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Summary

Since the magnetic field controls most dynamic phenomena in the solar corona, it is im-
portant to obtain information about the coronal magnetic field. Because direct measure-
ments of the solar coronal magnetic field and plasma are extremely difficult and inaccu-
rate, we use a modeling approach based on observational quantities, e.g. the measured
photospheric magnetic field, to reconstruct the solar coronal magnetic field and plasma
in a self-consistent model. We take an analytic magnetohydrostatic model to extrapo-
late the magnetic field in the corona from photospheric magnetic field measurement. The
boundary conditions are given by a synoptic magnetogram on the inner boundary and by
a source surface on the outer boundary. In the model, the electric current density can
be decomposed into two components: one component is aligned with the magnetic field
lines, whereas the other component flows in spherical shells. The second component of
the current produces finite Lorentz forces which are balanced by the pressure gradient and
the gravity force. We compare the magnetic field distribution of our model with potential
and force-free field models for the same boundary conditions and find that the extrapola-
tion result of our model differs noticeably from the result of two others. The density on
the source surface in our model is higher in the equatorial plane than in the polar region,
which is a reasonable result from the real situation. To summarize, the distribution of not
only the magnetic field but also the plasma in the solar corona can be constructed from
this MHS model self-consistently.

Occasionally, the solar corona becomes unstable and ejects magnetic fields and plasma,
e.g. the coronal mass ejections (CMEs), into the interplanetary space. If directed towards
the Earth, these interplanetary coronal mass ejections (ICMEs) can disturb the Earth mag-
netosphere intensely. A similar type of magnetic structure to the ICMEs is small-scale
magnetic flux ropes. Though the flux ropes in the magnetosphere have been widely stud-
ied, further observations about the flux ropes in the solar wind are still needed to clarify
the basic characteristics, such as the length, the diameter, and the possible generation
mechanism. The study of the flux ropes in the solar wind can help us not only to differ
the ropes from ICMEs but also to understand the characteristics of the multiple-X-line
magnetic reconnection, which is the most probable generation mechanism for the ropes.
The multiple-spacecraft observations are particularly demanded to study the space vari-
ation of the flux rope in the solar wind. On 15 January 2007, an extended magnetic
structure was observed consecutively by five spacecraft (ACE, WIND, STEREO A and
B, and CLUSTER) in the solar wind. The similar bipolar magnetic field variations from
five spacecraft suggest a two-dimensional magnetic structure. The abrupt disappearance
of the beam electrons in the structure core suggests the magnetic isolation of the structure
core from the surrounding environment. The analysis shows that this magnetic structure
is a magnetic flux rope, which extends over at least 180 RE in space. The length and ori-
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Summary

entation of the flux rope was determined by a local Minimum Variance Analysis (MVA)
from individual spacecraft observations of the magnetic field and a timing analysis based
on the joint observations by all five spacecraft. The result shows that the orientation of
the flux rope stays constant in space and time. The flux rope is embedded in a Corotating
Interaction Region (CIR), which followed a magnetic cloud. The small scale and the pos-
sible reconnection signatures inside the flux rope suggested that the flux rope should be
generated locally by magnetic reconnection in the solar wind instead of being generated
in the solar corona.
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1 Introduction

1.1 Solar corona

The solar corona is a very hot, tenuous part of the solar atmosphere appearing in white
light as streamers, plumes and other structures extending out from the solar disk. Early
observations of the solar corona date back to ancient eclipse observations, which can be
found in ancient Chinese, Indian, and Babylonian sources [Aschwanden, 2005]. Nowa-
days, scientists observe the Sun with ground-based telescopes and spacecraft. The Mauna
Loa Solar Observatory (MLSO), located on the island of Hawaii, provides daily white
light coronagraph images. The Wilcox Solar Observatory, located in the foothills west of
the Stanford University campus, began daily observations of the Sun’s global magnetic
field in the photosphere in May 1975. The Solar and Heliospheric Observatory (SoHO)
is a solar-dedicated space mission, which was launched in December 1995. The Solar
TErrestrial RElations Observatory (STEREO), composed of two spacecraft, is another
important mission for observing the Sun, which was launched in October 2006. Figure
1.1 shows an ground-based observation of the corona taken during the eclipse on 11 July
1991. Helmet streamers, large cap-like coronal structures with long pointed peaks into
the heliospheric space, are formed by a network of magnetic loops above the solar sur-
face. Polar plumes, associated with the open magnetic field lines at the Sun’s surface,
are long thin streamers that project outward from the Sun’s north and south poles at solar
minimum activity. Both of these two structures can be found in this picture.

Our understanding of the Sun has significantly improved in the last fifty years. Figure
1.2 summarizes the change of our understanding of the structure of the solar atmosphere
during the last decades [Schrijver, 2001]. Around 1950s, it was thought that the pho-
tosphere, chromosphere and corona might consist of stratified layers, in the presence of
gravitation (the left panel). Edlén [1943] found FeIX and CaXIV lines in the solar corona,
which indicated a much higher temperature (above 1 MK) in the corona than in the pho-
tosphere. Though scientists did not understand the exact heating mechanism to generate
such a high temperature, intermittent heating ε may exist in the corona based on people’s
understanding during that time period. During 1980s, the concept of flux tubes of the
magnetic field was introduced. These flux tubes could cluster from the photosphere into
the corona (the middle panel) [Gabriel, 1976]. The tubes can serve as channels for the
plasma to transport energy and mass from the solar interior, where the plasma β > 1, to
the solar atmosphere, where the plasma β < 1. The shock waves from the Sun’s interior
might dissipate in the solar surface and be a possible source to heat the chromosphere
[Hollweg, 1985]. After 2000, with observations from SoHO and Skylab, people realized
that the solar corona is a very dynamic and inhomogeneous region. The photosphere,
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1 Introduction

Figure 1.1: Coronal observation during the solar eclipse on 11 July 1991.

chromosphere and corona are coupled by many dynamic processes, such as upward and
downward flows ρ, intermittent heating (εi), field line motions and magnetic reconnection,
emission and absorption in the plasma, acoustic waves and shock waves (the right panel)
[Aschwanden, 2005]. From Figure 1.2, we can see that our understanding of the solar at-
mosphere evolved from simple spherical geometry towards dynamic and inhomogeneous
topology.

1.1.1 Temperature and density

The solar surface and the corona above are often divided into three parts: coronal holes,
quiet-Sun regions, and active regions, which show different properties of the magnetic
field and plasma. Though the temperature is very high everywhere in the corona, it differs
noticeably between these three regions. Since magnetic field lines in the coronal holes
are open and plasma transport along field lines is very efficient, the heated plasma can
easily escape to heliospheric space. The temperature in coronal holes is around 1 MK,
which is the coolest part in the corona. Most magnetic field lines in quiet-Sun regions
and active regions are closed. The heated plasma in these regions is trapped in magnetic
loops, and the temperature in these two regions is higher than that in the coronal holes.
The temperature in the quiet-Sun regions varies from 1 MK to 2 MK. The active regions
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1.1 Solar corona

Figure 1.2: Cartoon showing the evolution of the geometric concepts of the solar corona
[Schrijver et al., 2001].

have the highest temperature, usually above 2 MK. The difference of the temperature in
the quiet-Sun regions and the active regions is due to different heating rates and energy
loss rates [Aschwanden, 2005]. The correlation between higher magnetic field and a more
efficient heating in the corona suggests that the magnetic field may play some role in the
heating mechanism.

The temperature distribution in Figure 1.3 shows an average 1D model for a gravita-
tionally stratified solar atmosphere [Gabriel, 1976; Fontenla et al., 1990; Aschwanden,
2005]. The temperature in the chromosphere is around several thousand Kelvin, but rises
rapidly to above 1 Million Kelvin in the corona. If only thermal conduction and radiative
cooling are at work, the temperature in the corona should drop off steadily with increasing
distance from the chromosphere according to the second law of the thermodynamics. So
the question of how the corona is heated is a fundamental issue in solar physics, and is
still a matter of debate. Though a certain conclusion is not reached yet, possible mecha-
nisms were proposed to explain corona heating. Nowadays it is a custom to classify these
mechanisms into two types of models: DC (Direct Current) models and AC (Alternating
Current) models. In DC models, if the time scale of the fluctuation of magnetic field line
foot-points is much longer than the local Alfvén transit time, the loops can adjust to the
changing boundary condition in a quasi-static way. So the energy from the dissipation
of the currents can heat the corona directly. In this model, the currents can be dissipated
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1 Introduction

Figure 1.3: Electron density and temperature in the chromosphere and lower corona
[Gabriel, 1976].

by Ohmic dissipation, magnetic reconnection [Sturrock and Uchida, 1981; Paker, 1983,
1988; Berger, 1991, 1993; Galsgaard and Nordlund, 1997;], current cascading [Van Bal-
legooijen, 1986; Galsgaard and Nordlund, 1996, 2002], or viscous turbulence [Heyvaerts
and Priest, 1992; Aly and Amari, 1997; Milano et al., 1997, 1999]. In AC models, the
time scale during which loops adjust is much shorter than that of the photospheric driver,
so the corona will be heated by the damping and dissipation of incident waves. In this
case, the currents can be dissipated by Alfvénic resonance [Hollweg, 1985, 1991], res-
onance absorption [Ionson, 1978; Goossens et al., 1992, 1995; Ruderman et al., 1997],
phase mixing [Heyvaerts and Priest, 1983; De Moortel et al., 1999, 2000], acoustic waves
[Kuperus et al., 1981] and shocks [Hollweg, 1985]. The details of these models and other
important papers corresponding to the models are summarized in [Aschwanden, 2005].

From Figure 1.3, we can see that the electron density decreases by several orders of
magnitudes from the chromosphere to the corona. Although the plasma density in the
corona is very low and keeps decreasing with height above the solar surface, it differs no-
ticeably between coronal holes, quiet-Sun regions and active regions. In the coronal holes
in the lower corona, since the magnetic field lines are open and the plasma can easily es-
cape into the heliospheric space along the field lines, the electron density is comparatively
low, usually below 108 cm−3. In quiet-Sun regions and active regions, where the plasma
is trapped on the closed lines, the density is higher than in the coronal holes. In active
regions, many dynamic processes can heat up the chromospheric plasma and drive them
into the corona, generating over-dense structures with densities higher than in the ambi-
ent quiet-Sun regions [Aschwanden, 2005]. The density is around 108 cm−3 in quiet-Sun
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1.1 Solar corona

regions in the lower corona, and is between 108 cm−3 to 109 cm−3 in active regions.
The best opportunity for ground-based telescopes to observe the white light corona

is during the solar eclipse. The largest component (over 90%) of the total integrated
coronal brightness comes from the K-corona. K-corona emission is continuum, resulting
from Thomson scattering of photospheric radiation from coronal electrons [Michael and
Edenhofer, 1990]. The K-corona typically dominates the corona emission out to about
two solar radii, and is overtaken at larger solar distances by the F-corona. The F-corona
emission contains the Fraunhofer lines and is attributed to scattering from interplanetary
dust [Michael and Edenhofer, 1990]. The electron density profiles above the solar surface
can be approximated by a power law function known as the Baumbach-Allen formula
[Aschwanden, 2005],

ne(R) = 108 × [2.99(R/R�)−16 + 1.55(R/R�)−6 + 0.036(R/R�)−1.5], (1.1)

here R� is the solar radius and R is the radial distance away from the Sun center. From this
equation, we can see that the electron density decreases very rapidly in the low corona,
but decreases much more slowly in the outer corona.

1.1.2 Magnetic field observations
Based on the Zeeman effect, the magnetic field in the photosphere can be measured. How-
ever, the coronal magnetic field is difficult to measure so far due to the low plasma density,
high plasma temperature, and small magnetic field strength. Figure 1.4 is a synoptic mag-
netograms from 11 May 1998 to 7 June 1998 from the MDI (Michelson Doppler Imager)
instrument on board the SOHO spacecraft. The magnetic field on the solar surface is very
inhomogeneous. The magnitude of the magnetic field in the coronal holes and quiet-Sun
region is in the range of several tens of Gauss. The magnetic field in the active regions is
usually above 100 gauss. Inside sunspots the magnetic field can reach several thousand
gauss.

In the corona, the magnetic field controls most dynamic phenomena. Open-field re-
gions exist at low activity in the two polar regions during the solar minimum, and can
extend to the equator. The magnetic field lines in the open-field regions connect the Sun
with the interplanetary space. As the consequence of the magnetic-field-line configuration
in open-field regions, the plasma can be transported into the heliospheric space efficiently.
The closed-field regions usually exist at low latitudes, and contain mostly closed field
lines. These closed field lines can reach a height of about one solar radius, and open up
to connect to the heliosphere eventually at higher altitudes. The plasma transport into the
heliosphere in the closed-field regions is not as efficient as that in the open-field regions.

1.1.3 Plasma β and magnetic field extrapolation
A key parameter of the coronal plasma is the plasma β = pp/pm, which is the ratio of
the particle pressure pp = nkT (n is the plasma number density, T the temperature, k
the Boltzmann constant.) to the magnetic pressure pm = B2/2µ0 (B is the magnetic field
strength, µ0 is the magnetic permeability of vacuum.). Figure 1.5 shows the β parameter
in the solar atmosphere [Gary, 2001]. From the figure, we can see that β is usually larger
than unity in the photosphere. It decreases to less than unity in the chromosphere. In the
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1 Introduction

Figure 1.4: Synoptic magnetogram on the photosphere from 11 May to 07 June 1998 from
the Michelson Doppler Imager (MDI) instrument onboard the Solar and Heliospheric
Observatory (SoHO) spacecraft.
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1.1 Solar corona

Figure 1.5: Plasma β in the solar atmosphere [Gary, 2001].

lower corona, the plasma β is much less than unity. So the lower corona is magnetically
confined, and the particles can move only along the magnetic field lines. In the outer
corona, the plasma β increases and can become larger again than unity.

When we extrapolate the magnetic field in the corona based on the photospheric
magnetogram with different models, in principle we should use the magnetohydrostatic
(MHS) equations. The basis of the MHS model consists of the following equations:

j × B − ∇p − ρ∇ψ = 0, (1.2)
∇ × B = µ0j, (1.3)
∇ · B = 0. (1.4)

Here, j and B are the electric current density and the magnetic field, respectively, p is the
plasma pressure, ρ the plasma density, ψ the gravitational potential, and µ0 the magnetic
permeability of vacuum. (In the thesis, the bold symbols represent vectors, and non-bold
symbols for scalars.) If we do a dimensional analysis and divide Eq. 1.2 by typical
physical parameters in the corona, we obtain

j̃ × B̃ − ∇̃ p̃ · β − ρ̃g̃ · β · ρ◦g◦L◦
p◦

= 0, (1.5)

where ρ◦, p◦, g◦, L◦ are typical plasma density, plasma pressure, gravity acceleration, gra-
dient scale in the corona, and j̃, B̃, ∇̃p̃, ρ̃, g̃ are dimensionless parameters of order unity.
If the plasma beta is very low, like above active regions in the corona, we can ignore the
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1 Introduction

Figure 1.6: MDI magnetogram with extrapolated field lines (top) and the Extreme ultra-
violet Imaging Telescope (EIT) image (bottom) [Wiegelmann and Solanki, 2005].
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1.1 Solar corona

second term in Eqs. 1.2 and 1.5. If we insert typical values of ρ◦, p◦, g◦, L◦ in an active
region into Eq. 1.5, the ratio of the two length scales ρ◦g◦L◦/p◦ = L◦/(p◦/ρ◦g◦) will be
less than 10. Since the plasma β is less than 0.01 in the active region, ρ◦g◦L◦/p◦ · β will
be less than 0.1. So the third term in Eqs. 1.2 and 1.5 can be also ignored. Therefore, we
reach

j × B = 0. (1.6)

This is called force-free approximation, which is used to calculate the coronal magnetic
field from the surface magnetic field in the photosphere. If j = 0, this is called the
potential field case. Let us consider the linear force-free case first. In this case, we want
to construct a field B, which satisfies

∇ × B = αB (1.7)

with a constant α.
If α is not constant in space, then we have the nonlinear force-free case. We can

apply numerical methods to solve these equations. Here we introduce the Wheatland
et al. [2000] method for this case. Wiegelmann [2007] defined a function in spherical
geometry:

L =

∫

V
[B−2|(∇ × B) × B|2 + |∇ · B|2]d3x, (1.8)

If L equals zero, the Eqs. 1.4 and 1.7 are fulfilled. The function can be numerically
minimized by iteration. Wiegelmann [2008] compared the measurements of the magnetic
field in an active region in the corona with the extrapolated results from the potential, lin-
ear, nonlinear force-free models, and found that the best agreement is from the nonlinear
force-free model.

