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Silin, I. & Büchner, J. Vlasov-code simulations of collisionless plasmas. GWDG Berichte

60: 35 - 50 (2003).
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Notation1

� plasma beta, i.e. thermal to magnetic pressure ratio

� instability growth rate

� instability wavelength

�� Debye length

��� lower-hybrid wavelength

� instability oscillation frequency

� � � � �� complex instability frequency

��� ion plasma frequency

��� electron plasma frequency

��� or �� ion gyro-frequency

��� or �� electron gyro-frequency

��� lower-hybrid frequency

�� vacuum dielectric constant

�� free space magnetic permeability

� electrostatic potential

	 charge density


 angle between a wavevector and magnetic field direction2

� angle between asymptotic magnetic fields at the magnetopause

� vector-potential

� magnetic field, identical to magnetic induction

�� asymptotic magnetic field outside the current sheet

��� uniform guide magnetic field

v



� speed of light

� electric field

 elementary charge

� particle distribution function

� electric current density

� and� wavevector and wavenumber

��� � ������ lower-hybrid wavenumber

�� current sheet half-width

�� and�� ion and electron masses

����� particle mass ratio

� particle number density

�� maximum particle number density at the current sheet center

	� ion gyroradius

	� electron gyroradius

	�� ion gyroradius in the asymptotic magnetic field��

	�� electron gyroradius in the asymptotic magnetic field��

�� and�� ion and electron temperatures3

����� particle temperature ratio

�� and�� ion and electron drift velocities, respectively

� particle velocity

�� sound speed

�	
�� ion thermal velocity

�	
�� electron thermal velocity

�� phase velocity of a wave

� direction normal to the current sheet plane

1Symbols which occur only rarely are not given.
2All angular quantities in this work are expressed in radians.
3Everywhere in this work temperature is expressed in energy units, already containing the Boltzmann’s

constant�.
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Summary

This work discusses the results of analytical and numerical investigations of thin cur-

rent sheets in collisionless space plasmas. Current sheets are relatively thin layers of

counterstreaming charged particles, occuring in the regions where magnetic field rotates.

They are formed due to plasma trapping in the minimum magnetic field. These structures

are encountered in the Earth magnetosphere, e.g. in geomagnetic tail and at the magne-

topause, or in solar corona, ion cometary tails, galactic nuclei, as well as in laboratory

plasma experiments. Although current sheets may be quasi-stable, they can give rise to

a number of various instabilities. The dissipation of current sheets is associated with the

explosive release of magnetic field energy called magnetic reconnection. During this pro-

cess part of the energy stored in the magnetic fields outside the current sheet is partially

transformed into the thermal and kinetic energy of plasma and energetic particles.

The main tools for studying the current sheet dynamics are linear perturbation the-

ories, numerical simulations and space experiments. The disadvantage of linear pertur-

bation theories is that they take in consideration only part of the physical processes. On

the other hand, though simulations allow consideration of all possible physical processes

including their nonlinear interactions, there are usually strong technical limitations im-

posed by computer hardware. For example, it has become a usual practice to use arti-

ficially small particle mass ratios, which in turn lead to artificial ratios between plasma

parameters such as particle gyroradii and Debye length or cyclotron and plasma frequen-

cies. These technical problems make the scaling of the simulated phenomena and their

comparison to realistic conditions rather non-trivial. As for the space experiments, their

disadvantage is that so far only local measurements were carried out, while the recon-

nection is a non-local process. This usually provides too much freedom for imagination
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during the physical interpretation of the measurements.

Because of the complexity of the problem and different methods used for investiga-

tions, all having their specific application ranges and disadvantages, there are still many

open questions. We try to combine the analytical and numerical methods and investigate

this way the most basic processes which, according to the present knowledge, might play

an important role in magnetic reconnection. In particular, this work is devoted to plasma

evolution on the small kinetic scales. An attempt is made to compare the results of analyt-

ical linear theory and numerical kinetic simulations with in-situ observations for a specific

case of thin collisionless current sheets, like e.g. in Earth magnetosphere. The following

questions are addressed:

