the typical scale of the pattern in the image. From
Fig. 5.2 we conclude that the characteristic spatial scale of mesogranulation present in
the 60-minute average of the LCT-velocity divergence in the hydrodynamic simulation is
approximately 4 Mm. This value is the same for t0 equal to 30, 120, 180 and 240 minutes,
hence it is independent of the averaging time. This result confirms that obtained with the
threshold method, that the LCT-based mesogranulation has a spatial scale independent of
the averaging time. Since the autocorrelation method does not involve arbitrary values of
parameters that determine the result, the obtained scale can in principle be called intrinsic.
Nevertheless, in the next section we show that it is not the case, and that mesogranulation
has no intrinsic scale.
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Figure 5.1: An LCT-velocity divergence image from the hydrodynamic simulation for the
averaging time t0 = 60 minutes

Figure 5.2: The cut along the x (left) and y (right) axis of the autocorrelation function of
the image in Fig. 5.1.
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5.2 The effect of spatial smoothing

The most common way of obtaining the horizontal velocities in solar observations is
through the LCT algorithm. Due to its nature (tracking granule motions on the surface)
the LCT method produces a spatially averaged velocity. In Section 4.1.1 we showed
that the velocity field obtained with the LCT algorithm is equivalent to the actual plasma
velocities smoothed spatially over the LCT tracking window. The choice of the LCT
tracking window is constrained by the requirements of tracking individual granules: if
the window is too small or too large the method does not work properly, producing no
reliable velocity results. Nevertheless, in the hydrodynamical simulations one is free to
use the real velocities and apply different spatial smoothing to see the effect it has on the
mesogranulation scale. Figure 5.3 shows a 60 minute average of the actual horizontal
velocity divergence (no spatial smoothing), while Fig. 5.4 shows the x-axis cut of the
mean autocorrelation function of the images like that in Fig. 5.3 (an average over 600
autocorrelation functions of subsequent velocity divergence images in the timeseries).
The spatial scale indicated by Fig. 5.4 is about 2 Mm. This is the granulation scale, the
same as obtained from autocorrelation of intensity images (both instantaneous and time
averaged). Hence, time averaging alone does not produce any length scales in the velocity
divergence images other than the granular one.

Figure 5.3: An actual plasma velocity divergence map from the hydrodynamic simulation
for the averaging time t0 = 60 minutes
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Figure 5.4: The cut along the x axis of the autocorrelation function of the image in
Fig. 5.3.

Figures 5.5 and 5.6 show the actual plasma velocity divergence averaged over the LCT
window size (a Gaussian with FWHM equal 1 Mm) and the corresponding average auto-
correlation function, respectively. As expected, this produces the same mesogranulation
scale of ∼ 4 Mm as present in the LCT data (Figures 5.1 and 5.2). Averaging the actual
plasma velocities over larger windows produces larger mesogranular scales, as evident
from Figs. 5.7 and 5.8 (window size is a Gaussian with FWHM equal 2 Mm, resulting
mesogranular scale is ∼ 7 Mm) and Figs. 5.9 and 5.10 (window size is a Gaussian with
FWHM equal 3 Mm, resulting mesogranular scale is ∼ 9 Mm). Hence, mesogranulation
has no intrinsic spatial scale, its size depends on the spatial smoothing parameters.
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Figure 5.5: An actual plasma velocity divergence averaged over the LCT window size (1
Mm), from the hydrodynamic simulation for the averaging time t0 = 60 minutes

Figure 5.6: The cut along the x axis of the autocorrelation function of the image in
Fig. 5.5.
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Figure 5.7: An actual plasma velocity divergence averaged over twice the LCT window
size (2 Mm), from the hydrodynamic simulation for the averaging time t0 = 60 minutes

Figure 5.8: The cut along the x axis of the autocorrelation function of the image in
Fig. 5.7.
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Figure 5.9: An actual plasma velocity divergence averaged over three times the LCT
window size (3 Mm), from the hydrodynamic simulation for the averaging time t0 = 60
minutes