So far, the extrapolation of the potential field model has been widely applied in con-
structing the magnetic field in the solar corona. Figure 1.6 is the extrapolation result of
the potential field model by Wiegelmann and Solanki [2005]. They also compared this re-
sult with the EIT (Extreme ultraviolet Imaging Telescope) image. This EIT image shows
the line-of-sight integration of the FeXII emission line intensity at 195 Å. In the figure,
the foot-points with the strong magnetic field correspond to the bright regions in the EIT
image. The bright points correspond to locations at which the plasma density should be
comparatively high at a temperature of about 1.5 MK.

Two methods have been applied to obtain the plasma information in the corona. One
method is to apply scaling laws in loops. Schrijver et al. [2004] used this method to get
the plasma distribution in the whole corona. Figure 1.7 shows their result. By comparing
the model results with the observational images, they also found that the best assumption
of the heat flux FH is proportional to B/L, where B is the magnetic field strength and L
is the half loop length. However, since the magnetic field is extrapolated by the potential
field model, in which the plasma pressure is totally ignored, the MHS equilibrium will not
be satisfied if we insert the plasma pressure from the scaling laws into Eq. 1.2. It means
the scaling laws is not a self-consistent way to obtain the plasma information.

With the consideration concerning self-consistency, we go to the second method,
which is extrapolating the magnetic field in the corona with magnetohydrostatic (MHS)
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1 Introduction

models. In these models, the Lorentz force, the plasma pressure and the gravity force
are all considered and Eq. 1.2 will be satisfied. Not only the magnetic field but also the
plasma will be extrapolated in the MHS models. Based on the work of Low [1985, 1991,
1992, 1993a and 1993b] and Bogdan and Low [1986], Neukirch [1995] constructed an
analytic MHS model. We will apply this MHS model to extrapolate the distribution of
the magnetic field and plasma in the solar corona. The boundary conditions of this model
are given by a synoptic magnetogram on the inner boundary and by a source surface on
the outer boundary. In the model, the electric current density can be decomposed into
two components: one component is aligned with the magnetic field lines, whereas the
other component flows in spherical shells. The second component of the current produces
finite Lorentz forces that are balanced by the pressure gradient and the gravity force.
The 3D distribution of not only the magnetic field but also the plasma will be derived
self-consistently in this MHS model for the first time. By comparing the magnetic field
distribution of our model with potential and force-free field models for the same bound-
ary conditions, we find that the result from our model differs noticeably from both. The
plasma density in this MHS model is higher in the equatorial plane than in the polar re-
gion, which is a reasonable result from the observations during solar activity minimum.
In Chapter 2, the details of the application of this MHS model in the solar corona will be
presented and discussed [Ruan et al., 2008].

1.2 Solar wind

Starting around the middle of the nineteenth century, it was assumed that the Sun might
eject intermittent particle beams [Meyer-Vernet, 2007]. The statement "The Earth was
bombarded by intermittent beams of charged particles coming from the Sun and accel-
erated by an electrostatic field, just as an electrode in a giant vacuum tube" was made
by J. J. Thomson around 1892. In 1890s, Kristian Birkleland, a Norwegian physicist,
suggested that the Sun emits continuously charged particles, which escape into the inter-
planetary space. In the early 1950s, Ludwig Biermann, a German physicist, developed
a model for the interaction of a comet with particles from the Sun, which could explain
the comet’s gaseous tails. The important achievement by Eugene Parker in 1958 was his
prediction that the solar wind flows away from the Sun supersonically at several hundreds
of kilometers per second. Since a hot debate followed Parker’s theory, observational ev-
idence was needed to settle the debate. Lunik II, a Russian spacecraft launched in 1959
detected a flux of positive ions with unknown velocity in the interplanetary space. The
ultimate proof came in 1962 from an American spacecraft, Mariner 2, which provided
clear evidence of the existence of and general properties of the solar wind.

The current sheet in the center of helmet streamers in the solar corona can extend into
the heliospheric space by the solar wind and forms the heliospheric current sheet (HCS).
This wavy current sheet serves as a magnetic separator between two regions of inward
and outward Archimedean spiral fields, and organizes the large scale structure of the solar
wind. Figure 1.8 shows an artist rendition of the heliospheric current sheet (HCS).
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1.2 Solar wind

Figure 1.7: Comparison of Soft X-Ray Telescope (SXT) images (top row) on 1 December
and 8 December 2000 with artificial images (bottom row) generated based on the potential
field extrapolation and scaling laws [Schrijver et al.,, 2004].
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1 Introduction

Figure 1.8: Artist’s rendition of the Heliospheric Current Sheet (HCS).

1.2.1 Corotating interaction regions

The properties of the fast and slow solar wind in interplanetary space are established
well based on in situ observations [reviewed in Schwenn, 1990 and Meyer-Vernet, 2007],
but the nature of the their source regions are still not understood well. The fast solar
wind might come from a large part of the solar surface near activity minimum, and not
solely from the the coronal holes, whereas the slow solar wind might only come from the
vicinity of active regions [Woo and Habbal, 2000; Meyer-Vernet, 2007]. When the fast
solar wind runs into the slower plasma ahead in the interplanetary space, a Corotating
Interaction Region (CIR) can be generated (Figure 1.9) [Pizzo, 1978]. So the CIRs are
the consequence of the solar rotation and interaction between the fast solar wind and the
slow solar wind. The forward and backward shocks related to the CIRs can be observed
beyond of 1 AU [Pizzo, 1978].

1.2.2 Coronal mass ejections

A CME is "an observable change in coronal structure that occurs on a time scale of a few
minutes to several hours and involves the appearance and outward motion of a new, dis-
crete, bright, white-light feature in the coronagraph field of view" [Schwenn, 1996]. The
current view of CMEs has improved considerably as the result of observations. Figure
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1.2 Solar wind

Figure 1.9: Schematic illustration of a Corotating Interaction Region (CIR) in the solar
equatorial plane, adopted from [Pizzo, 1978].

1.10 shows observation of the evolution of a CME with white light coronagraph from High
Altitude Observatory located on Hawaii. The trigger mechanism of the CMEs has been
studied widely by theories and models, and the magnetic reconnection and/or kink insta-
bility may be responsible for triggering the CMEs [summarized in Aschwanden, 2005].

When a CME is transported into the heliospheric space by the solar wind, an ICME
(Interplanetary coronal mass ejection) is generated, which can be identified by in situ
observations, including magnetic field, plasma, compositional and energetic particle sig-
natures [Zurbuchen and Richardson, 2006].

The signatures of the magnetic field are widely analyzed because the three-dimensional
topology of the magnetic structure may be inferred from a single pass through an ICME
when a particular model is assumed. A subset of ICMEs has enhanced magnetic fields
which rotate slowly through a large angle. These ICMEs are named "magnetic clouds"
(MC). A common feature within ICMEs is the reduction in the magnitude of the magnetic
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1 Introduction

Figure 1.10: White-light coronagraph observations of a Coronal Mass Ejection (CME) on
18 August 1980 from High Altitude Observatory on the top panel.

field in their center. The magnetic field observations can help to identify the boundaries
of the ICME. In principle, the boundary between the ICME and the ambient solar wind
should be a tangential discontinuity. In the regular solar wind, we usually observe uni-
directional beam electrons flowing away from the Sun. But inside ICMEs, bidirectional
beams of suprathermal electrons (BDEs) can be usually observed [Zwickl et al.,1983].
The physical interpretation of the BDEs is that these electrons are flowing within ICMEs
along magnetic field lines with two foot-points rooted at the Sun (Figure 1.11). Though
BDEs are one of the most widely-used signatures for identifying ICMEs, BDEs may oc-
cur intermittently, or may even be absent, within an ICME [Shodhan et al., 2000]. Their
absence may indicate ICME field lines that result from the reconnection of open inter-
planetary magnetic field lines [Gosling et al. ,1995].

1.2.3 Flux ropes
Another type of similar magnetic structures in the solar wind are flux ropes. To avoid
confusion, the flux ropes mentioned in this thesis do not include magnetic clouds, which
can be large helix-type structures.

Flux ropes are widely observed in the Earth’s magnetosphere [Russell and Elphic,
1978; Elphic, 1995; Slavin et al., 2003], the Jovian Magnetosphere [Walker and Russell,
1985], the Mercury’s magnetosphere [Russell and Walker, 1985], and in the solar wind
[Moldwin et al., 2000] by in situ observations. The comprehensive study of the flux ropes
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1.2 Solar wind
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Figure 1.11: Artist rendition of a CME in the heliospheric space [Zurbuchen and Richard-
son, 2006].

has been taken in the Earth magnetotail by [Slavin et al., 2003]. They compared the
observations with a force-free model, and the comparison shows that these flux ropes are
in the force-free state in the magnetotail. Figure 1.12 shows their result. The left panel is
the schematic depiction of the flux rope. Long-dash, short-dash and dotted lines indicate
magnetic field lines emanating from increasing distances from the central axis of the flux
rope. The right panel contains the in situ magnetic field observations, and the solid line is
the model result. They also suggested that multiple-X-line reconnection is responsible for
these flux ropes. Figure 1.13 shows their suggestion of the multiple-X-line reconnection
generating flux ropes in the magnetotail. The detailed topology of this dynamic process
will be explained by Figure 3.7.

Though the flux ropes and magnetic clouds show observational signatures of a helical
magnetic structure, Moldwin et al. [2000] identified several differences between these
small-scale flux ropes and magnetic clouds in the solar wind. The average estimated
diameter of magnetic clouds is around 6350 RE [Lepping et al., 1999], but the size of
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1 Introduction

these flux ropes is 20 times smaller than the averaged diameter of magnetic clouds. The
plasma temperature inside the flux ropes shows little change compared to the surrounding
environment, while the temperature in magnetic clouds is usually lower than the ambient
solar wind, indicating cooler plasma. There is no expansion for flux ropes, but magnetic
clouds usually show expansion at 1 AU. Based on these differences, Moldwin et al. [2000]
suggested that the flux ropes might be generated by local magnetic reconnection in the
solar wind, instead of being convected from the solar corona like magnetic clouds. Feng
et al. [2007] carried out a statistical study about flux ropes and magnetic clouds. In
contrast to the findings of Moldwin et al. [2000], Feng et al. [2007] found that the time
scales of the flux ropes vary continuously from tens of minutes to tens of hours, and that
the physical properties of the ropes, like energies, change slowly with the scales. Based
on these results, they suggested that, like magnetic clouds, these interplanetary magnetic
flux ropes are also manifestations of small coronal mass ejection (CME) events, which
are too weak to appear in coronagraph observations. However, the statistical study of
Cartwright and Moldwin [2008] on the flux ropes in the solar wind found that the size
of the flux ropes appears to be bimodal, with the most events having less than four hours
duration. This result suggests different source mechanisms for small-scale flux ropes and
magnetic cloud.

Compared with the study on the flux ropes in the magnetosphere, further observations
about the flux ropes in the solar wind are still needed to clarify their basic characteris-
tics, such as the length, the diameter, and the possible generation mechanism. Regular in
situ observations in the solar wind by the two STEREO A and B spacecraft now provide
a perfect opportunity to study the scale of flux ropes. On 15 January 2007, an extended
magnetic structure was observed consecutively by five spacecraft (ACE, WIND, STEREO
A and B, and CLUSTER) in the solar wind. The similar bipolar magnetic field variations
from five spacecraft suggest a two-dimensional magnetic structure. The abrupt disappear-
ance of the beam electrons in the structure core suggests the magnetic isolation of the
structure core from the surrounding environment. The analysis shows that this magnetic
structure is a magnetic flux rope, which extends over at least 180 RE in space. The length
and orientation of the flux rope was determined by a local Minimum Variance Analysis
(MVA) from individual spacecraft observations of the magnetic field and a timing analysis
based on the joint observations by all five spacecraft. The result shows that the orienta-
tion of the flux rope stays constant in space and time. Though models suggested the flux
rope could be an extending two-dimensional structure, our work proved this conclusion
by multiple-spacecraft observations for the first time. The flux rope is embedded in a
Corotating Interaction Region (CIR), which followed a magnetic cloud. The possible re-
connection signatures have been found inside the flux rope. In Chapter 3, we will present
the details of the observations of the flux rope [Ruan et al., 2009 ] (accepted), which might
contribute to the study and understanding of the flux ropes in the solar wind.
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1.2 Solar wind

Figure 1.12: Schematic depiction of a helical flux rope (left panel) and in situ observations
of a flux rope in the magnetotail (right panel) [Slavin et al., 2001].

Figure 1.13: Sketch of multiple-X-line reconnection generating flux ropes in the magne-
totail [Slavin et al., 2001].
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2 Magnetic field extrapolations in the
solar corona

In this chapter we introduce the magnetic field extrapolation of the linear force-free model
in the solar corona first [Inhester, 2006]. Next we describe the mathematics of an analytic
magnetohydrostatic (MHS) model [Neukirch, 1995]. The application of this MHS model
to the coronal magnetic field will be presented in the end of the thesis [Ruan et al, 2008].

To understand physical processes in the solar corona (e.g. flares and coronal mass
ejections), it is important to obtain information about the magnetic field that couples the
solar interior with the atmosphere. The Zeeman effect in magnetically sensitive spectral
lines has been widely used to measure the line-of-sight component of the magnetic field
typically ranging from one hundred gauss to several thousand gauss in the Sun’s surface
[Lagg, 2005]. The Hanle effect in selected spectral lines provides another useful diag-
nostic tool to measure magnetic fields in the plane normal to the line-of-sight direction.
The magnetic field magnitude, which can be measured accurately from the Hanle effect,
ranges typically from a milli-gauss to about one hundred gauss [Lagg, 2005]. Maps of
the line-of-sight magnetic field (magnetogram) have been regularly recorded since many
years, and more recently vector magnetograms have been measured. In the corona, how-
ever, it is more difficult to measure the magnetic field through the Zeeman effect due to the
low plasma density and the weak emissions in the corona. Polarization of gyroresonance
emission is a useful tool for measuring the coronal magnetic field strength [White, et al.,
2002], but not the full magnetic field vector.

An alternative way of estimating the magnetic field in the coronal is to extrapolate
from photospheric measurements. The extrapolation result depends on not only the pho-
tospheric magnetogram, which serves as the boundary condition for the extrapolation, but
also on the assumptions made regarding the coronal plasma and, in particular, the electric
current density. The simplest approach for an extrapolation is to assume a current-free po-
tential field, which has been widely used to extrapolate the coronal magnetic field into the
corona in the past [Hoeksema, 1991]. In these potential models, the current-free condition
is assumed between the photosphere and artificial source surface. Although these models
are easy to construct and have demonstrated some success in reproducing large long-lived
structures, details of magnetic structure are often not approximated well by these models,
particularly in active regions [Wiegelmann, et al., 2005]. A probable reason is that the
current systems in active regions in the corona are substantial enough to cause the mag-
netic field to be distorted significantly from the potential field configuration [Schrijver et
al., 2005]. [Wheatland, 2000] suggested that the major nonpotentiality of the magnetic
field in the active regions is not built up by persistent stressing of the surface field, but
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2 Magnetic field extrapolations in the solar corona

instead emerges with the magnetic field from below the photosphere.
A more advanced approach is to construct force-free models, which contain field-

aligned electric currents. The extrapolation with such LFFF models from a photospheric
magnetogram has been shown to explain many of the observed features of filaments
[Aulanier, et al., 1998]. The force-free parameter α in LFFF models has been computed
by comparing extrapolated magnetic field lines with coronal EUV-images [Carcedo, et
al., 2003] and three dimensional loops reconstructed by stereoscopy [Wiegelmann, et al.,
2002]. The LFFF models have also been used in combination with images from differ-
ent viewpoints to stabilize the stereoscopic reconstruction of 3D coronal loop structures
by [Wiegelmann and Inhester, et al., 2006]. An advantage of LFFF models is that they
only require photospheric line-of-sight magnetic field observations as input, but they have
a free parameter and are not as accurate as the more sophisticated approaches like non-
linear force-free field (NLFFF) models, which is the generic case for force-free fields.
These NLFFF models are mathematically more challenging and require measurements of
the photospheric magnetic field vector as input [Aly, 1989] [Wiegelmann, 2004]. Direct
measurements of the magnetic field in an active region by [Solanki, et al., 2003] have
been compared with extrapolations under different model assumptions by [Wiegelmann,
et al., 2005]. The study revealed that the LFFF model is better than the potential field
model, but is not as accurate as the NLFFF model.