� The role of electrostatic effects in the evolution of linearly unstable cross-field

eigenmodes of thin current sheets

� The role of microscopic unstable waves in the nonlinear evolution of current sheet

decay

� Basic physical process leading to the magnetic energy dissipation in course of col-

lisionless reconnection through thin current sheets

� The influence of magnetic guide field on the unstable modes active in the current

sheets

� The role of finite plasma beta and magnetic field rotation at the magnetopause-like

boundaries on their stability

A linear perturbation theory is developed in order to investigate the behaviour of

eigenmodes of thin current sheet. For simplification of the dispersion relation analysis

we make several simplifying assumptions. We consider perturbations symmetric around

the current sheet central plane with wavelengths large compared to the current sheet thick-

ness. This way we focus our investigation on symmetric sausage eigenmodes of current

sheets which are so far less investigated compared to their asymmetric counterpart, the

kink mode. At the same time, the simplified dispersion relation allows us to investigate the

eigenmodes propagating in all directions in the current sheet plane. The long-wavelength
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approximation is chosen, because traditionally it was believed that long waves are most

important in the current sheet dynamics. Also, during the calculation of perturbation in-

tegral in Vlasov equation we assume the straight-line motion of particles similarly to the

guide-center motion approximation. These simplifications allow us to reduce the system

of integro-differential equations to a system of linear algebraic equations and obtain a

relatively simple dispersion relation. In order to separate the role of electrostatic per-

turbations from the electromagnetic mode we consider independently the full dispersion

relation and the reduced one, with electrostatic part neglected. In the absence of elec-

trostatic perturbations the numerical solution of the reduced dispersion relation has two

branches - electron and ion modes for all propagation angles in the current sheet plane.

When, however, the electrostatic perturbations are included in the consideration, the ion

branch disappears completely and only the electron solution remains in the propagation

angles range
 � ���. Thus, we find that electrostatic perturbations stabilize all linear

long-wavelength eigenmodes of thin current sheets except the aperiodic electron tearing-

mode instability.

A numerical simulation code was developed, which directly solves the Vlasov-Maxwell

system of equations and enables one to self-consistently describe the evolution of colli-

sionless plasmas. A series of numerical simulations of thin current sheets was carried out

and the results were compared to the linear theory predictions. It turns out, that, contrary

to the expectation from the linear theory, the current-aligned modes are not stabilized.

However, the wavelength of the dominant mode steadily shortens with the increasing par-

ticle mass ratio and the long-wavelength approximation��� � � is no longer applicable

for mass ratios����� � ��. Thus, the linear theory results suggest that the instabili-

ties of thin current sheets obtained in numerical simulation studies are due to a nonlinear

small-scale kinetic process.

The simulations of current sheets in the antiparallel magnetic fields show that the

lower-hybrid-drift (LHD) waves, which appear at the edges of the current sheet, get in

Landau-resonance with the ion flow and grow exponentially. As they grow, they also ex-

pand from the current sheet edges towards the central plane and trigger a global instability

of the current sheet. This global wave-mode inherits the wavelength and oscillation fre-

quency from the lower hybrid waves and grows on a typical ion gyroperiod time scales.
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It can directly couple to the orthogonal tearing-mode instability and cause rapid three-

dimensional reconnection.

In the presence of current-aligned guide magnetic field the LHD waves propagate

obliquely to the current direction. Hence, the waves encounter fewer resonant ions and

grow slower. Since the waves at the opposite edges of the sheet are no longer aligned

with each other they can no longer couple to the global eigenmodes of the current sheet.

In this configuration the magnetic field lines no longer form the classical X- and O-line

reconnection pattern. Instead, they form chaotic vortices, twisting around each other and

wandering further to the periphery of the current sheet. This eventually allows plasma

diffusion across the current sheet plane and can be relevant for explaining flux-transfer

events (FTE’s) through the Earth magnetopause.

Vlasov simulations were also used to investigate the stability of the magnetopause-

like tangential discontinuities separating two plasmas with different densities and tem-

peratures with rotating magnetic field. In order to make our results more realistic we

developed a dynamical equilibrium model for the plasma and magnetic fields at the mag-

netopause. Over the years two opposite opinions formed concerning the question of

whether magnetic reconnection at the magnetopause occurs only in the regions where

the magnetic fields are locally anti-parallel across the magnetopause or whether recon-

nection is possible also when the magnetic fields are sheared by a smaller angle (so-

called ”component reconnection”). So far, all previous theoretical results suggested that

the ”component reconnection” is either very weak or is completely suppressed. On the

other hand, many investigations, theoretical, numerical and experimental, pointed at very

strong lower-hybrid (LH) waves at the magnetopause with electric field amplitudes up to