Figure 5.10: The cut along the x axis of the autocorrelation function of the image in
Fig. 5.9.
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Figure 5.11: An actual plasma velocity divergence averaged over a 10 Mm window size,
from the hydrodynamic simulation for the averaging time t0 = 60 minutes

The dependence of the mean mesogranule area on the horizontal velocity smoothing
window is not linear, as seen in Fig. 5.12. Nevertheless, if instead of the area one plots
the dependence of the length scale on the smoothing window, the function is almost lin-
ear. Increasing the averaging window decreases the rms value of the divergence maps
until they become almost uniform. At the same time the size of the divergence patches
increases and their number decreases until for the smoothing window size of 10 Mm and
more the divergence structures are of the size of the domain box (see Fig. 5.11).

In the previous chapters we have seen that for a given spatial smoothing window the
mean mesogranule size is independent of the velocity averaging time t0, which affects the
mean mesogranule lifetime only. It is interesting to see if, for a given averaging time t0,
the mean mesogranule lifetime depends on the spatial smoothing window. This is indeed
the case. Figure 5.13 shows how the mean mesogranule lifetime changes with the spatial
smoothing window size. It has to be noted that increasing the smoothing window size
decreases the number of mesogranules in the domain at almost an exponential rate, as seen
in Fig. 5.14. The data used in the analysis of the dependence of the mean mesogranule
area and lifetime on the smoothing window size (Figs. 5.13 and 5.12) is a timeseries of
the LCT horizontal velocity divergence from the hydrodynamical simulation for t0 = 60
minutes. The mesogranule properties were extracted using the same tracking statistics
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method as described in Chapters 3 and 4.
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Figure 5.12: The dependence of the mean mesogranule area on the spatial smoothing
window size in the HD simulation.
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Figure 5.13: The dependence of the mean mesogranule lifetime on the spatial smoothing
window size in the HD simulation.
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Figure 5.14: The decrease of the number of mesogranules with the spatial smoothing
window size in the HD simulation.

Concluding, mesogranulation has a time scale which depends both on the velocity
averaging time and spatial smoothing window, and a spatial scale that depends only on
the spatial smoothing window.

5.3 Cellular model results

The autocorrelation method of determining the mesogranular spatial scale for mesogran-
ulation defined as the velocity divergence patches is applicable also to the cellular model
results. Figure 5.15 shows a LCT velocity divergence map for the averaging time t0 =

7.5 · τav (∼1 hour) for the CV/AL model version, while Fig. 5.16 shows a cut along the
x-axis of the corresponding average autocorrelation function. The scale of mesogranula-
tion obtained from Fig. 5.16 is roughly four times the granular scale in the model. To see
the effect of spatial smoothing on the mesogranular scale in the cellular model we further
smooth the LCT velocity with a gaussian with a twice the LCT window size. Figures 5.17
and 5.18 show the resulting velocity divergence field and the corresponding cut of the
autocorrelation function. The spatial scale in Fig. 5.18 is roughly twice that of Fig. 5.16.
Hence, the mesogranular length scale in the cellular model depends on the spatial smooth-
ing parameters, which agrees with the hydrodynamic simulation results from the previous
section.
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5.3 Cellular model results

Figure 5.15: A LCT-velocity divergence map for the CV/AL model version, t0 = 7.5 · τav

(∼1 hour).

Figure 5.16: The cut along the x axis of the average autocorrelation function of the LCT-
velocity divergence maps for the CV/AL model version (Fig. 5.15)
.
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5 Spatial scale of mesogranulation

Figure 5.17: A spatially smoothed LCT-velocity divergence map for the CV/AL model
version, t0 = 7.5 · τav (∼1 hour).

Figure 5.18: The cut along the x axis of the average autocorrelation function of the spa-
tially smoothed LCT-velocity divergence maps for the CV/AL model version (Fig. 5.17)
.
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5.3 Cellular model results

The results presented in this section are similar for all the cellular model versions.
The scale of mesogranulation in the cellular model for the LCT velocity is roughly two
times the granular scale in those models, similar to the results from the hydrodynamic
simulation.