The main reason for the success of force-free field model extrapolation is the low
plasma β in the low corona, which means the magnetic field is the dominating quantity
and plasma carried by the magnetic field has little influence on the field. However, from
force-free models, we cannot derive the plasma density and pressure directly because all
the plasma information is totally ignored in these models. Consequently, FFF models
cannot by themselves predict coronal emission, which is important for the comparison
with EUV and X-ray measurements. To circumvent this deficiency, scaling laws have
been used to model the coronal plasma along magnetic loops [Aschwanden, et al., 2000].
These methods –modelling first the coronal magnetic field and thereafter the plasma along
the field lines– have been successfully applied to global potential fields by [Schrijver, et
al., 2004] and obtained reasonable agreement with observed plasma images. However,
we cannot consider these models as completely satisfactory because they are not self-
consistent. Complementary to these reconstructions based on observational data, self-
consistent modelling approaches using magnetohydrostatics and magnetohydrodynamics
have been developed [Wu, et al., 1995] [Wiegelmann, et al., 2000]. Theses models aim to
describe coronal structures like helmet streamers and their association with coronal mass
ejections and the solar wind.

2.1 Linear force-free model extrapolation
Here we summarize the mathematics of the linear force-free model [Inhester, 2006]. For
the magnetic field B with ∇ · B = 0, we can decompose the field as

B = P(φ) + T(ψ), (2.1)

φ and ψ are two different arbitrary scalars, which are functions of space. (In the thesis,
the bold symbols represent vectors, and non-bold symbols for scalars.)
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2.1 Linear force-free model extrapolation

We discuss the relations between the toroidal field and poloidal field. The toroidal
field and the poloidal field can be expressed as

T(τ) = ∇ × (rτ), (2.2)
P(τ) = ∇ × ∇ × (rτ). (2.3)

Here r is the radial vector and τ is an arbitrary scalar.
The toroidal field

T(τ) = ∇ × (rτ) = −r × ∇τ (2.4)

has no radial component. ∇ × r = 0 has been used. The poloidal field is the curl of the
toroidal field (see the appendix)

P(τ) = ∇ × T(τ) = ∇ ∂
∂r

(rτ) − r4τ (2.5)

The curl of the poloidal field,

∇ × P(τ) = ∇ × (∇ ∂
∂r

(rτ) − r4τ) = −∇ × (r4τ) = −T(4τ), (2.6)

is a toroidal field. So we can get

P(τ) = ∇ × T(τ), (2.7)
∇ × P(τ) = −T(4τ), (2.8)

∇ × (∇ × P(τ)) = −∇ × T(4τ) = −P(4τ) (2.9)

In the linear force-free case, we want to construct a field B which satisfies

∇ × B = αB, (2.10)
∇ · B = 0, (2.11)

where α is constant in space. Taking the curl of the first equation, we get

4B = −α2B. (2.12)

Let’s go back to Eq. 2.1. Since the curl of B

∇ × B = ∇ × P(φ) + ∇ × T(ψ) = −T(4φ) + P(ψ) (2.13)

(Eqs. 2.7 and 2.8 have been used for the above derivation.) must be equal to

αB = αP(φ) + αT(ψ) = P(αφ) + T(αψ). (2.14)

From the comparison of Eqs. 2.13 and 2.14, we get

ψ = αφ, (2.15)
αψ = −4φ. (2.16)
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2 Magnetic field extrapolations in the solar corona

So we reach

4φ = −α2φ. (2.17)

Therefore we need find a solution for B = P(φ) + αT(φ) with the Helmholtz equation
4φ = −α2φ. Given boundary conditions for the radial component of B on the sphere
r = 1, the scalar φ is uniquely determined. We write the three components of B in terms
of φ in spherical coordinate system,

Br = |α|( ∂
2

∂ρ2 + 1)ρφ, (2.18)

Bt =
1

r cos θ
(1 − t2)

∂

∂t
∂

∂ρ
ρφ − α

cos θ
∂

∂p
φ, (2.19)

Bp =
1

r cos θ
∂

∂p
∂

∂ρ
ρφ +

α

cos θ
(1 − t2)

∂

∂t
φ, (2.20)

where ρ = |α|r, t = sin θ, and θ and p are the polar angle and the azimuth angle, respec-
tively.

For 4φ = −α2φ, we have

φ =
∑

n,m

Fn(r)Pm
n (t)Cm

n (p), (2.21)

where Fn(r) is the radial function, Pm
n (t) the elevational function, Cm

n (p) the azimuth func-
tion. The sum extends over n = 0, ...Nmax and for each n we have m = 0, ...n.

The radial function Fn(r) obeys

1
r2

d
dr

(r2 d
dr

Fn) − n(n + 1)
r2 Fn = −α2Fn. (2.22)

The solutions are linear combinations of spherical Bessel functions of the first and second
kind,

jn(|α|r) =

√
π

2|α|r Jn+1/2(|α|r), (2.23)

yn(|α|r) =

√
π

2|α|rYn+1/2(|α|r), (2.24)

which for small arguments approach

jn(|α|r) → (|α|r)n

1 × 3 × 5...(2n + 1)
=

(|α|r)n

(2n + 1)!!
, (2.25)

yn(|α|r) → −1 × 1 × 3...(2n − 1)
(|α|r)n+1 =

(2n − 1)!!
(|α|r)n+1 . (2.26)

So we got Fn(ρ) = anyn(ρ) + bn jn(ρ). We will discuss how to determine an and bn from
the boundary conditions, after we show the explicit expressions of the magnetic field
components.
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2.1 Linear force-free model extrapolation

The elevational functions Pm
n are the associated Legendre functions [Abramowitz and

Stegun, 1964], which obey

d
dt

((1 − t2)
d
dt

Pm
n ) + (n(n + 1) − m2

1 − t2 Pm
n ) = 0, (2.27)

and can be calculated from Rodriguez’ formula as

Pn(t) =
(−1)n

n!2n (
d
dt

)n(1 − t2)n, (2.28)

Pm
n = (−1)m

√
1 − t2(

d
dt

)mPn. (2.29)

The azimuth functions Cm
n are linear combinations

Cm
n (p) = gm

n cos(mp) + hm
n sin(mp), (2.30)

where the constant gm
n and hm

n are the spherical harmonic coefficients to be determined by
a least-square fit to the surface data.

Now by replacing φ in the equations (2.18) (2.19) (2.20), we get

Br =
∑

n,m

n(n + 1)FnPm
n Cn

m, (2.31)

Bt =
1

r cos θ

∑

n,m

Fn(1 − t2)
dPm

n

dt
Cn

m −
α

cos θ

∑

n,m

FnPm
n

dCn
m

dp
, (2.32)

Bp =
1

r cos θ

∑

n,m

Fn
dCm

n

dp
Pn

m +
α

cos θ

∑

n,m

Fn(1 − t2)Cm
n

dPn
m

dt
. (2.33)

These three expressions are the spherical field components in terms of the spherical har-
monic functions. Here Fn(ρ) = ∂

∂ρ
ρFn(ρ).

We have two boundaries for the model. One is photospheric magnetogram as the
inner boundary, and the other one is the source surface as the outer boundary. We use
these two boundary conditions to determine an and bn in the expression of Fn. On the
inner boundary at r = 1, we can choose Fn = 1/n(n + 1). So in that way, we can leave
Br as the function of only Pm

n and Cn
m, which are functions of θ and φ respectively. Br will

not depend on n on the inner boundary. On the source surface, we try to set the first two
terms on the right hand side of Eqs. 2.32 and 2.33 as zero. This leads to another boundary
condition of Fn(ρ) = 0 at the source surface. With these two boundary conditions, the
coefficients an and bn can be determined. Crossing the source surface, we try to set the
two second terms on the right hand side of Eqs. 2.32 and 2.33 as zero. What we did is
just multiplying these two terms with f (r), which decrease to zero exponentially crossing
the source surface. From the white light coronagraph observations, it appears that the
magnetic field lines become radially outside about three solar radii.

The next step is fitting the model result to the surface data, the photospheric magne-
togram. The surface field from the model is (B ·eLOS )(t, p) at r = 1, which should be fitted
to the observed line-of-sight magnetic field D(t, p) at the solar surface. Here the eLOS is
the line-of-sight direction and we take (er cos θ − et sin θ) as the form of eLOS (t, p) for the
synoptic view on the central meridian. So we should minimize

∑

t,p

(B(r = 1, t, p) · eLOS (t, p) − D(t, p))2 → 0. (2.34)
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2 Magnetic field extrapolations in the solar corona

Next we discuss how to deal with (B(r = 1, t, p)·eLOS (t, p). The explicit expressions of the
magnetic field components have been shown in Eqs. 2.31, 2.32 and 2.33. The uncertain
coefficients are located only in the term Cn

m = gm
n cos(mp) + hm

n sin(mp). So we try to
organize B(r = 1, t, p) · eLOS (t, p) as the expression∑

n,m

(Hm
n hm

n + Gm
n gm

n ),

in which the uncertain coefficients hm
n and gm

n have been separated from Hm
n and Gm

n , re-
spectively, and they are also separated from each other. If we insert Eqs. 2.31, 2.32 and
2.33 into B(r = 1, t, p) · eLOS (t, p), we can obtain the expressions of Hm

n and Gm
n as the

following,

Hm
n = (eLOS · er)n(n + 1)FnPm

n cos(mp)

+(eLOS · et)


1

r cos θ

∑

n,m

Fn(1 − t2)
dPm

n

dt
cos(mp) +

α

cos θ

∑

n,m

FnPm
n sin(mp)



−(eLOS · ep)


1

r cos θ

∑

n,m

FnPn
m sin(mp) − α

cos θ

∑

n,m

Fn(1 − t2)
dPn

m

dt
cos(mp)



Gm
n = (eLOS · er)n(n + 1)FnPm

n sin(mp)

+(eLOS · et)


1

r cos θ

∑

n,m

Fn(1 − t2)
dPm

n

dt
sin(mp) − α

cos θ

∑

n,m

FnPm
n cos(mp)



+(eLOS · ep)


1

r cos θ

∑

n,m

FnPn
m cos(mp) +

α

cos θ

∑

n,m

Fn(1 − t2)
dPn

m

dt
sin(mp)



From Eq. 2.34, we get

(
∑

t,p

∑

n,m

(Hm
n hm

n + Gm
n gm

n ) − D(t, p))2 → 0

We try to find the minimum value of (
∑

t,p
∑

n,m(Hm
n hm

n + Gm
n gm

n ) − D(t, p))2, therefore we
reach

d
dhm′

n′

∑

t,p

(
∑

n,m

(Hm
n hm

n + Gm
n gm

n ) − D(t, p))2

= 2
∑

t,p

Hm′
n′ (Hm

n hm
n + Gm

n gm
n ) − D(t, p))

= 2
∑

t,p

∑

n,m

(
(Hm′

n′ Hm
n )hm

n + (Hm′
n′ G

m
n )gm

n − (Hm′
n′ )D(t, p)

)
= 0,

and
d

dgm′
n′

∑

t,p

(
∑

n,m

(Hm
n hm

n + Gm
n gm

n ) − D(t, p))2

= 2
∑

t,p

Gm′
n′ (H

m
n hm

n + Gm
n gm

n ) − D(t, p))

= 2
∑

t,p

∑

n,m

(
(Gm′

n′ H
m
n )hm

n + (Gm′
n′ G

m
n )gm

n − (Gm′
n′ )D(t, p)

)
= 0.
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2.2 Magnetohydrostatic (MHS) model

Then we write these two equations as a matrix equation
(

HH HG
GH GG

) (
h
g

)
=

(
HD
GD

)

We ignored the indexes n and m in the matrix for the simplicity. Every element in the ma-
trix is a sum over the grid points (t, p) on the boundary. By resolving this matrix equation
with the method of singular value decomposition (SVD), we can obtain the coefficients hm

n
and gm

n . The dimension of this matrix is nmax×nmax. If we take 30 spherical harmonics for
our calculation, the computer can finish this calculation in a reasonable time, like several
or several tens minutes.

Figure 2.1 shows the synoptic photospheric chart (the color part) for Carrington ro-
tation 1913 (from Aug. 22, 1996 to Sep. 18, 1996) obtained from the Wilcox Solar
Observatory, and the fitted model result (the contour lines). The space resolution of the
synoptic chart is 73 grid points in the longitude 30 grid points in the latitude. We take 10
spherical harmonics (n = 10) in the model. From this comparison, we see that the coeffi-
cients determined from the boundary condition are reliable. Figure 2.2 shows the global
field lines from the force-free model extrapolation. In the top panel, the free parameter α
is zero, which means potential field model. In the bottom panel, the α is 0.5. From this
figure, we see that different α with the same boundary condition can bring significantly
different extrapolation result. When we increase α in the model, the current density will
increase, which leads to more twisted magnetic field lines. This can be seen from the
figure.

2.2 Magnetohydrostatic (MHS) model
As mentioned above, the LFFF models cannot provide the plasma information directly,
but MHS models can in principle. In this section we aim to use three-dimensional, self-
consistent analytical MHS solutions as a basis for a model of the global corona, which
has been proposed by [Neukirch, 1995]. In spite of the general difficulties associated with
finding three-dimensional analytical solutions of the MHS equations, some useful solu-
tions are available [Low, 1985, 1986, 1991, 1992] [Neukirch, 1995, 1997]. This class of
solutions has a toroidal current density in additional to field-aligned current density. The
solutions of [Neukirch, 1995] are based on the previous work by [Bogdan and Low, 1986]
and differ from them only by the additional field-aligned current density component. The
fundamental equation in this MHS model is a Schrödinger-type equation for the radial
field component. The [Bogdan and Low, 1986] solutions have been discussed or used as
a basis for global coronal magnetic field models, for example, by [Zhao and Hoeksema,
1993, 1994], and [Gibson, et al., 1996], whereas so far the [Neukirch, 1995] solutions
have been discussed but not used yet to extrapolate the coronal magnetic field from the
photospheric magnetogram [Rudenko, 2001].

Here we use the [Neukirch, 1995] (subsequently referred to as N95) MHS solutions
to develop a global coronal model using photospheric magnetograms as input for the
magnetic field. We are aiming for a model that describes the coronal magnetic field and
plasma self-consistently. We summarize Neukirch (1995)’s MHS model and their results,
and introduce a modification to the model for its application to extrapolate the measured
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2 Magnetic field extrapolations in the solar corona

Figure 2.1: Synoptic photospheric chart (the color part) for Carrington rotation 1913
(from Aug. 22, 1996 to Sep. 18, 1996) obtained from the Wilcox Solar Observatory and
the linear force-free model result (the contour lines), adjusted from [Inhester, 2006].
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2.2 Magnetohydrostatic (MHS) model

Figure 2.2: Magnetic field lines from potential field (the top panel) and linear force-free
field with α = 0.5 (the bottom panel), adjusted from [Inhester, 2006].
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2 Magnetic field extrapolations in the solar corona

photospheric magnetogram into the solar corona. Some lengthy and necessary mathemat-
ical details in deriving equations are included in the appendix.

2.2.1 Mathematics of the MHS model

The basis for the MHS model consists of the MHS equations:

j × B − ∇p − ρ∇Φ = 0, (2.35)
∇ × B = µ0j, (2.36)
∇ · B = 0. (2.37)

Here, j and B are the electric current density and the magnetic field, respectively, p is the
plasma pressure, ρ the plasma density, Φ the gravitational potential, and µ0 the permeabil-
ity of vacuum.

In N95 the electric current was decomposed into two components:

µ0j = αB + ε(r)[∇(r · B)] × r, (2.38)

where ε(r) = 1/r2 − 1/(r + a)2 is a special choice in our model. We will discuss how to
choose this term later. Both α and a are two free parameters in this model that are globally
constant. The first term describes the field-aligned current density, the second a toroidal
current density that produces the Lorentz force to compensate for pressure gradient and
gravity.