10 mV/m. In agreement with some of these findings our simulations reveal strong activity

of transverse electrostatic lower-hybrid waves at the magnetospheric side of the density

gradient. Because we used a rotating magnetic field across the magnetopause, the drift

direction of the LH waves is also turning at different magnetic horizons. Hence, the res-

onant interaction with particles was very weak and as a result the short waves coalesced

and produced long tearing-type wavelengths, which eventually lead to reconnection and

plasma diffusion across the magnetopause. This process seems to be independent of the

magnetic field rotation angle, and thus favours the concept of ”component reconnection”.
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Chapter 1

Introduction

1.1 The relevance of thin current sheets

In astrophysics and space plasma physics current sheets play an important role. The

main reason is that on the vast interplanetary distances the plasma is usually ”frozen”

into the magnetic field which limits the variety of processes there to few rather well-

studied instabilities and waves. Current sheets usually build up in the so-called critical

regions of magnetic fields, where the field changes direction (see e.g.Syrovatskii(1971);

Bulanov et al.(2002)). A schematic current sheet configuration used in the present work is

demonstrated in Figure (1.1). Current sheets play the role of magnetic traps where plasma

is accumulated. Plasma pressure inside the current sheet is balanced by the magnetic field

pressure from outside, while the current is maintained by the rotation of the magnetic field

through the current sheet. This balance makes current sheets quasi-stationary features

in space and laboratory plasmas. Such current sheets with the thickness of the order

of few ion gyroradii or even less have been observed by in-situ measurements in Earth

magnetosphere (see e.g.Pulkkinen et al.(1992);Sergeev et al.(1993);Øieroset et al.

(2001);André et al.(2004)). Current sheet models were also used to explain solar flares

(Priest(1976, 2001)) (see Figure (1.2)).

The main reason why current sheets cause such interest is that the most dynamic pro-

cesses in interplanetary plasmas occur there. In the perfectly conducting space plasma

the current sheets are the primary sites of rapid magnetic energy dissipation. This dissi-
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Figure 1.1: A sketch of a current sheet geometry. Unless specified otherwise, the magnetic

field� is anti-parallel at the opposite sides of the sheet and has only x-component. The

current� flows in the y-direction and z-axis is normal to the current sheet plane. The

investigated instabilities propagate in the current sheet plane with a wavevector�, which

can make an arbitrary angle
 with the x-axis.

pation occurs due to various types of waves and instabilities which grow in thin current

sheets. The dynamics of plasma in these regions becomes very complicated and is still

not fully understood. In general, the explosive dissipation of current sheets is identified

as ”magnetic reconnection”, although the original identification of reconnection just with

collisionless tearing-mode instability now becomes more diffuse and includes a number

of various processes.

Here are a few examples of astrophysical and interplanetary phenomena where recon-

nection plays an important role. In solar flares reconnection leads to release of enormous

amount of energy in a very short time (see e.g.Parker (1957);Priest (2001);Kusano

(2001)). As a result, huge clouds of hot plasma are ejected from the solar atmosphere

into the outer space with a velocity of up to�	� km/s, accompanied by bursts of highly

energetic particles. Reconnection is also thought to play a leading role in coronal heating

(Dmitruk et al.(2002)), accounting for the tremendous temperature gradient between the

solar chromosphere and the corona (from� � �	� K to �	� K). Also, strong particle accel-

eration (sometimes to high relativistic energies) in astrophysical plasmas, e.g. in active
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Figure 1.2: A schematic geometry of reconnection in solar atmosphere at the foot of a

magnetic loop (taken fromPriest(2001)).

galactic nuclei (Lesch and Reich(1992);Lesch and Birk(1997);Schopper et al.(1998);

Kobak and Ostrowski(2000)), extragalactic jets (Lesch and Birk(1998)) or stellar flares

(Schaefer et al.(2000)), is associated with magnetic reconnection. But, perhaps, the most

well-studied example of magnetic reconnection is at the Earth magnetopause (Sonnerup

et al. (1981);Øieroset et al.(2001);Russell(2003)) and in the Earth magnetotail (Coppi

et al. (1966);Bieber et al.(1984);Birn and Hesse(1994);Slavin et al.(2002)). Figure