The mesogranulation length scale extracted from the cellular model with the autocor-
relation method does not depend on the averaging time t0, which is in agreement with
the result obtained with the threshold method and with the hydrodynamic simulation re-
sults. Figures 5.20 and 5.19 show the dependence of the mean mesogranule lifetime and
area on the spatial smoothing window, extracted from the CV/AL model with the tracking
statistics method described in Chapters 3 and 4 (the averaging time t0 = 7.5 ·τav ≈1 hour).
The mean mesogranule area increases with the smoothing window in a similar way as it
does in the HD simulation (Fig. 5.12). The mean mesogranule lifetime also increases with
the smoothing window, which differs from the HD result (Fig. 5.13). This can be caused
by the fact that increasing the smoothing window dramatically decreases the number of
mesogranules present in the simulation box (Fig. 5.14 for the HD simulation and Fig. 5.21
for the CV/AL model). Since the cell model domain size is roughly a quarter of the area
of the HD simulation, the number of mesogranules for large smoothing box size is even
smaller, therefore the statistics are less reliable. Hence, just like in the HD simulation,
mesogranulation in the cellular model has no intrinsic scale: the time scale depends on
the velocity averaging time and the spatial smoothing window size, and the spatial scale
depends only on the spatial smoothing window.
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Figure 5.19: The dependence of the mean mesogranule area on the spatial smoothing
window size in the CV/AL model.
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5 Spatial scale of mesogranulation
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Figure 5.20: The dependence of the mean mesogranule lifetime on the spatial smoothing
window size in the CV/AL model.
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Figure 5.21: The decrease of the number of mesogranules with the spatial smoothing
window size in the CV/AL model.
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6 Comparison with observations

Leitzinger et al. (2005) analyzed a 2670-minute long dataset of 1h-averaged horizontal
velocity divergence maps, applying a tracking algorithm to extract mesogranule lifetimes
and lifetime-averaged areas. Only mesogranules larger than 5 Mm and living longer than
1 hour were included in the analysis. Both the lifetime and area distributions of the ob-
served mesogranules can be approximated with an exponential. The scatter plots of meso-
granular size versus lifetime are similar to those obtained from the models, with a large
scatter and a slight tendency for the increase of size with the lifetime of mesogranules.
The difference in the form of the area and lifetime distributions between the models and
observations is most probably due to the different tracking algorithms used. The meso-
granule area distributions obtained with the snapshot method (i.e, no tracking) from both
the cellular model and the HD simulation are exponential. This does not imply that the
tracking statistics should also be exponential. The important fact is that all the results for
mesogranules defined as velocity divergence areas for a particular extraction method are
the same in the cellular model and in the HD simulation. The tracking algorithm used by
Leitzinger et al. (2005) differs from the one we used in the analysis and that may lead to
a different form of the obtained distributions.

A feature of solar mesogranulation that is not pronounced in the cellular model is the
drift of mesogranules. Apparently, mesogranules shift their spatial horizontal positions
in time, and this property has been universally attributed to the advection by supergranu-
lation (Muller et al. 1992, De Rosa & Toomre 1998), although the direction of the drift
cannot always be reconciled with the supergranular flow (Leitzinger et al. 2005). The
absence of supergranulation in the cellular and the HD models can explain the lack of
mesogranular drift.