Inserting Eq. 2.38 into Eq. 2.36, taking the curl of Eq. 2.36 and dotting the resulting
equation with r, they obtained

∆(r · B) + ε(r)L2(r · B) + (α)2(r · B) = 0, (2.39)

where L is the angular momentum operator,

L =
1
i
r × ∇, (2.40)

and i is the imaginary unit. L has the property

L · B =
1
i
αr · B. (2.41)

By expanding r · B into a series of spherical harmonics [Jackson, 1975] ,

r · B =

∞∑

l=1

l∑

m=−l

l(l + 1)


2∑

j=1

A( j)
lmu( j)

l (r)

 Ym
l (θ, φ). (2.42)

and inserting this expression to Eq. 2.39, they obtained

d2g( j)
l

dr2 − l(l + 1)(
1
r2 − ε(r))g( j)

l + α2g( j)
l = 0. (2.43)
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2.2 Magnetohydrostatic (MHS) model

Here g( j)
l (r) = ru( j)

l (r). Now we discuss how to specify ε(r). First we write the radial
Schrödinger equation for the hydrogen atom for comparison:

d2g( j)
l

dr2 −
(
l(l + 1)

1
r2 −

2
r

)
g( j)

l + 2Eg( j)
l = 0. (2.44)

Here E is independent of r like α. The term 2/r is the potential part. The term ε(r) in
Eq. 2.43 corresponds the potential part 2/r in Eq. 2.43. However, there is a difference
that in Eq. 2.43 the operator l(l + 1) does not appear as the numerator of the 1/r2, but also
as a factor of the potential ε(r). Eq. 2.44 has been well studied in quantum mechanics,
and the analytic solution has been found for this equation. With this help N95 try to find
an analytic solution for Eq. 2.43. They specified ε(r) = 1/r2 − 1/(r + a)2, and found the
solution for Eq. 2.43 as g( j)

l =
√

r + aJl+1/2(α(r + a)) or
√

r + aNl+1/2(α(r + a)), where J
and N are first and second kinds of the Bessel function. They made this choice for ε(r)
in order to find an analytic solution. In principle we can make other choices for ε(r) by
giving up the analytic solutions. In those cases, we have to solve Eq. 2.43 numerically.

By inserting Eq. 2.42 into Eq. 2.41, they obtained

L · B =
1
i
α

∞∑

l=1

l∑

m=−l

l(l + 1)
2∑

j=1

A( j)
lm u( j)

l (r)

 Ym
l (θ, φ). (2.45)

[Jackson, 1975] provided a solution for this equation without giving the Br component as
the following (see the appendix for the details),

Bt =

∞∑

l=1

l∑

m=−l

vlm(r)LYm
l (θ, φ) + wlm(r)∇Ym

l (θ, φ), (2.46)

vlm(r) =
1
i
α

2∑

j=1

A( j)
lm u( j)

l (r), (2.47)

wlm(r) =

2∑

j=1

A( j)
lm

d
dr

(
ru( j)

l (r)
)
. (2.48)

By combining Eqs. 2.42, 2.46, 2.47 and 2.48, N95 obtained an explicit expression for
the magnetic field:

B =

∞∑

l=1

l∑

m=−l

2∑

j=1

A( j)
lm {l(l + 1)u( j)

l (r)
r
r2 Ym

l (θ, φ) +

α

i
u( j)

l (r)LYm
l (θ, φ) +

d(ru( j)
l )

dr
∇Ym

l (θ, φ)} (2.49)
(

u(1)
l (r)

u(2)
l (r)

,

)
=

√
r + a
r

(
Jl+1/2(α(r + a))
Nl+1/2(α(r + a))

)
, (2.50)

In Eq. 2.50 l starts from 1 not 0 in order to rule out a magnetic monopole term. The vari-
able A( j)

lm are a priori unknown coefficients to be determined from the boundary condition
supplied by the photospheric magnetogram.
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2 Magnetic field extrapolations in the solar corona

Next we discuss how they obtained the expression of the plasma pressure and density
with the help of the MHS equilibrium equation 2.35. Before that, we rewrite ε(r)[∇(r ·
B)] × r in Eq. 2.38 as another expression ∇F × ∇Φ. As mentioned above, Φ is the
gravitational potential, so

Φ = −GM
r
, (2.51)

∇Φ =
GM
r3 r. (2.52)

If the expression of F is

F =
ε(r)r
|∇Φ| r · B =

ε(r)r2

(∇Φ)2 (B · ∇Φ), (2.53)

the following equation can be reached

∇F × ∇Φ = ε(r)∇(r · B) × r. (2.54)

This is not complicate if we notice that the vector ∇[ε(r)r/(∇Φ)] is parallel along r, and
the result is zero if we multiply this vector with ∇Φ. So Eq. 2.38 reaches

µ0j = αB + ∇F × ∇Φ, (2.55)

The term ∇F × ∇Φ represents the current is generated by two independent sets of level
surfaces F and Φ [Low, 1985].

Inserting Eq. 2.55 to Eq. 2.35 and rearranging the cross-products, they got

∇p + ρ∇Φ + (B · ∇Φ)∇F − (B · ∇F)∇Φ = 0. (2.56)

Since∇Φ and ∇F are independent, by considering the component of ∇p in direction of
∇F projected to the plane Φ = constant, one obtains

(
∂p
∂F

)

Φ

= −B · ∇Φ = − F
k(Φ)

. (2.57)

Here Eq. 2.53 is used, and k(Φ) = ε(r)r2/(∇Φ)2. This equation can be directly integrated
to give

p = p0(Φ) − F2

2k(Φ)
. (2.58)

Here p0 is a free function and represents a background pressure, which depends only on
r. Inserting the explicit expressions of F and k(Φ), the following equation can be reached

p = p0(r) − 1
2
ε(r)(r · B)2. (2.59)

In a similar way, by considering the component of ∇p in direction of ∇Φ projected to
the plane F = constant in Eq. 2.56, one can obtain

ρ = −
(
∂p
∂Φ

)

F
+ B · ∇F. (2.60)

36



2.2 Magnetohydrostatic (MHS) model

By inserting Eq. 2.59 for p, changing the derivation from Φ to r, and inserting the expres-
sion of F, one can obtain

ρ =
r2

GM

(
0.5

dε
dr

(r · B)2 + rεB · ∇(r · B) − dp0

dr

)
, (2.61)

where ρ0 = −(r2/GM)dp0/dr is a background plasma density. The plasma temperature
can be calculated by

T =
µp
ρR
, (2.62)

where R is the universal gas constant and µ is the mean molecular weight.
Two components of the current density are present in Eq. 2.38. The first term of the

current αB is the force-free part, and it does not produce a Lorenz force on the plasma
because it is parallel to the field lines. The second term ε(r)∇(r · B) × r is perpendicular
to the radial direction, i.e. It flows on spherical surfaces. In general this current density
component produces a Lorenz force which balances the pressure gradient ∇p and the
gravity force ρ∇Φ in Eq. 2.35.

Though N95 did not apply the model to extrapolate the magnetic field with photo-
spheric magnetogram, they provided a simple example of the model result. This example
includes only the spherical harmonics for l = 1, m = 0 and l = 2, m = ±1. The magnetic
field components are

Br = A10
r2

0

r2

r0 + a
r + a

f1(r)Y0
1 −

1
2

A21
r2

0

r2

(r0 + a)2

(r + a)2 f2(r)(Y1
2 − Y−1

2 ),

Bθ =
1
2

A10
r2

0

r
r0 + a
r + a

(
d f1

dr
− f1

r + a

)
∂

∂θ
Y0

1 −

α

12
A21

r2
0

r
(r0 + a)2

(r + a)2 f2(r)
1

sin θ
∂

∂φ
(Y1

2 − Y−1
2 ) +

1
12

A21
r2

0

r
(r0 + a)2

(r + a)2

(
d f2
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− 2 f2

r + a

)
∂
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(Y1

2 − Y−1
2 ),

Bφ = −α
2
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r2

0

r
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∂
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Y0

1 +

1
12

A21
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0

r
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(r + a)2 f2(r)
∂
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(Y1

2 − Y−1
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1
12

A21
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0

r
(r0 + a)2
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(
d f2

dr
− 2 f2
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)
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∂φ
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2 Magnetic field extrapolations in the solar corona

where

f1(r) =
cos q + q sin q

cos q0 + q0 sin q0
,

f2(r) =
(3 − q2) cos q + 3q sin q

(3 − q2
0) cos q0 + 3q0 sin q0

,

q = α(r + a),
q0 = α(r0 + a).

N95 took r0 = 1.5R� (R� is the solar radius.), a = 0.01r0. They took the same plasma
background model as [Bogdan and Low, 1986],

ρ0(r) = 2.87 × 10−15 ×
(
c1(r/r0)−d1 + c2(r/r0)−d2

)
,

p0(r) = 7.9 × 10−5 ×
(
C1(r/r0)−d1−1 + C2(r/r0)−d2−1

)
,

c1 = 0.804,C1 = 0.866, d1 = 3.3,
c2 = 0.196,C2 = 0.134, d2 = 5.8.

By varying α from 0 to 0.1 in the extrapolation, N95 found that the differences in the
magnetic field are obvious, but the plasma quantities are almost the same (see Figures. 1,
2, 3 and 4 of N95). N95 suggested that the magnitude change of the radial magnetic field
component is only about 1% between α = 0 and α = 0.1, and that this small change of
the magnetic field strength hardly alter the plasma.

2.2.2 Application of the MHS model to the corona
In our application to the solar corona, we take both the first and second kinds of Bessel
function as given in Eq 2.50. Figure 2.3 shows a schematic illustration of our model.
We place the source surface at 2.5 solar radii. Between the photosphere and the source
surface, the magnetic field is given by the MHS model of N95. Outside of this boundary
the magnetic field lines are purely radial.

In panel (a) of Figure 2.4, we plot the synoptic photospheric chart (for Carrington
rotation 1919 from Feb. 1, 1997 to Mar. 1, 1997 in the solar minimum) of the radial
magnetic field obtained from the Wilcox Solar Observatory, which is the inner boundary
condition. Note that, because of the reduced spatial resolution at higher latitude intro-
duced by foreshortening, magnetic flux is underestimated there, in particular in regions
of mixed magnetic polarity [Krivova, et al., 2004]. There are 72 grid points in longitude
direction and 30 grid points in latitude direction for this observation in the whole photo-
sphere. The following panels display the radial field resulting from the MHS model with
different numbers of spherical harmonics at 1 solar radius. When we take only five spher-
ical harmonics (Nmax = 5), the model can give the general distribution of the magnetic
field (the panel (b)). If we increase Nmax to 10 and 20, increasingly smaller structures
become visible; see panel (c) and (d). For Nmax = 30, the model output is very similar to
the observation (panel (e)). If we take 40 spherical harmonics, the numerical noise in the
model starts having a visible impact and produces structure especially in the polar regions
(panel (f)), so we specify Nmax = 30 for the following calculation.
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2.2 Magnetohydrostatic (MHS) model

Figure 2.3: Schematic illustration of the MHS model [Ruan, et al., 2008].
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2 Magnetic field extrapolations in the solar corona

Figure 2.4: Radial component of the synoptic photospheric magnetic field for Carrington
rotation 1919 (the panel (a)) and the radial component of the magnetic field from the
MHS model with different numbers of spherical harmonics (Nmax). The x-axis contains
the longitude from 0 to 2π and the y-axis the sin of the latitude. [Ruan, et al., 2008]
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2.2 Magnetohydrostatic (MHS) model

In the following we compute the plasma structure self-consistently. Eq. 2.35 can be
decomposed into the following two equations:

j × B − ∇ppb − ρpb∇ψ = 0, (2.63)
−∇pbg − ρbg∇ψ = 0. (2.64)

Here pbg and ρbg are the background plasma pressure and density, respectively. They are
homogenous in the corona and only functions of r. The ppb and ρpb are perturbations
of pressure and density produced by the magnetic field. They are functions of r, θ, φ.
The Lorentz force j × B will cause the perturbation in the plasma and is balanced by
the pressure gradient and the gravity. The background plasma balances itself without the
magnetic field.

The total pressure and density functions are the sum of the perturbation part pb and
the background part bg:

p(r, θ, φ) = pbg(r) + ppb(r, θ, φ), (2.65)
ρ(r, θ, φ) = ρbg(r) + ρpb(r, θ, φ). (2.66)

Eq. 2.59 implies that the perturbation pressure can be calculated analytically, whereas
the perturbation density must be calculated numerically from Eq. 2.61. With setting
Nmax = 30, we compute the ρpb independently from Eqs. 2.61 and 2.63. For Eq. 2.63
we calculate the perturbation pressure by Eq. 2.59 first. By comparing the densities from
these two different methods, we check the accuracy of our calculation. We define the error
I as

I =


1
N

n∑

k=1

|ρ(2.61)
pb(k) − ρ(2.63)

pb(k) |
ρ(2.61)

pb(k)

 , (2.67)

where ρ(2.61)
pb(k) and ρ(2.63)

pb(k) denote the perturbation densities at grid points derived from Eqs.
2.61 and 2.63, respectively. There, N is the total number of the grid points in the entire
computational domain. We find that I decreases to less than 4% when we put 80 grid
points in the radial direction, 180 grid points in the θ direction, and 360 grid points in
the φ direction for 30 spherical harmonics. This means the result of our calculations is
consistent except for a small discretization error.

From Eqs. 2.59 and 2.61, we find that the perturbation pressure is always negative and
the perturbation density could be negative in some places. Our model shows the strongest
perturbation is always located in the lower coronal layers of active regions. This imposes
a requirement to insert a background plasma to compensate for the negative perturbation
plasma density.

We use Eq. 2.64 to compute the background plasma as a stratified atmosphere. We
also need the equation of state:

pbg = 2nbgkTbg, (2.68)

where Tbg and nbg are the background temperature and electron number density. Con-
sequently, for the background, we have two equations (Eqs. 2.64 and 2.68) and three
variables: temperature, pressure and density. We can make assumptions for one variable
(like the density) and calculate the other two variables from the equations.

41



2 Magnetic field extrapolations in the solar corona

On the one hand, as mentioned above, the perturbation density could be negative so
that we need to apply a large enough background density in order to make the total density,
which is the sum of the perturbation part and the background part, positive. On the other
hand, we cannot make the background density too high. If the background is too large
compared with the perturbation part, the mean plasma density will be much larger than
values expected from coronagraph observations.

The Baumbach-Allen formula [Cox, 2000] gives an average density for the back-
ground plasma density distribution in the corona:

n(r) = 108[2.99(
r
r�

)−16 + 1.55(
r
r�

)−6 + 0.036(
r
r�

)−1.5], (2.69)

where r� is the solar radius. This expression should be a good approximation in the quiet
region. For active regions, the observed density could be ten times larger [Aschwanden,
2005]. We make some modifications to this formula for our background plasma. Our
modified background plasma is given by the expression

nbg(r) = 108[105(
r
r�

)−50 + 97.0(
r
r�

)−16 + (2.70)

28.0(
r
r�

)−6 + 0.2(
r
r�

)−1.5].

As mentioned above, the strongest perturbation of the plasma density appears in the low
corona, so we have to increase our background in the low corona. To take this into ac-
count, we add a term to the right hand side, which decreases very rapidly with r, so that
it does not affect the outer corona. We also change the coefficients for the three other
terms to keep the plasma density positive in the outer corona. Through Eqs. 2.64, 2.68,
and 2.70, we calculate the background plasma temperature. The stratification of the back-
ground temperature and density is given in Figure 2.5. From the right panel of the figure,
we find the background temperature is in a reasonable range when r ≥ 1.4. But in the low
corona (r < 1.4), the background temperature is unreasonably low due to the first term in
Eq. 2.70.

Finally, through Eqs. 2.62, 2.65, and 2.66, we obtain the total plasma pressure, den-
sity, and temperature, respectively.

Field Lines. Figure 2.6 shows the magnetic field lines in the whole corona. Panel (a)
displays the potential field extrapolation, which has no free parameters. Panel (b) exhibits
the result of the LFFF model extrapolation. This model contains the force-free parameter
α and we use α = 0.4. In panel (c) we show the MHS model field lines. Here we use
α = 0.4 and a = 0.2. Since µ0j = αB + ε(r)[∇(r · B)] × r and ε(r) = 1/r2 − 1/(r + a)2,
the current density will increase in average if we increase the parameters α and a. From
this figure it is clear that– though the measured photospheric boundary conditions are the
same – the different models generated different distributions of the magnetic field in the
corona.