(1.3) gives a simplified impression of where the reconnection can occur (N marks the

so-called ”neutral point”, the center of the reconnection region) in case of southward or

northward interplanetary magnetic field (IMF) orientation. At the magnetopause, recon-

nection leads to penetration of the energetic solar wind particles into the inner magneto-

sphere. This eventually causes polar aurora in the Earth ionosphere. The reconnection

in the far tail of the magnetosphere, the so-called magnetic substorms, causes strong per-

turbations of the magnetic field in the magnetosphere and at the Earth surface. Such

magnetic field changes were found to generate induction currents in oil and gas pipelines

and high voltage networks in the high latitude regions of up to 100 Amperes.
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Figure 1.3: A schematic geometry of reconnection at the Earth magnetosphere for south-

ward (left) and northward (right) interplanetary magnetic field (IMF) (taken fromDungey

(1961, 1963)).

1.2 Instabilities of thin current sheets

Although thin current sheets can build up in the magnetic field critical regions and reach

an equilibrium state, they are a subject to a large number of instabilities. The instabilities

can use various free-energy sources, that are available in thin current sheets, for example,

relative particle drift or plasma and magnetic field gradients. In turn, the fastest growing

instabilities can alter the equilibrium situation and give rise to secondary instabilities by

introducing, e.g. tangential plasma velocity shear or particle beams. Since this work

focuses on collisionless space plasmas, i.e. very rarefied and hot matter where direct

particle collisions can be neglected, the instabilities which are saturated in laboratory

plasma by collisions can still be important for our investigation. But on the other hand,

the particular conditions in the Earth magnetosphere, which is our main application, are

usually such that not all possible plasma instabilities can be encountered. We shall give

here a short account of instabilities which are known to exist in current sheets in Earth

magnetosphere and discuss the particular conditions favouring or stabilizing each of them.

Collisionlesstearing-mode instability is the most important plasma instability which

controls the global plasma dynamics in the Earth magnetosphere. It is an aperiodic

standing long-wavelength mode with a wavevector parallel to the ambient magnetic field.

Tearing-mode instability is purely electromagnetic, i.e. electrostatic perturbations do not

play any significant role in it. It grows in current sheets separating anti-parallel magnetic
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fields and transforms a fraction of energy stored in magnetic fields into plasma kinetic and

thermal energy through the inverse Landau-resonance with electrons.Coppi et al.(1966)

first proposed that the collisionless linear tearing mode instability of current sheets leads

to reconnection and substorms in the Earth magnetotail. Later, non-symmetric tearing-

mode instability was proposed for reconnection at the Earth magnetopause (see e.g.Son-

nerup and Ledley(1979);Greenly and Sonnerup(1981)). Different analytical models

have been proposed for the tearing-mode instability (see e.g.Petschek and Thorne(1967);

Parker (1973)), including slow shock waves, which could accelerate plasma outside the

central ”diffusion region”, but unfortunately, the growth rate of the linear tearing-mode

instability was still too small to explain the observations. Thus, it was concluded that

linear tearing-mode instability alone cannot account for the rapid onset of the observed

magnetic reconnection, since it saturates early and can be easily stabilized by a normal

magnetic field component perpendicular to the current sheet plane (seeLembege and Pel-

lat (1982)). Also, the magnetohydrodynamic (MHD) and fluid theories require anad-hoc

resistivity, which results from the microscopic kinetic processes. Thus, the MHD picture

of reconnection can not be a consistent one and the problem of thin current sheet stability

has to be considered in the kinetic approach. This approach immediately multiplies the

number of possible instabilities and makes the picture far more complicated.

Another long-wavelenght instability which is known from the MHD and fluid inves-

tigations is theKelvin-Helmholtz instability (KHI) (see e.g.Melrose(1986)). This

instability is driven by tangential velocity shear and exists both in magnetized and un-

magnetized plasmas. For example, KHI can be excited when a current sheet is surrounded

by a stationary background plasma. It was found in MHD and kinetic approaches that in

such situation, even if the density of the background plasma is very small, the current

sheet will start kinking and eventually disintegrate after approximately 100 ion gyroperi-

ods (Lee et al.(1988);Daughton(1999a)). However, the growth rate of KHI is so small

compared to most kinetic instabilities, that it usually comes into play when many other

instabilities have already reached a strongly non-linear stage and significantly modified

the current sheet. KHI can be separated from such fast kinetic processes only in fluid and

MHD approximation.