One of the proposed causes for the emergence of the mesogranular pattern are large
long-lived downflows (Rast 2003). Nevertheless, the driving force behind such downflows
and their spatial distribution remains unclear. We show that the occasional existence of
long-lived downflows is the effect and not the cause of the mesogranular pattern. In
the cellular model there are no downflows at all and the cells self-arrange themselves,
producing patches of velocity divergence and convergence very similar to those seen in
the HD simulation and solar observations. Due to the fact that those regions are spatially
stable and long-lived compared to granular timescales and that the converging plasma has
to sink back to the solar interior, it is very plausible that long-lived downflows form in
the velocity convergence areas, fed by the mesogranular inflow. This is confirmed by
the lane age method of defining mesogranulation in the cellular model: in this method
mesogranules are defined as regions surrounded by long-lived cell vertices (representing
downflows). Since a significant correlation exists between mesogranules defined by the
two methods, one can conclude that long-lived structures (downflows) tend to exist in the
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6 Comparison with observations

velocity convergence areas.
The role of the fragmenting granules, their spatial distribution on the surface, and

their arrangement into the Trees of Fragmenting Granules (TFGs) have been the object
of investigation in relation to mesogranulation (Rieutord et al. 2000, Roudier et al. 2003,
Roudier et al. 2004). We have shown that mesogranulation appears without the need
for the fragmenter events to be confined to particular parts of the surface. In the cellular
models the fragmenter positions are distributed quite uniformly over the whole surface,
with no preference of velocity divergence or convergence areas. Additionally, we show
that in a cell system where the fragmentation is the main method of introducing new
granules, the TFGs appear naturally and their identity depends only on the times at which
the observation begins and ends. The lifetime histogram of the TFGs in the cellular model
obeys a power-law distribution, similar to that reported in case of observations (Roudier
et al. 2003, Roudier et al. 2004), thus confirming the conclusion of no intrinsic timescale
of the TFGs.
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7 Conclusions

Mesogranulation is a cellular pattern visible in the averaged velocity field of the granular
flow. We have shown that mesogranulation is a property of the granular field, result-
ing from the self-arrangement of granules on the surface. The two-dimensional cellular
automaton model, presented in Chapter 3, resembles the solar granulation properties in
terms of the cell size and lifetime distributions, and the cells’ mutual horizontal interac-
tion. The cells appear, disappear, and translate on the surface much like the real granules
do. We have shown that such a cell system is all that is necessary for the mesogranular
pattern to appear, and no additional processes are needed.

Mesogranules on the Sun are defined as areas of the time-averaged and spatially
smoothed horizontal velocity divergence. Applying the same definition in the cellular
model, and extracting the velocity field in the same way as done in case of observations
and hydrodynamical (HD) simulations (LCT velocities), we have shown that mesogranu-
lation present in the cellular model has the same properties as that present in the realistic
numerical simulation (Chapter 4). In both the cellular model and the simulation the size
and lifetime histograms of mesogranules obtained with the tracking method for a given
averaging time obey a power law. The mesogranule area distributions obtained with the
snapshot method are exponential in both the simulation and the cellular model. The na-
ture of the divergence areas and the probabilities of their disappearing lead to such ex-
ponential distributions (see Section 3.5.2.1 for simple model/explanation). Moreover, the
dependence of the mean and median size and lifetime of the divergence areas (mesogran-
ules) on the averaging time is the same in the cell model and in the HD simulation. This
result is found with both the tracking and snapshot methods for obtaining the statistics.
The mean lifetime of mesogranular patches increases linearly with the averaging time,
suggesting no intrinsic timescale of the phenomenon. The average mesogranular size on
the other hand remains constant, independent of the averaging time. In Chapter 5 we
have shown that the mesogranulation length scale depends only on the spatial smooth-
ing parameters, while the mesogranule lifetime depends on both the spatial and temporal
averaging windows.