Current sheet and plasma density in the source surface. Figure 2.7 shows the
radial component of the magnetic field and the current sheet on the source surface, as
obtained from the potential field model (panel (a) with α = 0 and a = 0 ), LFFF model
(panel (b) with α = 0.4 and a = 0 ), and MHS model (panel (c) with α = 0.4 and
a = 0.2 and panel(d) with α = 0.6 and a = 0.2), respectively. The grey shading gives the
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2.2 Magnetohydrostatic (MHS) model

Figure 2.5: Background temperature (a) and density (b) as a function of radial coordinate
in units of the solar radius. [Ruan, et al., 2008]

reversal of the radial component of the magnetic field and the current sheet in the source
surface. It is reasonable that the shape of the current sheet is smooth and located near
the equatorial plane because it is expected in the solar minimum. But the thickness of the
sheet is different between the models. Figure 2.8 shows the plasma density distribution
(normalized by the density in the polar region) at the source surface. It is clear that the
density is higher in the current sheet than in the two polar regions. From panel (a) of
Figure 2.8, we can see the plasma density in the equatorial plane is twice as high as in
the polar region. But in panel (b), the density in the equatorial plane is only 1.12 times as
high as in the polar region. This difference is due to the different free parameter a in the
model.

In Figure 2.7, the total current density increases with increasing α and a. This causes
the pinching of the structure. It is important to remember that increasing a also enhances
the field-aligned current density and therefore contributes to the narrowing of the struc-
ture. Because the plasma magnetic field structure is calculated self-consistently, stronger
Lorentz force has to be balanced by a larger pressure gradient and a higher density. These
effects can be seen clearly in the figures.

Comparison with the Bogdan-Low-model. [Gibson and Bagenal, 1995] applied
the Bogdan-Low-model to a study of the plasma distribution in a dipole field case in the
corona. They are successful in constructing the plasma distribution in the corona, espe-
cially in the streamer belts, when the corona is approximately longitudinally symmetric.
The authors also point out the difficulty applying the Bogdan-Low model directly to data,
i.e., using measured photospheric magnetic field directly as boundary conditions (by a
spherical harmonic decomposition) is not compatible with a realistic density structure.
The problem existed already for solar minimum configurations, but became more severe
in the solar activity maximum. The authors find a way around this problem by allowing
deviations in the measured and modeled photospheric magnetic field. The resulting con-
figuration describes the large-scale structure reasonable well, but was not able represent
structures below a resolution of one tenth of a solar radius.

The Bogdan-Low-model has been extended by [Zhao and Hoeksema, 1994] towards
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2 Magnetic field extrapolations in the solar corona

Figure 2.6: Magnetic field lines in the corona for Carrington rotation 1919 from different
models: (a): potential field model, (b): LFFF model with α = 0.4, (c): MHS model with
α = 0.4 and a = 0.2. [Ruan, et al., 2008]
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2.2 Magnetohydrostatic (MHS) model

Figure 2.7: Current sheet in the source surface from different models: (a) the potential
field model with α = 0 and a = 0, (b) the LFFF model with α = 0.4 and a = 0, (c) the
MHS model with α = 0.4 and a = 0.2, (d) the MHS model with α = 0.6 and a = 0.2.
[Ruan, et al., 2008]
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2 Magnetic field extrapolations in the solar corona

Figure 2.8: The density distribution at the source surface (the panel (a) with α = 0.4 and
a = 0.2 and the panel (b) with α = 0.4 and a = 0.05 ). [Ruan, et al., 2008]

the inclusion of helmet streamer currents. It was demonstrated that this extension allows
better modeling of polar plumes and the axes of coronal streamers. Gibson, et al., [1996]
then applied this extended model to photospheric magnetograms. Compared to their ear-
lier work, the extended model contains an equatorial current sheet, as well as current
sheets between open and closed field regions, as boundary conditions. This allows the
modeling of the observed sharp gradients across the boundaries of helmet streamers.

The N95 model is the generalization of the Bogdan-Low model to the regime α , 0.
This model has been applied by [Zhao, et al., 2000] to model the magnetic field structure
for polar crown SXR arcades by fitting the free parameters in the N95 model. The authors
concentrated mainly on the local configuration over the southern polarity reversal line.
Within this paper we applied this more advanced model to constructing the global mag-
netic field and the plasma in the corona. Our method is also different from that of [Gibson
and Bagenal, 1995]. We start from the magnetogram in the photosphere, whereas [Gibson
and Bagenal, 1995] use white-light data as primary input for their model.

In the linear force-free case, the current density has the form µ0j = αB. This is only
applicable in the low β case, such as in the low solar corona where the plasma pressure is
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2.2 Magnetohydrostatic (MHS) model

much lower than the magnetic pressure. In that case we cannot derive any information of
the plasma from the model. In this MHS model, there are two components of the current:
the pure field-aligned part and the spherical shell part (Figure 2.3). They are represented
by the first and the second terms in the right side of Eq. 2.41, respectively. Please note that
the spherical shell part of the current density also contains a varying component parallel to
the field lines, dependent on the local direction of the magnetic field. The main difference
between the linear force-free model and the MHS model is the term ε(r)∇(r · B) × r.
This component of the current will produce a Lorentz force that will balance the pressure
gradient and the gravity force. Consequently, not only the magnetic field but also the
plasma will be constructed from this MHS model self-consistently. These α and a are two
free parameters in the model (Eq. 2.38). Different free parameters will generate different
distributions of the magnetic field and the plasma in the corona. The parameter α is the
ratio of the parallel current component to the magnetic field. If α is too large, the magnetic
field lines in the corona will become very twisted, which is unreasonable. We vary α from
0 to 0.6. The parameter a represents the perturbation by finite Lorentz force. If a is zero,
it is the force-free case and there is no perturbation. When a increases, the perturbation
increases. In Figure 2.8, the difference in the density between the polar region and the
equatorial plane is greater with a higher value of a. It shows that a larger a generates a
stronger perturbation in the model. But we cannot specify a a too large value, because in
that case the perturbation is too large and it is impossible to put a reasonable background
density to compensate for the perturbation.

Influence of free model parameters. The comparison between the different models
(Figure 2.6) reveals that the field lines in the polar cap are similar. This is reasonable
because the magnetic field in the polar cap at solar activity minimum should be close
to potential. In the low-latitude part in the corona, different models give different results.
From Figure 2.7, we find that the current sheet in the source surface from different models
is very smooth and located close to the equatorial plane. But the thickness of the sheet
is different between different models. The current sheet from the MHS model is thinner
than the other two models. This should be due to the second component of the current:
ε(r)∇(r ·B)×r. This term will change the magnetic field distribution in the source surface
from the LFFF model, and it reduces the scale of the current sheet. If we keep a constant
and increase α from 0.4 to 0.6, it is clear that the thickness of the current sheet also
decreases (panel (c) and (d) in Figure 2.7). It means that field-aligned current can also
reduce the scale of the current sheet on the source surface. Since the MHS model can
construct not only the magnetic field but also the plasma in the corona self-consistently,
we show the density distribution on the source surface in Figure 2.8. From the figure, it is
obvious that the density is higher in the equatorial plane than in the two polar regions. This
is consistent with the field-line distribution in panel (c) in Figure 2.6. In the equatorial
plane, there are many closed field lines that confine the plasma. But in the polar regions,
the plasma can escape into the solar wind along the open field lines, so it is reasonable
that our MHS model with a current sheet has a higher density in the equatorial plane. It is
not obvious from the N95 model equations that the density is reduced in the polar regions
and enhanced at the equator.

We also applied our model to the solar activity maximum. The result is not as suc-
cessful as in the solar minimum. There may be several reasons for this:

• The boundary condition is the photospheric magnetogram synoptic chart. This
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2 Magnetic field extrapolations in the solar corona

means we assume that there are no intense changes in the photospheric field during
the rotation of the sun, but active regions may evolve significantly over one solar
rotation.

• Another even more important reason may be that, during solar maximum, the solar
corona shows a lot more small-scale structures, which are difficult to model with a
global linear solution such as ours.

Another issue is the first term in Eq. 2.70. Because the strongest density perturbation
always appears in the active regions in the low corona, we have to apply a very high
background density to compensate for the perturbation in the low corona. This will bring
us an unreasonable density distribution in the low corona. But this does not mean the
magnetic field distribution in the low corona is not correct. In our MHS model, we cannot
totally avoid the noise. Because the plasma β in the low corona is very low, a small angle
between the magnetic field line and the current line will produce a very large Lorentz
force, which is very hard to be balanced by the plasma.

To summarize, we applied the Neukirch 95 magnetohydrostatic model to reconstruct-
ing the magnetic field and the plasma in the solar corona self-consistently with the synop-
tic photospheric magnetic field observation as the boundary condition. While the overall
large-scale magnetic field structure is described reasonably well, we encountered some
problems regarding the fine structure of the observed photospheric magnetic field being
inconsistent with the density distribution under the limitations of the Neukirch 95 model.
This problem has already been encountered by [Gibson and Bagenal, 1995] who used
the simpler Bogdan-Low-model. The additional free parameter α in the Neukirch-model
allows a greater variability of possible configurations, but varying α does not resolve this
problem. In general this is to be expected since the models are linear and derive their
structure from line-of-sight photospheric magnetic field measurements alone. Since the
small-scale coronal structures are likely to be caused by nonlinear effects, further im-
provements, such as the use of vector magnetograph data, may be necessary to model
these structures appropriately. Though there are some insufficiencies in this MHS model,
the distribution of not only the magnetic field but also the plasma in the solar corona can
be constructed from this MHS model in a self-consistent way.
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3 Observations of the HCS, CIRs,
ICMEs and a flux rope in the solar
wind

The Minimum Variance Analysis (MVA) has been widely used to study magnetic struc-
tures in space, like a current sheet or a flux rope. The mathematical details of the MVA
are introduced first in this chapter [Sonnerup and Scheible, 1998]. Next we show in situ
observations of the Heliospheric Current Sheet (HCS), Corotating Interaction Regions
(CIRs), Coronal Mass Ejections (CMEs), which have not been presented before. The de-
tailed observations of a flux rope in the solar wind are described and discussed in the end
of this chapter [Ruan et al, 2009].

3.1 Minimum Variance Analysis (MVA)
The Minimum Variance Analysis (MVA) is a useful tool to study in situ data in space
physics [Sonnerup and Scheible, 1998]. The main purpose of the MVA is to find the
normal direction of one dimensional current layer or other magnetic structures. Some
mathematic details can be found in the appendix. The method is based on an idealized
one dimensional model,

∂/∂x = 0, (3.1)
∂/∂y = 0. (3.2)

From this, we can get

∇ · B = ∂Bz/∂z = 0. (3.3)

It means Bz is independent of z. Here (x, y, z) is a local cartesian coordinate system, and
B is the magnetic field. Let’s say n̂ is the normal direction of a layer. B(1), B(2), and B(3)

are the measurements of the magnetic field. B(1) and B(3) would be measured on opposite
sides of the layer, and B(2) would be measured near the middle of the layer. So we have

B(1) · n̂ = B(2) · n̂ = B(3) · n̂. (3.4)

Therefore the vectors (B(1) −B(2)) and (B(2) −B(3)) are tangential to the layer. The normal
direction can be determined like this

n̂ = ± (B(1) − B(2)) × (B(2) − B(3))
|(B(1) − B(2)) × (B(2) − B(3))| . (3.5)
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We have assumed that the magnetic field is time independent during the crossing of the
structure by the spacecraft.

In real situation, magnetometer experiments can obtain many vector measurements,
B(m) (m=1, 2, 3,...M), during a traversal. As the estimate of n̂, the MVA identifies in space
the direction along which the magnetic field component set {B(m) · n̂} (m=1, 2, 3,...M) has
the minimum variance. So n̂ can be determined by minimizing

σ2 =
1
M

M∑

m=1

| (B(m) − 〈B〉) · n̂ |2 (3.6)

where the average 〈B〉 is defined by

〈B〉 =
1
M

M∑

m=1

B(m).

Therefore σ2 is a function of n̂ or (nX, nY , nZ), where (nX, nY , nZ) is the three components
of n̂. The constraint is n̂2 = 1. So the question is to find the extremum of σ2 with the
condition of n̂2 = 1. By using a Lagrange multiplier λ, we can seek the solution of the
following three linear equations

∂

∂nX

(
σ2 − λ(n̂2 − 1)

)
= 0, (3.7)

∂

∂nY

(
σ2 − λ(n̂2 − 1)

)
= 0, (3.8)

∂

∂nZ

(
σ2 − λ(n̂2 − 1)

)
= 0, (3.9)

These three equations can result in a matrix form as


〈B1B1〉 − 〈B1〉〈B1〉 〈B1B2〉 − 〈B1〉〈B2〉 〈B1B3〉 − 〈B1〉〈B3〉
〈B2B1〉 − 〈B2〉〈B1〉 〈B2B2〉 − 〈B2〉〈B2〉 〈B2B3〉 − 〈B2〉〈B3〉
〈B3B1〉 − 〈B3〉〈B1〉 〈B3B2〉 − 〈B3〉〈B2〉 〈B3B3〉 − 〈B3〉〈B3〉




nX

nY

nZ

 = λ


nX

nY

nZ

(3.10)

The subscripts 1, 2, 3 denote three cartesian components, like in Geocentric Solar
Ecliptic (GSE) or Geocentric Solar Magnetospheric (GSM) coordinate system, along
which the magnetic field is measured. We should not confuse these three cartesian com-
ponents denoted by 1, 2, 3 with (nX, nY , nZ), which is not yet known so far. By solving this
matrix equation, we can get three eigenvalues λ1, λ2, λ3 in order of decreasing magnitude
and corresponding eigenvectors x1, x2, x3. Since the matrix is symmetric, the eigenvalues
are all real and the corresponding eigenvectors are orthogonal. For the simplicity, we
define Mµν (µν = 1, 2, 3) as the matrix above.

If we multiply both sides of Eq. 3.10 with (nX, nY , nZ) from the left direction and
reverse two sides of the equation, we can obtain

λ =
∑

µν

nµMµνnν. (3.11)
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Following Eq. 3.6, we can write

σ2 =
∑

µν

nµMµνnν. (3.12)

By comparing Eqs. 3.11 and 3.12, σ2 will reach maximum, intermediate and mini-
mum respectively if λ reaches the same stage. The corresponding three orthogonal eigen-
vectors represent the directions of maximum, intermediate and minimum variance of the
magnetic field component.

Specifically, from Eq. 3.6, x1 means that the x1 component of the magnetic field will
change maximum along the trajectory of the spacecraft, and the x2 and x3 components
of the magnetic field will change intermediate and minimum respectively along the tra-
jectory. We should not lead to a similar but wrong understanding that x1 means that the
magnetic field magnitude changes maximum along the decomposed x1 direction of the
spacecraft trajectory, and changes intermediate along the decomposed x2 direction of the
spacecraft trajectory, and finally changes minimum along the decomposed x3 direction of
the spacecraft trajectory.

In the latter part of this chapter, we will apply the MVA to analyze a flux rope in the
solar wind to obtain three directions for this magnetic structure.

3.2 Parker Spiral and Heliospheric Current Sheet (HCS)

3.2.1 Formation of the Parker spiral
The current sheet in the center of helmet streamers in the solar corona extends by the
deformation of the solar wind into the heliospheric current sheet (HCS). The bottom panel
of Figure 3.1 provides the geometry of a radially expanding solar wind with a radial
magnetic field [Meyer-Vernet, 2007]. Since the magnetic Reynolds number is very large,
the plasma is frozen in with the magnetic field in the heliospheric space. The magnetic
field lines will be dragged into the space radially by the outflowing plasma, the solar wind,
if the Sun is not rotating.

However, there is a complication to this picture that the Sun is rotating. The top
panel of Figure 3.1 provides the geometry of the real situation, which considered the
solar angular velocity Ω. A fixed source on the rotating Sun is initially at point A. This
source A will eject plasma radially out to space with the radial velocity Vw. In the same
time, as the ejected plasma travels along the arrow starting from A, the Sun rotates, so
the Sun ejects the other following plasma from different locations. The arrows indicate
the ejection of these following plasma parcels. When the plasma ejected at A reaches A′,
the plasma ejected later have less time to travel, and are therefore closer to the Sun and
along different arrows. However the magnetic field lines show different situation. Since
the magnetic field lines are not broken in space, these field lines will connect the Sun to
the space. It means with the rotation of the Sun, a field line will connect the point A′ in
space and C on the Sun’s surface.