An important class of instabilities is eigen-oscillations of current sheet proper. These
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are kinetic plasma instabilities, which can be investigated either by linear kinetic theory or

by kinetic numerical simulations (for example,Yamanaka(1978);Pritchett et al.(1996);

Lapenta and Brackbill(1997);Yoon et al.(1998);Daughton(1998)). Traditionally, these

eigen-modes are divided into two classes: an anti-symmetrickink-mode instability, also

sometimes calleddrift-kink instability (DKI) and a symmetricsausage-mode insta-

bility or drift-sausage instability (DSI). These instabilities are purely electromagnetic

drifting plasma waves with the wavevector perpendicular to the ambient magnetic field.

RecentlyKarimabadi et al.(2003a,b) carried out analytical and numerical investiga-

tion of a thin current sheet in a stationary background plasma and found a kineticion-ion

kink instability (IIKI). This instability grows due to velocity shift between two ion pop-

ulations inside the current sheet and a tangential velocity shear at the edges, electrons do

not play any role in it. It has a long wavelength��� � � and a growth rate of approxi-

mately� � 	��� (in a current sheet with a half-width of an ion gyro radius�� � 	��). This

growth rate puts the IIKI somewhere in between the KHI (the slowest-growing instability)

and the kinetic DKI and DSI (relatively fast instabilities).

Apart from the global instabilities which evolve on the scales of ion gyroradii and

affect the entire current sheet there are also local instabilities, which have a much shorter

wavelength and reside only at the periphery of the current sheet. The most universal of

these is thelower-hybrid drift instability (LHDI) (see e.g.Davidson and Gladd(1975);

Davidson et al.(1976);Davidson and Krall(1977);Huba et al.(1977, 1980);Winske

and Liewer(1978);Winske(1981)). This instability uses the plasma density and mag-

netic field gradients as the free-energy source and is always encountered by spacecraft

in the vicinity of magnetotail and magnetopause current sheets (Gurnett et al.(1976);

Vaisberg et al.(1983);Lucek et al.(2001);Bale et al.(2002);Vaivads et al.(2004)). It

has a typical wavelenght of the hybrid ion-electron scale��� � 
	�	��
��� and oscillation

frequency��� � ���
� � ��
�����

��
����, which in the typical magnetospheric conditions

can be simplified to��� � 
�����
���. The growth rate of LHDI is typically a fraction of

its oscillation frequency and is rather large compared to the previously discussed global

instabilities of current sheets. LHDI can be described both in two-fluid and kinetic ap-

proximations, depending on the local diamagnetic drift velocity: fluid - strong drift and

kinetic - weak drift. Yoon et al.(2002) developed an eigen-oscillation theory for thin
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current sheets and found that the lower-hybrid drift (LHD) waves were in fact higher-

order eigenmodes of current sheets, while the lower-order modes corresponded to kink

and sausage instabilities. In this class of instabilities the quasi-electrostatic LHDI is the

fastest growing unstable mode residing at the current sheet edges. Thus, theoretically, in

the first few gyroperiods LHD waves should be observed at the periphery of the current

sheet and later a longer-wavelength global instability should grow. According to this the-

ory, for small particle mass ratios����� � �		 asymmetric kink mode should dominate,

while for higher mass ratios sausage-mode instability is more probable.

Among current-driven instabilities the most common one ision-acoustic or ion-sound

instability (Krall and Trievelpiece(1973);Melrose(1986)). The ion-acoustic waves are

generated by resonant interaction of drifting electrons with electrostatic field perturba-

tions. They can propagate in plasmas with�� � �� and are strongly damped in plas-

mas with�� � ��. As a special branch of ion-acoustic instability one finds alsoBune-

man instability (Buneman(1958);Melrose(1986);Tsytovich(1995)). This mode is also

driven by resonance between electron beam and electrostatic plasma perturbations, but

it appears in the strong-drift regime when electron drift velocity is much larger than the

electron thermal velocity�� � �	
��. This situation corresponds to the so-called ”cold

electron beam” plasma. However, this condition is much stronger than the�� � � for the

ion-acoustic waves. Thus one would expect that ion-acoustic waves develop first and pre-

vent the Buneman instability from ever occurring. However, in Earth magnetosphere and

magnetosheath proton temperature is typically an order of magnitude larger than electron

temperature,�� � �	��, the and hence, ion-acoustic waves are strongly damped. In addi-

tion, in the magnetospheric plasmas the drift velocity of electrons can exceed their thermal

velocity only in exceptional cases and Buneman instability is a rather exotic phenomenon.