Mesogranulation emerges as a property of the granulation, only weakly depending on
the detailed granule evolution rules. We tested different versions of the cellular model,
with granule evolution depending on the size of the cell and its neighbors (the cell-
competition scheme), or being determined by random motion of the cell’s vertices. Ad-
ditionally, four different cell splitting rules were tested along with the two cell interaction
schemes. Mesogranulation appears in all of the resulting model versions, and has very
similar properties in all versions in terms of the size and lifetime histograms and the de-
pendence of the properties on the averaging time and spatial smoothing. The differences
between the model versions can be seen in the shape of the velocity divergence patches,
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7 Conclusions

with the cell-competition versions producing cellular pattern similar to that observed on
the Sun and in the numerical simulations. Moreover, the dependence of the mean meso-
granule size on the value of the threshold is also the same in the cell-competition cellular
model and in the numerical HD simulation, additionally strengthening the similarities in
the structure of the velocity divergence field in the two models. Since the cell-competition
interaction rules were modelled to resemble what is assumed to be the interaction of real
granules, with the pressure exerted on the intergranular lane being proportional to the cell
size, this mesogranulation result indirectly confirms such granule interaction hypothesis.
The difference between the shape of mesogranules emerging from the cell-competition
and random models is due to the granule properties produced by the different cell in-
teraction rules. The cell-competition models produce granulation with a well-defined
’mean’ granule area: as opposed to the almost exponential-like distribution in the random
versions, the area histograms in the cell-competition case peak around a certain value.
Hence, a small granule in the cell-competition model is more probable to be surrounded
by larger cells than it is in the random model. Accordingly, a large granule in the cell-
competition models is more probable to be surrounded by smaller cells than it is in the
random models. This leads in the cell-competition models to small cells diminishing and
large cells spreading without as much horizontal translation of the cell as they are likely
to experience in the random model versions. This in turn leads to a more stability and
regularity in the resulting mesoscale pattern (which can also be verified ny the distribu-
tion of the mesovertices presented in Section 3.4.1). In particular, in the most randomized
model (RV/R) there is no relation between granule size and its evolution and the resulting
velocity divergence structures are least regularly shaped of all the models. Concluding,
apart from the shape, all the other properties of mesogranulation emerging from granula-
tion are consistent with noise present in such a cell system, where spatial and temporal
averaging leads to emergence of larger and longer lived structures. The cell-competition
rules for the granule interaction lead to the more regular shape of such structures.

Due to the fact that the interactions between the cells in the cellular model are lo-
cal i.e., a cell interacts only with its direct neighbors, the model can be seen as a two-
dimensional cellular automaton. Hence, mesogranulation can be interpreted as a cellular
automaton effect. Granulation can be classified as a class one cellular automaton, always
producing the same type of mesogranular pattern regardless of the initial configuration
of granules. This is partially due to the granule splitting, which ensures that the mean
granule size and lifetime remain constant in time.
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A Appendix: 2-D model results

A.1 Velocity divergence patches versus mesolanes: com-
parison

The following figures are equivalents of Fig. 3.18-3.20 for the RV/AL, RV/A, CA/L and
RV/R versions of the model.

Figure A.1: Averaged cross correlation function between velocity divergence and
mesofeatures for the RV/AL model, t0 = 7.5 · τav.

137



A Appendix: 2-D model results
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Figure A.2: (a) histogram of an average of the 63 correlation functions (b) histogram of
an average of the 63 correlation function histograms, the RV/AL model (see text).

Figure A.3: Decrease of correlation between velocity divergence and mesolanes, with
exponential fit. RV/AL model (see text). The e-folding time is 1.5 · τav
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A.1 Velocity divergence patches versus mesolanes: comparison

Figure A.4: Averaged cross correlation function between velocity divergence and
mesofeatures for the RV/A model, t0 = 7.5 · τav.
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Figure A.5: (a) histogram of an average of the 63 correlation functions (b) histogram of
an average of the 63 correlation function histograms, the RV/A model (see text).
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A Appendix: 2-D model results

Figure A.6: Decrease of correlation between velocity divergence and mesolanes, with
exponential fit. RV/A model (see text). The e-folding time is 3.6 · τav

Figure A.7: Averaged cross correlation function between velocity divergence and
mesofeatures for the CA/L model, t0 = 7.5 · τav.
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A.1 Velocity divergence patches versus mesolanes: comparison
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Figure A.8: (a) histogram of an average of the 63 correlation functions (b) histogram of
an average of the 63 correlation function histograms, the CA/L model (see text).