Let’s assume 4t is the traveling time for the plasma that started at A to reach A′. So
in 4t, the Sun has rotated by an angle 4φ. From this we get

4φ = Ω4t, (3.13)
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3 Observations of the HCS, CIRs, ICMEs and a flux rope in the solar wind

4r = −Vw4t (3.14)

where Ω is the solar angular velocity as defined above, 4r the distance between A and A′,
Vw the radial velocity of the solar wind. Dividing Eq. 3.14 by Eq. 3.13, the following
equation is obtained

dφ/dr = −Ω/Vw (3.15)

Since by definition B is along the field lines, its radial and azimuthal components satisfy
Bφ/Br = rdφ/dr in the equatorial plane, so with replacing dφ/dr from Eq. 3.15 we reach

Bφ/Br = −Ωr/Vw. (3.16)

We plot the magnetic field lines in the equatorial plane in Figure 3.2, which follow
Parker’s spiral [Meyer-Vernet, 2007]. With the increasing distance r, the ratio of Bφ/Br is
becoming increasing. The magnetic field inclination to the radial direction is about 25-
45◦ at 1 AU, but increases to nearly 90◦ beyond 10 AU, so that at large distances the field
lines almost follow circles around the Sun. Outside the equatorial plane at a heliospheric
latitude θ, the field lines satisfy Bφ/Br = r cos θdφ/dr. From this and Eq. 3.15, we get

Bφ/Br = −Ωr cos θ/Vw. (3.17)

In this ideal case, there is no Bθ component both in the equatorial plane and outside the
equatorial plane.

However, the solar rotation axis Ω is not aligned with the magnetic axis M. Let us
assume a small angle α in between. Without losing the generality, we can assume that
the projection of the M in the XY plane is along the negative Y direction. (See Figure
3.3 which is adjusted from [Meyer-Vernet, 2007]. For the simplicity, we did not plot
this projection.) Let us assume the coordinate of a fixed point on the magnetic equator,
which is also the current sheet, is (θ◦, φ◦) in the Sun’s surface in the coordinate system
of XYΩ. As a result, the latitude θ◦ of a certain point on the solar magnetic equator
varies with the azimuthal angle φ◦ as sin θ◦ = sinα sin φ◦ from this geometry (Figure
3.3). (Though this equation is not straightforward, it can be easily checked by setting
φ◦ = 0◦, 90◦, 180◦, 270◦.) As the Sun rotates, this yields

sin θ◦ = sinα sin(φ◦ −Ωt) (3.18)

so that the fixed point on the magnetic equator is alternately above and below the rotational
equator with time. The magnetic equator gives the position of the current sheet close to
the Sun, before being drawn outwards by the solar wind flow.

The plasma flow transforms the initial angular coordinates (θ1, φ1) on the Sun’s surface
into the value (θ2, φ2) at a large r given by

θ2 = θ1, (3.19)
φ2 = φ1 −Ωr/Vw (3.20)

The magnetic equator in the Sun’s surface will be transformed into the heliospheric space
by flows. By considering Eqs. 3.18, 3.19 and 3.20, the heliospheric current sheet is a
surface

sin θ = sinα sin(φ −Ωr/Vw −Ωt). (3.21)
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3.3 Corotating Interaction Regions (CIRs) and Interplanetary Coronal Mass Ejections
(ICMEs)

We ignored the footnotes for the simplicity. If the inclination angle α between M and Ω

is very small, θ should be also very small. So we got sinα ≈ α and sin θ ≈ θ. So Eq. 3.21
becomes

θ = α sin(φ −Ωr/Vw −Ωt). (3.22)

This equation represents a surface whose intersection with the rotational equatorial plane
(θ = 0) is an Archimedean spiral rotating at angular speed Ω. The intersection with a
meridian plane (φ = constant) is a warped shape, varying in time at the frequency Ω and
in distance at the wavelength 2πVw/Ω. The artist plotting of the HCS has been shown in
Figure 1.8.

3.2.2 In situ observations of the HCS
As we know, the Sun finishes one self rotation in 27 days. It means that the spacecraft
STEREO should cross the HCS twice in 27 days. The HCS is a large structure in the
solar wind, which is a typical character differ the HCS from the local current sheet in the
solar wind. Figure 3.4 shows the in situ observations of two crossings of the HCS. The
Bx, By and Bz components of the magnetic field in GSE are shown in the top three panels.
The polar angle Θ and the azimuth angle Φ are shown in the bottom two panels. The two
black lines through all panels mark two crossings of the HCS. The azimuth angle ΦB is
around 180◦ before the first crossing, which means the magnetic field direction is away
from the Sun, and changes to around 0◦ or 360◦ after the first crossing, which means the
magnetic field direction is towards the Sun. (0◦ and 360◦ are in the same direction.) The
magnetic field direction changes back during the second crossing. These two reversals of
the magnetic field cannot be explained by a local current sheet, which is a much smaller
structure compared to the HCS. The fluctuations of the magnetic field during the crossing
is intense. [Behanonn et al., 1983] found the fine structures in the HCS, which ripple and
superimpose on the large-scale warped HCS.

Since Figure 3.4 gives the observations for 30 days, the details of the crossings and
the exact center of the HCS cannot be studied here. Gosling et al. [2006A, 2006B] have
found clear evidence of magnetic reconnection inside the HCS. So if the multiple-X-line
magnetic reconnection can happen inside the HCS, the HCS will provide an appropriate
environment to generate a flux rope. The later part of this thesis will show another HCS
crossing with detailed observations, and discuss how magnetic reconnection generates the
flux rope.

3.3 Corotating Interaction Regions (CIRs) and Interplan-
etary Coronal Mass Ejections (ICMEs)

Figure 3.5 shows typical observations of a CIR at 1 AU by STEREO A. The top two panels
are the fluxes of the energetic protons and helium, respectively. The lines with different
colors represent different energies. The third, forth, and fifth panels show the proton
number density, the fluid velocity and the temperature of the solar wind. The bottom
panel shows the magnitude of the magnetic field in the solar wind. The time period for

53
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Figure 3.1: Magnetic field lines dragged by the radially expanding solar wind into the
heliospheric space, adjusted from [Meyer-Vernet, 2007]
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3.3 Corotating Interaction Regions (CIRs) and Interplanetary Coronal Mass Ejections
(ICMEs)

Figure 3.2: Spiral magnetic field lines in the solar wind in the equatorial plane, adjusted
from [Meyer-Vernet, 2007]
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3 Observations of the HCS, CIRs, ICMEs and a flux rope in the solar wind

Figure 3.3: Tilted magnetic axis M of the Sun to the rotation axis Ω, adjusted from
[Meyer-Vernet, 2007]

these observations is from 11 to 26 in November 2007. The spacecraft observed two
CIRs during this time period, which are highlighted by two red boxes. For the first CIR,
the velocity of the solar wind is about 400 km/s on 13 November before the CIR. But it
increased to 600 km/s on 14 November in the CIR. A compression region was generated
between the fast and slow solar wind. Inside this compression region, the spacecraft
observed a clear increase of the plasma density and temperature. The magnitude of the
magnetic field also shows a clear increase. From the first and second panels, we can see
the clear increase of the energetic particles following the compression region. All these
observations are typical signatures of the CIR [summarized in Crooker and Gosling, 2007;
Kunow and Lee, 2007; Mason and Steiger, 2007]. The second CIR shows the similar
observations. These two CIRs are separated by about only 6 days.

The increase of the energetic particles is usually a typical signature of the CIRs
[Kunow and Lee, 2007]. But not all these increases represent the CIRs. Between the
two black lines in the figure, we also see a clear increase of the energetic particles. But
we did not find the compression region between the fast and the slow solar wind. So these
energetic particles are not caused by a CIR.
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(ICMEs)

Figure 3.4: In situ observations of the HCS in the solar wind.
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Figure 3.5: In situ observations of two CIRs in the solar wind.
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Figure 3.6 shows an ICME observed by STEREO B at 1 AU. The proton number
density, the plasma temperature and solar wind velocity are shown in the top three pan-
els. The bottom three panels show the magnetic field magnitude, the polar angle and the
azimuth angle of the magnetic field in GSE. The time period for these observations is
from 07:00UT on 23 Oct to 07:00UT on 24 Oct in 2007. The two black lines crossing
all the panels mark the boundaries of the ICME. Inside the ICME, we can see the clear
enhancement of the magnetic field strength. From the two bottom panels, we can see the
rotation of the magnetic field direction through the changes of these two angles. They
are typical signatures of the magnetic cloud [summarized in Zurbuchen and Richardson,
2007]. The first panel shows a clear depression of the plasma density from 17:00UT to
23:00UT on 23 Oct 2007, which is also a plasma signature to identify the magnetic cloud
[Zurbuchen and Richardson, 2007]. From the third panel, we see an increase of the solar
wind velocity from about 320 km/s before the ICME to 400 km/s in the ICME, which can
be used here to identify the boundary between the ICME and the ambient solar wind.

Both the CIR and the ICME will show an increase of the solar wind velocity com-
pared to the preceding ambient solar wind, and show the enhancement of the magnetic
field strength inside. The CIR will show the enhancement of the plasma density and the
temperature due to the compression between the fast solar wind and the slow solar wind,
but the ICME usually, not always, shows the decrease of the plasma density and temper-
ature inside the magnetic cloud. The rotation of the magnetic field direction is a typical
magnetic signature of the magnetic cloud, by which one can clearly differ the ICME from
the CIR [Crooker and Gosling, 2007; Zurbuchen and Richardson, 2007].

The time scale of the ICME is usually about several tens hours or several hours at
least. This character clearly differs the ICME from the flux rope in the solar wind, whose
time scale is usually less than one hour. The coming part of the thesis will show in situ
observations of a CIR, an ICME, and a flux rope in the solar wind. The scale of the flux
rope is much less than two others’.

3.4 Flux rope

Flux ropes are widely observed in the Earth’s magnetosphere [Russell and Elphic, 1978],
[Elphic, 1995], [Slavin et al., 2003], [Zong et al., 2004], the Jovian Magnetosphere
[Walker and Russell, 1985], the Mercury’s magnetosphere [Russell and Walker, 1985],
and in the solar wind [Moldwin et al., 2000] by in situ observations. Though individual-
spacecraft observations suggested the flux rope could be an extended two-dimensional
structure, multiple-spacecraft observations are still needed to confirm this. Regular in situ
observations in the solar wind by the two STEREO A and B spacecraft now provide an
opportunity to study the scale of flux ropes, which may be extended in the solar wind.

The multiple-X-line magnetic reconnection has been proposed to be responsible for
the generation of the flux ropes in space [Slavin et al., 2003]. Though the detailed physics
of this dynamic process is still not clear, the possible topology of the process has been
suggested for more than 20 years [Lee and Fu, 1985]. The scenarios of single-X-line
and multiple-X-line reconnection are illustrated in Figure 3.7. The panels (1) and (2)
display the single-X-line reconnection which occurs between the same colored magnetic
field lines at 1, 2, 3 in the figure. So there is only one X line passing through 1-2-3. Panel
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Figure 3.6: In situ observations of an ICME in the solar wind.
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3.4 Flux rope

Figure 3.7: Illustration of the topology of the single-X-line magnetic reconnection (the
left panel) and the multiple-X-line magnetic reconnection (the right panel).
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Figure 3.8: The figure shows the magnetic field parameters during the crossing of the flux
rope and the HCS in the solar wind by STEREO A. The red dashed line in the top panel
shows the reversal of the Bx component, which indicates the HCS. The yellow strip in the
bottom panels highlights the flux rope. The blue strip highlights the crossing of the HCS
[Ruan et al, 2009].
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(3) shows the BZ signature expected for this kind of reconnection. The panels (4) and (5)
illustrate multiple-X-line reconnection which occurs between magnetic field lines a and
e at 1, e and b at 2, b and f at 3, f and c at 4, c and g at 5, g and d at 6, d and h at 7.
Consequently, there are at least two X lines for this type of reconnection: one passing
through 1-3-5-7, the other through 2-4-6. Panel (5) shows the product of multiple-X-line
reconnection, called a flux rope. Panel (6) indicates the typical bipolar signature to be
measured by a spacecraft crossing this flux rope. The main difference between these two
types of reconnection is whether a shear component of magnetic field does exit. From
panel (4), we can see there is a X component in such a topology, which is called the
shear component in magnetic reconnection. (The coordinate system for this illutration
is shown in panel (1).) From panel (1), there is no shear component for this type of
reconnection. From these panels, we can see that the single-X-line reconnection cannot
generate a flux rope, and that the magnetic field signature indicating the products from
these two different reconnection mechanisms will be a little different. Panel (3) is also the
signature of crossing a current sheet without magnetic reconnection.

The signature of magnetic reconnection has been found inside the heliospheric current
sheet (HCS) [Gosling et al., 2006A, 2006B], which raises the possibility that the flux
ropes might be generated by reconnection in the solar wind. These observations seem to
imply that the reconnection in the solar wind is in a steady state, with a single X-line on
large scale [Phan et al., 2006], [Gosling et al., 2007A, 2007B].

We will describe observations from five spacecraft of a coherent structure in the solar
wind. The analysis shows that this magnetic structure is a flux rope. This flux rope is
embedded in a Corotating Interaction Region (CIR), which followed a magnetic cloud.
The magnetic field data from five spacecraft provides a clear evidence that the flux rope
is a quasi two-dimensional structure, elongated in its third nearly constant dimension.
The diameter of the flux rope is much smaller than the magnetic cloud, which passes the
spacecraft immediately before the flux rope. The possible signatures of the reconnection
have also been found inside the flux rope.

3.4.1 Magnetic field and particle observations of a flux rope in the
solar wind

We show and discuss the in situ observations from five different spacecraft. The GSE
coordinates (in units of RE) of the spacecraft are (218, -12, 22) for ACE, (249, -55, 18)
for WIND, (259, -112, -39) for STEREO A, (103, -6, -17) for STEREO B, and (12, 14,
-4) for CLUSTER 4 (C4) on 15 January 2007. They were all in the solar wind upstream
of the Earth bowshock.

We present the magnetic field observations from STEREO A first [Luhmann et al.,
2008]. The top panel of Figure 3.8 shows the observation of the BX component of the
magnetic field in the GSE coordinate system by STEREO A from 09 January to 23 Janu-
ary in 2007. STEREO A caught the heliospheric current sheet (HCS) with the reversal of
BX on 15 January 2007. The other panels show observations from 05:00 UT to 13:00 UT
on this day. The blue highlighted region shows the crossing of the HCS around 08:20 UT.
From the BX component and the angle ΦB, we can see that the magnetic field changed its
direction from towards the Sun to away from the Sun during the crossing. Before this,
the BY component around 07:35 UT exhibited the bipolar signature indicating a special
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magnetic structure, which we will identify as a flux rope. The yellow highlighted region
shows the crossing of this flux rope. From the bottom panel, we can see that the angle ΦB

changed from ∼ 350◦ to ∼ 120◦ during the crossing of HCS. However during the crossing
of the flux rope, the ΦB shows only a little variation. These observations indicate that the
flux rope is not embedded in the HCS, but detached from the current sheet.

Figure 3.9 is the artist plotting, which intends to explain the relative position between
the HCS and the flux rope. The spacecraft touched the flux rope first and the HCS later.
The strahl beam electrons are also shown in the figure, which will be discussed below.

The orientation of the flux rope was determined by a local Minimum Variance Analy-
sis (MVA) from individual spacecraft observations and a timing analysis based on the
joint observations of all five spacecraft, because by MVA alone one cannot determine the
flux rope orientation [Xiao et al., 2004]. (We did not apply a current MVA (CMVA), based
on CLUSTER four-point data, to analyze the flux rope orientation, because the distances
between the four CLUSTER spacecraft were too small compared to the flux rope size.)
The magnetic field vector inferred from the five spacecraft is decomposed into the three
directions, LFR (0.17, -0.34, 0.92), MFR (0.76, - 0.54, -0.34), and NFR (0.61, 0.76, 0.16)
based on the MVA of the ACE observations, and shown in Figure 3.10. For the MVA of
the flux rope, we found that the eigenvalues obey λL/λM≈10�1 and λM/λN≈10�1 for all
five spacecraft. This means that the MVA gives the maximum (LFR), intermediate (MFR)
and minimum (NFR) variance directions of the magnetic field with high accuracy [Son-
nerup and Scheible, 1998]. For all spacecraft the corresponding LMN coordinate axes are
almost parallel. The MFR direction, which we will identify as the flux rope orientation, is
in GSE (0.76, -0.54, -0.34) for ACE, (0.73, -0.58, -0.35) for WIND, (0.88, -0.25, -0.39)
for STEREO A and (0.74, -0.53, -0.41) for STEREO B, and finally (0.85, -0.43, -0.29) for
CLUSTER (see the table below). (There is a little difference in the flux rope orientation
from the STEREO A observation.)