A special class of metastable (i.e. stable in linear approximation but unstable in the

non-linear regime)drift-tearing instabilities has been found theoretically byGaleev

et al. (1985);Kuznetsova and Zelenyi(1985, 1990a) for current sheets in the presence

of the uniform current-aligned guide field. This instability could lead to a destruction

of the magnetic surfaces, beginning at the center of the current sheet, and propagating

further to the periphery. The growth rate and wavelength of such mode was predicted to

strongly depend on the propagation angle. Short-wavelength modes should appear closer
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to the center of the sheet, grow faster and resemble the classical aperiodic tearing instabil-

ity. The modes which grow later at the peripherical magnetic surfaces should have longer

wavelengths, grow slower and resemble a MHD-like kink instability. Basing on these

results the authors proposed a model ofstochastic percolation of plasma across current

sheets in course of drift-tearing-mode activity (seeKuznetsova and Zelenyi(1990b)). The

authors argued that if the unstable modes grow at all magnetic surfaces the magnetic field

lines will reconnect at random so that eventually some of them will start on one side of

the current sheet and end on the other. This process could explain e.g. the possibility

of flux transfer events (FTE’s) at Earth magnetopause. However, so far the drift-tearing

instability has not been confirmed by any other investigation. Some particle-in-cell (PIC)

simulations of current sheets with guide field have been carried out recently byScholer

et al.(2003) andPritchett and Coroniti(2004). The results ofScholer et al.(2003) suggest

that the guide field�� � �� decreases the reconnection rate by a factor of three, but the

structure of the reconnected field clearly demonstrates a two-dimensional tearing-mode

instability. Pritchett and Coroniti(2004) investigated forced reconnection by introduc-

ing the initial X-line, as in the Geomagnetic Environment Modelling (GEM) challenge

(see e.g. (Birn et al., 2001)). They found that the guide fields�� � �� did not change

the reconnection rate and the current sheet decayed through the tearing-mode instability,

although the structure of the reconnection region was altered by the guide field.

1.3 Open questions and aims of the present work

The existing knowledge about thin current sheets gives some idea about the possible in-

stabilities taking place there and their dynamics. The most active instabilities are the

lower-hybrid-drift, kink, sausage and the tearing-mode. We have already discussed the

results of investigations of most of these instabilities in the introduction section. How-

ever, as we mentioned, there are still some contradictions and open questions. Here is an

overview of the most important problems that are addressed in this work.

Different instabilities in current sheets are, in some sense, competing with each other.

But there are so many different conditions and free parameters in this problem, that it is

not clear which of the possible instabilities is the most robust and efficient in triggering
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magnetic reconnection. We analyse the basic physical processes which operate in thin

current sheets and can lead to current sheet decay and magnetic reconnection.

Some investigations point at the important role of electrostatic effects in course of

current sheet destabilization (e.g. (Daughton, 1998;Silin et al., 2002)) while others find a

purely electromagnetic explanation of reconnection through the acceleration of electrons

at the current sheet center by the electric field induced by the LHDI (e.g. (Drake et al.,

2003;Scholer et al., 2003)). Are the electrostatic effects important there or can reconnec-

tion be consistently described as an electromagnetic phenomenon? And which role do the

microscopic current-driven instabilities play in this process?

There is an important problem of interpretation of simulation results. Since simula-

tions are forced to apply unrealistic parameters, like for example particle mass ratios, the

translation of temporal and spatial scales to the realistic situation becomes non-trivial.

Also, inorder to avoid numerical instabilities one is forced to resolve Debye radius in

kinetic simulations. In realistic magnetospheric parameters the ion gyroradius to Debye

radius ratio is approximately�	�. Even with the most powerful now-a-days computer it

is impossible to have a resolution of few Debye radii in a simulation box several ion gy-

roraii large in every dimension. One has to ”tune” some physical parameters, like particle

mass, temperature or the speed of light in order to comply with physical and technical

constraints, to find a compromise between the computer resources and the physics. Thus,

it is still not very clear if the instabilities observed in simulations are in fact weaker or

stronger in realistic conditions.