Figure A.9: Decrease of correlation between velocity divergence and mesolanes, with
exponential fit. CA/L model (see text). The e-folding time is 2 · τav
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A Appendix: 2-D model results

Figure A.10: Averaged cross correlation function between velocity divergence and
mesofeatures for the RV/R model, t0 = 7.5 · τav.
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Figure A.11: (a) histogram of an average of the 63 correlation functions (b) histogram of
an average of the 63 correlation function histograms, the RV/R model (see text).
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A.1 Velocity divergence patches versus mesolanes: comparison

Figure A.12: Decrease of correlation between velocity divergence and mesolanes, with
exponential fit. RV/R model (see text). The e-folding time is 1.6 · τav.
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A Appendix: 2-D model results

A.2 Granule properties

The following figures are equivalents of Fig. 3.5-3.9 and show the granule properties for
the other model versions.
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Figure A.13: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CA/AL version.
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Figure A.14: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RA/AL version.
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Figure A.15: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CA/A version.
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Figure A.16: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CV/A version.
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Figure A.17: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RA/A version.
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Figure A.18: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CV/L version.
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Figure A.19: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RA/L version.
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Figure A.20: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RV/L version.
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Figure A.21: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CA/R version.
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Figure A.22: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; CV/R version.
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Figure A.23: (a) cell lifetime and (b) cell size distributions, (c) scatter plot of size versus
lifetime and (d) domain snapshot; RA/R version.

A.3 Mesogranulation results: intergranular lane age method,
S-splitting rule

Figures A.24 to A.33 show the S-splitting rule equivalents of Figures 3.26 to 3.35.
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A.3 Mesogranulation results: intergranular lane age method, S-splitting rule

Figure A.24: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. CV/AL model, S-split.

Figure A.25: Mesogranular lifetime histogram with an exponential fit. CV/AL model,
S-split. The e-folding time equals 3.4 · τav.
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Figure A.26: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. CA/L model, S-split.

Figure A.27: Mesogranular lifetime histogram with an exponential fit. CA/L model, S-
split. The e-folding time equals 4.3 · τav.
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A.3 Mesogranulation results: intergranular lane age method, S-splitting rule

Figure A.28: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. RV/AL model, S-split.

Figure A.29: Mesogranular lifetime histogram with an exponential fit. RV/AL model,
S-split. The e-folding time equals 2 · τav.
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Figure A.30: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. RV/R model, S-split.

Figure A.31: Mesogranular lifetime histogram with an exponential fit. RV/R model, S-
split. The e-folding time equals 2.9 · τav.
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A.3 Mesogranulation results: intergranular lane age method, S-splitting rule

Figure A.32: Mesogranulation statistics: histograms of (a) lifetime and (b) average area,
(c) is a scatter plot of size versus lifetime. RV/A model, S-split.

Figure A.33: Mesogranular lifetime histogram with an exponential fit. RV/A model, S-
split. The e-folding time equals 2.2 · τav.
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A.4 Mesogranulation properties: intergranular lane age
method, dependence on the threshold time t0

The following figures present the dependence of mesogranule mean (and median) size
and lifetime on the threshold time t0 obtained with the S-splitting method for the RA/R
and CV/AL model versions. The "ns" means that only cells larger than 2 · Areaav and
living longer than 2 · τav were included.
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Figure A.34: Dependence of mesogranular median (diamonds) and mean (asterisks) life-
time (left) and size (right) on the threshold time. CV/AL − S model.
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Figure A.35: Dependence of mesogranular median (diamonds) and mean (asterisks) life-
time (left) and size (right) on the threshold time. CV/AL − S ns model.
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Figure A.36: Dependence of mesogranular median (diamonds) and mean (asterisks) life-
time (left) and size (right) on the threshold time. RV/R − S model.
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Figure A.37: Dependence of mesogranular median (diamonds) and mean (asterisks) life-
time (left) and size (right) on the threshold time. RV/R − S ns model.
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