Table 3.1: Flux rope orientation from five spacecraft.
spacecraft MFR

ACE (0.76, -0.54, -0.34)
WIND (0.73, -0.58, -0.35)
STEREO A (0.88, -0.25, -0.39)
STEREO B (0.74, -0.53, -0.41)
CLUSTER (0.85, -0.43, -0.29)

In Figure 3.10, the similarity of the magnetic field component variations observed
by the five spacecraft with a time delay suggests an extended, quasi two-dimensional
structure. The bipolar signatures of the magnetic field variations in LFR direction are
typical for a helical flux rope. (There is a small residual variation of BN across the rope
in the diagram of STEREO A and B, and CLUSTER. This is due to a decomposition of
the magnetic field in the MVA system of the spacecraft ACE, which is slightly rotated
with respect to the corresponding system of the other spacecraft.) The flux rope touched
ACE, WIND, STEREO A, STEREO B and CLUSTER, consecutively. This timing of the
multiple-spacecraft observations confirmed that the MFR direction derived from the MVA
defines the flux-rope orientation. If we had selected the LFR or NFR direction as principal
orientation, this would not be consistent with the timing of these observations and the

64



3.4 Flux rope

Figure 3.9: Sketch of the HCS and the flux rope in the solar wind.
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Figure 3.10: The magnetic field signatures of the same flux rope observed by five space-
craft consecutively. The top panels show the three magnetic field components measured
by the five spacecraft in the LMN coordinate system of the ACE spacecraft. The bottom
panel displays the pitch angle distribution (PAD) of electrons at 400.6 eV in the spacecraft
frame from STEREO A [Ruan et al, 2009].
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magnetic field signature inside the flux rope. With this main orientation of the flux rope,
we obtain a length of the flux rope of 180 RE, based on the distance between STEREO A
and B.

The bottom panel of Figure 3.10 displays the pitch angle distribution (PAD) of elec-
trons at 400.6 eV from STEREO A. The dashed black lines in the third and sixth panels
are based only on the electron data, and mark the inferred boundaries of the flux rope core.
Outside of the flux rope core, we can see strahl electrons antiparallel to the magnetic field,
which indicate that one end of these field lines is still connected to the Sun. In the core,
there is a clear drop of the strahl electrons.

Figure 3.11 shows an artist’s concept of the flux rope as it is crossed consecutively
by the five spacecraft. ACE and WIND are above the GSE X-Y plane (the yellow plane
in the figure), but STEREO A and B are below the X-Y plane. Figure 3.12 shows the
projection of the flux rope in the ecliptic plane. It can be seen from this figure that the
flux rope will touch ACE, WIND, STEREO A, STEREO B and CLUSTER consecutively.
The distances between the spacecraft are drawn to scale in these two figures.

Figure 3.13 displays the detailed observations from CLUSTER (C4). The sequence of
panels from top to bottom in this figure shows several relevant plasma parameters: Panels
a and b show the magnitude of the magnetic field and three components of the magnetic
field in LMN coordinate system, versus time from 07:00 UT to 09:00 UT. Panels c, d,
and e exhibit three components of the solar wind velocity in GSE. The velocity compo-
nent in L direction in the solar wind frame is plotted in panel f. Panels g, h, i, k, m, n
give the magnetic field, the flow velocity components in the solar wind frame, the proton
density and the temperature versus time from 07:53 UT to 07:58 UT, respectively. The
magnitude of the outflow velocity in the solar wind frame and the local Alfvén velocity
versus time from 07:55 UT to 07:56 UT is plotted in panel o. Panel p shows the total
pressure, including magnetic pressure and thermal pressure. (Since here the flux rope is
a two-dimensional structure, we use B2

M instead of |B|2 to calculate the magnetic gradient
pressure [Low, 1990]. The particle thermal pressure includes the ion and electron pres-
sure.) Here the magnetic field is decomposed into its three components with respect to
the unit vectors in GSE, L (0.10, -0.41, 0.90), M (0.85, - 0.43, -0.29), and N (0.51, 0.80,
0.31), referring to the LMN directions derived from a MVA using the CLUSTER obser-
vation. The solar wind background velocity is 90 km/s in L direction, −240 km/s in M
direction, −200 km/s in N direction, derived from the quiet time period with the smooth
magnetic field and velocity variation before the flux rope.

The flux rope is embedded in a plasma flow pointing in the negative L direction
(shown in the panel f of Figure 3.12)). At the rope core marked by the BL reversal versus
time from 07:55 to 07:56, the spacecraft instruments measured a hot flow accompanied
with an increase in density and temperature. The magnitude of the flow velocity in the
solar wind frame is close to the local Alfvén velocity (panel o of Figure 3.13). Since
both magnetic field and particle data are consistent with the signatures of magnetic re-
connection in the solar wind [Gosling et al., 2005], these observations suggest magnetic
reconnection might be responsible for the flux rope.

From panel p of Figure 3.13, we see that the total pressure is around 0.065 nPa before
and after the flux rope core, but increased more than 20% to 0.08 nPa in the core. Based
on the solar wind velocity from CLUSTER, the estimation of the flux rope diameter is
∼40 RE or 2.5 × 105 km. The diameter of the flux rope core is ∼10 times smaller.
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Figure 3.11: Sketch of the flux rope being crossed by the five spacecraft. ACE and WIND
are above the ecliptic plane (the yellow plane), but STEREO A and B are located below.
CLUSTER 4 (C4) is not drawn, because it is too close to the Earth [Ruan et al, 2009].
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Figure 3.12: Projection of the flux rope in the ecliptic plane. The distances between all
the spacecraft and the Earth are drawn to scale.
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Figure 3.13: The figure displays detailed field and plasma observations from CLUSTER
4 (C4). The yellow highlighted region is the flux rope, and the red highlighted region
signals the flux rope core that reveals itself by the BL reversal [Ruan et al, 2009].
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We also applied the MVA to the HCS, and found the normal direction of the current
sheet plane is (0.44, 0.81, 0.38) in GSE from CLUSTER. This normal direction is roughly
parallel to the N direction of the flux rope, and roughly perpendicular to the M direction,
which is the flux rope orientation. (Other spacecraft give similar results.) In other words,
the flux rope orientation is roughly parallel to the HCS plane.

Figure 3.14 is a schematic picture of the flux rope crossed by CLUSTER (C4), and is
intended to show that the flux rope might be generated by magnetic reconnection. In this
figure, solid lines are above the LN plane, dotted lines are below. The horizontal green
line indicates the CLUSTER trajectory through the flux rope. The red line indicates the
hot flow coming from the reconnection site, while the two blue lines are the cooled down
flows.

Figure 3.15 shows the global environment of this flux rope from ACE observations.
From the top to the bottom, the parameters in these six panels are the magnitude of the
solar wind velocity, the proton temperature, the proton number density, the magnitude of
the magnetic field, the polar angle ΘB and the azimuth angle ΦB of the magnetic field
in GSE coordinates. The time period for these observations is two and a half days from
00:00UT 14 on January 2007 to 12:00UT on 16 January 2007. The spacecraft caught
signatures of a magnetic cloud, which is shown in the red highlighted region in the figure.
Inside the magnetic cloud, there is an enhancement of the magnetic field magnitude, and
the angle ΘB rotates from ∼ 80◦ to ∼ 0◦, and the angle ΦB changes from ∼ 150◦ to
∼ 330◦. Following the magnetic cloud, a Corotating Interaction Region (CIR) is observed
and indicated by the blue highlighted region in the figure. The solar wind velocity is ∼ 370
km/s before the CIR and reaches ∼ 600 km/s after the CIR. The plasma temperature and
density increased in the CIR. The HCS, indicated by the reversal of the angle ΦB, is
embedded in the CIR. The red arrow and the red solid line through all the panels mark
the flux rope, which is observed immediately before the HCS. Since this figure shows
observations of more than two days, we cannot see the detailed signature of the flux rope,
whose time period is only about half an hour. Though it is very difficult to determine
the exact boundary between the magnetic cloud and the CIR, the flux rope appears to be
embedded in the CIR.

3.4.2 Discussion of the magnetic field and particle signatures, and the
generation mechanisms of the flux rope

The five separated spacecraft observed a similar bipolar signature of the magnetic field,
indicating a special magnetic structure in the solar wind. To the best of our knowledge,
there are several possible interpretations for the bipolar signature. One is a random fluc-
tuation of the magnetic field. Since five spacecraft caught a similar bipolar signature, and
the three directions LFR, MFR, and NFR derived by a local MVA from individual space-
craft observation did not change in space and time, a random fluctuation of the magnetic
field is very unlikely to be the reason for this observation. Another interpretation of the
bipolar signature could be the crossing of a local current sheet or rotational discontinuity
[Lepping and Wu, 2005]. Panel e of Figure 3.13 shows that there is an enhancement by
more than 20% of the total pressure in the core of this magnetic structure. This excess
pressure should be balanced by the inward curvature force of the magnetic field. The ob-
served pressure enhancement is not expected at the crossing of a solar wind current sheet
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Figure 3.14: Artist plotting of magnetic reconnection generating the flux rope.
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Figure 3.15: Global environment of the flux rope in the solar wind. The red highlighted
region indicates the magnetic cloud observed before the flux rope. The blue highlighted
region shows the CIR. The red arrow and the red line running through all the panels mark
the flux rope [Ruan et al, 2009].
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or rotational discontinuity, because the magnetic field of the current sheet or rotational
discontinuity is not supposed to provide a significant curvature force. The remaining
third interpretation of the bipolar signature is the crossing of a flux rope, which could
well provide the necessary inward curvature force [Tu et al., 1997]. Since the observed
magnetic-field signature and the pressure enhancement are consistent with the crossing
of a flux rope, we conclude that this interpretation is the most likely one. The electron
signature from STEREO, which will be discussed below, gives further evidence confirm-
ing the flux rope. As the orientation of the flux rope did not change in space and time
within the range of our observation, this evidence leads us to conclude that the flux rope
is a coherent structure [Hughes and Sibeck, 1987; Moldwin and Hughes, 1991].

Strahl electron observations helped us in specifying the magnetic field topology. There
are several possibilities for the loss of the strahl electrons in the solar wind. The first one
is the magnetic isolation of the structure core from the surrounding environment. If the
flux rope is generated by multiple-X-line reconnection locally in the solar wind, the rope
core could be disconnected from the Sun and isolated from the ambient solar wind. The
second possibility is the local scattering due to Coulomb collisions. Since the ratio of the
mean free path to the structure size is around 104, the local scattering due to Coulomb
collisions within the structure core cannot be responsible for the electron signature of this
event. Another possibility is the scattering due to wave particle interaction. In this case,
the wave should be trapped inside the structure core and highly guided along the mag-
netic field, because there is no loss of strahl electrons outside of the core. This means
again that the structure core should be magnetically isolated from the surrounding envi-
ronment. From the possibilities listed above, we reach the conclusion that the structure
core is magnetically isolated from the surrounding environment. The abrupt disappear-
ance of the strahl electrons rules out the possibility of a local current sheet and rotational
discontinuity.

Slavin et al. [2003] has studied flux ropes in the Earth magnetotail. They compared
the observations with the result of a force-free model, and the comparison shows these
flux ropes are in the force-free state in the magnetotail. Due to the limitation of the
maximum scale of the Earth magnetotail, both length and the diameter of the flux ropes in
the magnetotail are much smaller than the flux rope observed in the solar wind. However,
magnetic field signature inside these two types of flux ropes can be still compared. In
the work of Slavin et al. [2003], the Bz component (corresponding to our BL component)
shows a bipolar signature in Figure 2a and Figure 2b of their paper. Panel b of our Figure
3.13 also shows that the BL component also reveals a clear bipolar signature. In Slavin et
al. [2003], the Bx component (corresponding to our BN component) shows an increase in
the rope center (Figure 2b of their paper) or remains small and almost constant (Figure
3 of their paper). The BN component of our observations also remains small and almost
constant. The main difference between our observations and their work is in the BM

component. Panels a and b of Figure 3.13 show that the BM component decreases a little
in the rope core, but the By component (corresponding to our BM component) of Slavin et
al. [2003] always increases in the rope core (Figure 3 of their paper). A possible reason
might be that the flux rope has not been compressed enough to generate the core field.
However, though the BM component decreases a little in the rope core, the total pressure
increases by more than 20% in the rope core (Panel e of Figure 3.13). The decrease of
the magnetic pressure is totally compensated by an increased thermal pressure in the core.
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This enhancement of the total pressure should be balanced by the inward curvature force
of the magnetic field in the flux rope.

Another notion is that the increase of the BM component and the magnitude of mag-
netic field might not be general. The existence of the decreasing field strength at the flux
rope core could be suggestive of an O-type neutral configuration opposed to one that has
a pre-existing guide field [Karimabadi et al., 1999].

Models suggest that the flux rope should extend in space (see Figure 12a in Slavin et
al. [2003]). Based on the data from five spacecraft, our observations demonstrate that the
flux rope is a quasi two-dimensional magnetic structure, extending over at least 180 RE

in space. The variation of the flux rope orientation in space is another important issue.
With the observations from ACE and CLUSTER, Eastwood et al. [2008] found that the
orientation of a flux rope changes in space, which may be caused by the nearby bow
shock. For our event, all the data are taken in the solar wind. According to the MVA for
this flux rope, we did not find a systematic bending of the flux rope axis (MFR direction)
along the 180-RE extension in space. This means that the flux rope orientation can stay
constant in the solar wind, a conclusion that cannot be obtained with single-spacecraft
observations.

Two possible mechanisms have been proposed to explain the presence of a flux rope
in the solar wind. One is that local magnetic reconnection in the solar wind can generate
these small-scale flux ropes [Moldwin et al., 2000]. The other one is that the flux ropes are
convected from the Sun and related to coronal mass ejections (CMEs), which are similar
to magnetic clouds [Feng et al., 2007]. From Figure 3.15 we can see that this flux rope
and the magnetic cloud are two types of structures with different scales. The diameter
of the flux rope is around 40 RE. If we map this structure to the solar corona, the size
of this flux rope will become ∼1000 km, which is twenty times smaller than a typical
supergranule. It seems to us very unlikely that such a small-scale structure was generated
in the solar corona. If the flux rope was really generated in the corona, it might be not
easy for this flux rope to survive from the corona to 1 AU in the CIR, which is a highly
compressive and dynamic region. Though we cannot totally eliminate the possibility that
this small-scale flux rope originated in the solar corona, we suggest it is more likely that
the flux rope was generated locally by magnetic reconnection in the solar wind.

The particle data from the CLUSTER 4 (C4) gives possible evidence that this flux
rope might be generated by local magnetic reconnection. (Plasma density, temperature,
and velocity data only from C4 are available for this event.) Since the identification of
magnetic reconnection in the solar wind is far from being trivial, [Gosling et al., 2005] and
[Phan et al., 2006] identified magnetic reconnection in the solar wind by the following
signatures in the exhaust region: the decrease of the magnitude of the magnetic field,
the reversal of the magnetic field direction, the outflow velocity close to the local Alfvén
velocity, the increase of the plasma density, and the increase of the plasma temperature.
All these five signatures can also be found in this event. Panels a and b show that the
magnitude of the magnetic field decreases in the flux rope core marked by the reversal of
the BL component. Panel o shows that the outflow velocity in the flux rope core is close
to the local Alfvén velocity. From panels m and n, we can find an increase of plasma
density and temperature in the rope core. We do not dare to say these observations are
unambiguous evidence for magnetic reconnection, however, all the CLUSTER data are
consistent with the signatures of reconnection in the solar wind. We also should keep
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in mind that some reconnection events in the solar wind show only accelerated flows in
the exhaust region, but do not exhibit the decrease of the magnetic field strength or the
increase of the plasma density and temperature [Gosling et al., 2005]. If this flux rope
is really due to the local reconnection in the solar wind, we suggest that the HCS might
be an appropriate environment for the reconnection. Gosling et al. [2006A, 2006B] have
found that the magnetic reconnection in the HCS can generate closed field lines on the
sunward side of the reconnection site and disconnected field lines on the anti-sunward
side of the reconnection site. The topology of the multiple-X-line magnetic reconnection
generating the flux rope has been shown in Figure 3.7.

To sum up, an extended flux rope in the solar wind was observed and studied on
the basis of observations from five spacecraft. The analysis shows this flux rope is a
quasi two-dimensional magnetic structure, and the orientation of its invariant axis does
not change in space and time. These results can be obtained only with multiple-spacecraft
observations. The size of the flux rope is about 90 times smaller than that of the magnetic
cloud, which passed the spacecraft immediately before the rope. This indicates that the
flux rope and the magnetic cloud are two types of structures with different scales, and
their sources may be also different.
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In this thesis, we applied the magnetohydrostatic (MHS) model of Neukirch, [1995] (N95)
for the modeling of the solar corona during the solar minimum. Not only the magnetic
field obtained by extrapolation but also the plasma in the corona was constructed from
this model.

There are two boundary conditions for this model. The inner boundary condition is
the observed photospheric magnetogram, which provides the line-of-sight component of
the magnetic field at the solar surface. By fitting the model results to these observations,
we can determine the uncertain coefficients in the model. The outer boundary is given by
an artificial source surface to comply with the deformation of streamers in coronagraph
observations. The magnetic field is set to be purely radial when crossing this source sur-
face. In the model, the electric current density can be decomposed into two components:
the first component is parallel to the magnetic field lines, and the second component flows
in spherical shells. The first component of the current density does not generate a Lorentz
force, but the second component generates finite Lorentz forces, which are balanced by
the pressure gradient and the gravity force.

We compared the magnetic field distribution of the MHS model with potential and
linear force-free field models for the same boundary conditions. The comparison reveals
that the field lines in the polar cap are similar, because the magnetic field in the polar cap
at solar activity minimum should be close to potential. However, in the low-latitude part
in the corona, different models generate different results of the magnetic field distribution.
The current sheets on the source surface from different models are all very smooth and
located close to the equatorial plane for the solar minimum. But the thickness of the sheet
differs between the different models. The current sheet from the MHS model is thinner
than from the other two models. This should be due to the second component of the
current density, which flows in spherical shells. This component changes the magnetic
field distribution on the source surface, makes it different from the one in the linear force-
free model, and reduces the scale of the current sheet. We found that field-aligned current
density can also reduce the scale of the current sheet on the source surface.

The perturbation of the plasma density can be calculated from the magnetic field dis-
tribution in the MHS model. The perturbation of the plasma density can be positive or
negative, but the perturbation of the plasma pressure is always negative due to the way
N95 model is constructed. We put a background plasma in the corona to compensate the
perturbation part, and the actual plasma density and pressure in the model is the sum of
the perturbation and background parts. The plasma density on the source surface is higher
in the equatorial plane than in the polar region, which is a reasonable result in accord with
the real situation.

The insufficiencies of this MHS model can not be totally ignored. We also applied
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the model to the observations during the solar activity maximum. The result is not as
successful as in the solar minimum. The inner boundary condition of the model is the
synoptic photospheric magnetogram. This means that we assume that there are no intense
changes in the photospheric field during one rotation of the sun. But active regions may
evolve significantly over one solar rotation. Another reason is that the solar corona shows
a lot more small-scale structures during solar maximum, which are difficult to model with
a global linear solution.

Because the strongest density perturbation appears in the active regions in the low
corona, we have to apply a very high background density to compensate for the perturba-
tion in the low corona (r < 1.2R�). Though it does not mean the magnetic field distribution
in the low corona is wrong, it will give us an unreasonably high density distribution in the
low corona.

To summarize, though there are some insufficiencies in this MHS model, the dis-
tribution of not only the magnetic field but also the plasma in the solar corona can be
constructed from this MHS model in a self-consistent way. In the future, we might im-
prove the MHS model result by the relaxation method, as discussed in Wiegelmann et al,
2007b. This relaxation method has been applied to analyze a test case from N95, and
gives reasonable results of the magnetic field and plasma. The application of this method
to the corona with the real observational data as input is demanded in the future. The
current sheet on the source surface will be brought into the heliospheric space by the solar
wind and forms the heliospheric current sheet (HCS), which can be analyzed by means of
in situ observations. By varying the free parameters in the MHS model, the shape and the
location of the current sheet on the source surface could be changed. By comparing the
model results for the current sheet on the source surface in the solar corona with the in
situ observations of the HCS in the solar wind, the extension of the HCS from the corona
to the solar wind might be well studied.

In the thesis, we also studied an extended magnetic flux rope in the solar wind with
multiple spacecraft observations. Compared with the available studies on flux ropes in
the magnetosphere, more observations of flux ropes in the solar wind are still needed to
clarify their basic characteristics, such as their lengths, diameters, and possible generation
mechanisms. Multiple spacecraft observations are in particular demanded to study the
scale of the flux ropes in the solar wind. We presented observations of a flux rope made
on 15 January 2007 in the solar wind from five spacecraft: ACE, WIND, STEREO A,
STEREO B, and CLUSTER. A typical signature of the flux rope, the bipolar variation of
the magnetic field, was observed from all these spacecraft. These observations suggest
that the flux rope is a two-dimensional magnetic structure and enable us to determine the
extension of the flux rope, which is 180 RE between STEREO A and STEREO B.

The method of minimum variance analysis (MVA) has been widely used to analyze
magnetic structures in space. It appears that the MVA mostly can give a good result
in determining the normal direction of a current sheet plane. However, in determining
the flux rope orientation, the results from MVA could be very misleading in many cases
[Xiao et al, 2004]. Usually, results obtained only from the MVA cannot provide the exact
orientation of a flux rope. In our event, besides the analysis with the MVA, we also
presented a timing analysis based on the joint observations by all five spacecraft. With
these two types of methods, the flux rope orientation was unambiguously determined.

From the observations of STEREO A, we found a sharp drop out of the strahl electrons
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in the flux rope core. There are several possibilities for such loss of the strahl electrons
in the solar wind. The first possible reason is local scattering due to Coulomb collisions.
Since the ratio of the mean free path to the structure size is very large, the local scattering
due to Coulomb collisions within the structure core cannot be responsible for the electron
signature of this event. The second possibility is the magnetic isolation of the structure
core from the surrounding environment. The third possibility is the scattering due to wave
particle interaction. In this case, the wave should be trapped inside the structure core and
highly guided along the magnetic field, because there is no loss of strahl electrons outside
of the core. This means again that the structure core should be magnetically isolated from
the surrounding environment. From the analysis of the possibilities listed above, we reach
the conclusion that the flux rope core is isolated from the ambient solar wind. If the flux
rope is generated by multiple-X-line reconnection locally in the solar wind, the rope core
could be disconnected from the Sun and isolated from the ambient solar wind [Moldwin
and Hughes, 1991].

The flux rope is embedded in a Corotating Interaction Region (CIR), which followed
a magnetic cloud. The diameter of the flux rope is about 90 times smaller than that of the
magnetic cloud, which indicates the flux rope and magnetic cloud are two different types
of magnetic structures and their sources might be also different. The possible reconnection
signatures inside the flux rope suggest that the flux rope could have been generated locally
by magnetic reconnection in the solar wind instead of being convected from the solar
corona.

In the future, a statistical study on the particle signatures inside the flux ropes may
reveal more intrinsic characteristics of the flux ropes, and the differences between small-
scale flux ropes and magnetic clouds in the solar wind.
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A Mathematical details of the linear
force-free model

Here we derive Eq. 2.5. We put the derivatives of r first. They will be used for the latter
derivations.

∇r = 1, (A.1)
∇ · r = 3, (A.2)
∇ × r = 0. (A.3)

Now we go to

P(ψ) = ∇ × T(τ)
= ∇ × ∇ × (rτ)
= ∇[∇ · (rτ)] − ∆(rτ)
= ∇[∇ · (rτ)] − ∇ · ∇(rτ)
= ∇[∇ · (rτ)] − ∇ · [(∇r)τ] − ∇ · [(∇τ)r]
= ∇[∇ · (rτ)] − ∇τ − ∇τ · (∇r) − r∆τ

= ∇[∇ · (rτ)] − 2∇τ − r∆τ

= ∇[∇ · (rτ) − 2τ] − r∆τ

= ∇[r · (∇τ) + (∇ · r)τ − 2τ] − r∆τ

= ∇[r · (∇τ) + τ] − r∆τ

= ∇[r
∂

∂r
τ + τ] − r∆τ

= ∇[
∂

∂r
(rτ)] − r∆τ. (A.4)
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B Mathematical details of the
Magnetohydrostatic(MHS) model

In this part of the thesis, we present mathematical details of the MHS model. These details
are lengthy but necessary for the readers to understand the model.

First we put here partial derivatives of the unit vectors in the spherical coordinate
system, which will be used in the latter derivations without additional explanations.

∂er

∂r
= 0,

∂er

∂θ
= eθ,

∂er

∂φ
= eφ sin θ,

∂eθ
∂r

= 0,

∂eθ
∂θ

= −er,

∂eθ
∂φ

= eφ cos θ,

∂eφ
∂r

= 0,

∂eφ
∂θ

= 0,

∂eφ
∂φ

= −er sin θ − eθ cos θ.

Next we write the explicit expression of the operator L in the spherical coordinate
system,

L =
1
i
(r × ∇)

=
1
i

(
r × er

∂

∂r
+ r × eθ

1
r
∂

∂θ
+ r × eφ

1
r sin θ

∂

∂φ

)

=
1
i

(
eφ
∂

∂θ
− eθ

sin θ
∂

∂φ

)
. (B.1)

We write the explicit expression of L2 as:

L2 = L · L
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= −(r × ∇) · (r × ∇)

= −
(
eφ
∂

∂θ
− eθ

sin θ
∂

∂φ

)
·
(
eφ
∂

∂θ
− eθ

sin θ
∂

∂φ

)

= −
(
∂2

∂θ2 +
cos θ
sin θ

∂

∂θ
+

1
sin2θ

∂2

∂φ2

)
. (B.2)

The partial derivatives of the unit vectors have been used for the last step.

=====================================================

We derive Eq. 2.39 from Eqs. 2.36 and 2.38. We have

∇ × B = µ0j, (B.3)
µ0j = αB + ε(r)[∇(r · B)] × r. (B.4)

Inserting Eq. B.4 into B.3, taking the curl of Eq. B.3 and dotting it with r, we get

r · ∇ × (∇ × B) = −r · ∆B = −∆(r · B), (B.5)
r · ∇ × (αB) = αr · ∇ × B = αr · [αB + ε(r)∇(r · B) × r] = α2r · B. (B.6)

The condition that the vector ε(r)∇(r · B) × r is perpendicular to r has been used for Eq.
B.6.

r · ∇ × [ε(r)∇(r · B) × r] = r · [∇ε(r) × (∇(r · B) × r) + ε(r)∇ × (∇(r · B) × r)]
= ε(r)r · ∇ × [∇(r · B) × r]
= −ε(r)r · ∇ × [r × ∇(r · B)]
= ε(r)r × ∇ · [r × ∇(r · B)]
= ε(r)L2(r · B). (B.7)

Now we reach

∆(r · B) + ε(r)L2(r · B) + α2r · B. (B.8)

=====================================================

Next we derive Eq. 2.41.

L · B =
1
i
r × ∇ · B

=
1
i
r · (∇ × B)

=
1
i
r · (αB)

=
α

i
r · B. (B.9)

The condition that the second component of the current density is perpendicular to r has
been used.

=====================================================
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Next we derive Eq. 2.43. We have

r · B =

∞∑

l=1

l∑

m=−l

l(l + 1)


2∑

j=1

A( j)
lmu( j)

l (r)

 Ym
l (θ, φ). (B.10)

For the simplicity, we ignore all the footnotes, headnotes and the sum signs, so we write
this equation as

r · B = AUY. (B.11)

We should keep in mind that A is only a coefficient, U is only the function of r, and Y is
only the function of θ and φ. We will insert this expression to Eq. B.8.

From Eq. B.2, we can write straightforward that

∆ =
1
r
∂2

∂r2 (r) − L2

r2 . (B.12)

So

∆(r · B) = ∆[AUY]

=
1
r
∂2

∂r2 (rAUY) − L2

r2 (AUY)

=
1
r
∂2

∂r2 (rAUY) − l(l + 1)
r2 (AUY), (B.13)

ε(r)L2(AUY) = ε(r)l(l + 1)AUY. (B.14)

The property that L2Y = l(l + 1)Y has been used, which can be found in chapter 16 of
[Jackson, 1975].

So Eq. B.8 will reach

∂2

∂r2 (rAUY) − l(l + 1)
r

AUY + ε(r)rl(l + 1)AUY + α2rAUY = 0. (B.15)

Since g(r) = rU as defined and if we drop out AY for all the terms, we reach

∂2

∂r2 [g(r)] − l(l + 1)
r2 g(r) + ε(r)l(l + 1)g(r) + α2g(r) = 0. (B.16)

This is Eq. 2.43.

=====================================================

If we can notice Lu(r) = 0 and L · ∇Y = (−i)r × ∇ · (∇Y) = (−i)r · ∇ × (∇Y) = 0,
Eq. 2.45 will be satisfied by inserting Eq. 2.46 into it. The left question is how to specify
wlm(r). This question can be solved with the help of ∇ · B = 0. From Eqs. 2.42 and 2.46,
we can write

B =
l(l + 1)

r
AUYer + vLY + w∇Y. (B.17)
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Since

LY =
1
i

(
eφ
∂

∂θ
− eθ

sin θ
∂

∂θ

)
Y

=
1
i

(
eφ
∂

∂θ
Y − eθ

sin θ
∂

∂θ
Y
)
, (B.18)

∇Y =
1
r
∂Y
∂θ

eθ +
1

r sin θ
∂Y
∂φ

eφ, (B.19)

Eq. B.17 reaches

B =
l(l + 1)

r
AUYer +

(
w
r
∂Y
∂θ
− v

i sin θ
∂Y
∂φ

)
eθ +

(
w

r sin θ
∂Y
∂φ

+
v
i
∂Y
∂θ

)
eφ. (B.20)

So ∇ · B = 0 gives

1
r2

∂[rl(l + 1)AUY]
∂r

+
1

r sin θ

∂[ sin θw
r

∂Y
∂θ
− v

i
∂Y
∂φ

]

∂θ
+

1
r sin θ

∂[ w
r sin θ

∂Y
∂φ

+ v
i
∂Y
∂θ

]

∂φ
= 0. (B.21)

By finishing all these differentiations and with the help of L2Y = l(l + 1)Y , we can reach

∂[rl(l + 1)AUY]
∂r

− l(l + 1)Yw = 0. (B.22)

So we obtain

w =
∂(rAU)
∂r

. (B.23)

This is Eq. 2.48.
We derive Eq. 2.61 now.

dp0

dΦ
=

dp0

dr
/

dΦ

dr
=

dp0

dr
r2

GM
, (B.24)

d[ F2

2k(Φ) ]
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= − F2

2k2(Φ)
dk(Φ)
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=
1
2
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dr
r2

GM

= − (r · B)2

2

(
dε(r)

dr
+ ε(r)

6
r

)
r2

GM
. (B.25)

The condition k(Φ) = ε(r)
(

GM
r3

)−2
has been used in the last step of the derivation.

B · ∇F = B · [ε(r)r(r · B)
|∇Φ| ]

=
ε(r)r
|∇Φ|B · ∇(r · B) + B · ∇[

ε(r)r
|∇Φ| ](r · B)

=
r2

GM
rε(r)B · ∇(r · B) +

3rε(r)
GM

(r · B)(r · B)

+
r2

GM
dε(r)

dr
(r · B)(r · B). (B.26)
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The condition |∇Φ| = GM/r2 has been used.
By combining Eqs. B.24, B.25, B.26 2.58 and 2.60, Eq. 2.61 can be reached.
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C Mathematical details of the
Minimum Variance Analysis (MVA)

We write the explicit expression of σ2 first.

σ2 =
1
M

M∑

m=1

| (B(m) − 〈B〉) · n̂ |2

=
1
M
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2 , B(m)
3 ) − (〈B1〉, 〈B2〉, 〈B3〉)] · (nX, nY , nZ) |2
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−〈B1〉〈B3〉nXnZ − 〈B2〉〈B3〉nYnZ − 〈B3〉〈B3〉nZnZ
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If we expand Eq. 3.12 in a explicit expression, it is same as above.
As to the calculation of ∂σ2/∂nX, ∂σ2/∂nY and ∂σ2/∂nZ , all of them can be calculated

based on Eq. B.1.
We also have

∂(λn2
X)

∂nX
= 2λnX, (C.3)

∂(λn2
Y)

∂nY
= 2λnY , (C.4)

∂(λn2
Z)

∂nZ
= 2λnZ . (C.5)

With all of these differentiations mentioned above, Eqs. 3.7, 3.8 and 3.9 will result in
Eq. 3.10.
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