Also, traditionally it was believed that the longest waves are also the most efficient

ones, since the time of interaction of a wave with a particle is proportional to the wave-

length. However, the a two-fluid current sheet linear stability theory ofPritchett et al.

(1996) predicted that the wavenumber of the fastest-growing DKI mode changes as��� �

������

�����. Apparently, the fluid approach becomes non-applicable for high mass ra-

tios, since the wavelength of the instability gets smaller than ion gyroradius. But this

scaling law eventually pointed at short waves as the most linearly unstable. Later also

Büchner and Kuska(1998, 1999) investigated the dependence of the DSI wavelength on

the particle mass ratio by analytically solving the full eigenmode equations and by PIC-

code simulations. They obtained a��� � 
������
��� dependence of the wavenumber of
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the fastest-growing mode.

The question of whether kink or sausage mode should prevail in a current sheet and

why is still a matter of discussion. For example, 3D PIC-code simulations of thin cur-

rent sheets were carried out byBüchner and Kuska(1996);Zhu and Winglee(1996) and

Pritchett et al.(1996). In the simulations ofBüchner and Kuska(1996) the current-driven

instability was a symmetric sausage-mode, while in the simulations ofZhu and Winglee

(1996) the unstable mode was an asymmetric kink-mode.Pritchett et al.(1996) obtained

both antisymmetric kink and symmetric sausage modes with almost identical wavelengths

and growth rates.Yoon et al.(1998) considered the problem of the instability parity kink

mode vs. sausage mode in the framework of a two-fluid eigenmode theory. They found

that the symmetric sausage modes were growing faster than the asymmetric kink modes.

But since they considered wavenumbers in the range	�� � ��� � � they could identify

the fastest-growing mode only for����� � �	. The growth rates increased for smaller

wavelenghts and larger particle mass ratios.

The interaction of microinstabilities like LHDI with global eigen modes of current

sheets is also an important issue, not completely resolved at the moment. For example,

LHDI was suggested byHuba et al.(1978) for enhancing reconnection by dissipation

and anomalous resistivity.Winske(1981) investigated the LHDI by means of a 2D full

particle-in-cell (PIC) code. He observed the onset of a global instability of the current

sheet which was resonantly driven by ions. He suggested that this global instability could

be a non-linear consequence of the LHDI penetrating towards the current sheet center.

However,Ozaki et al.(1996), who also used a�� PIC-code, argued that the DKI was

completely independent of the LHDI. To prove their point they performed a simulation

where LHDI was artificially suppressed and they still obtained a kinking current sheet.

A possible non-linear mechanism for triggering a global current sheet instability by

LHDI was suggested byHesse et al.(1998) andLapenta et al.(2003). These authors

observed that the LHDI creates a velocity shear with higher ion velocities at the center

and lower velocities at the current sheet edges. They attributed this feature to the focusing

of the faster ion orbits at the current sheet center by magnetic intrusions generated by the

non-linear LHDI evolution. Thus, the mechanism of DKI generation might be similar to

the one of a Kelvin-Helmholtz instability.Daughton(2002) also noticed that as a result of
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LHDI the ion distribution function at the current sheet edges resembles a drift-Maxwell

distribution with a stationary background population of scattered particles, which make

� � of the peak density. He suggested, that the resulting ion-ion streaming could also

contribute to the non-linear growth of DKI.

Another essential question is the coupling of current-aligned modes with the tearing-

mode instability in the three-dimensional reconnection. Recently there appeared a theory

that LHDI could help tearing-mode instability by thinning the current sheet and thus en-

hancing the linear growth rate.Horiuchi and Sato(1999) performed a series of PIC-code

simulations of the DKI. They observed LHDI at the edges of the current sheet before a

kink-mode started to grow. They found that during the LHDI activity the current sheet

profile was compressed and suggested that the LHDI could non-linearly trigger a DKI by

thinning the current sheet. This idea was further pursued byLapenta and Brackbill(2002)

using PIC-code and fluid simulations. They showed, that on average along the current di-

rection LHDI moves a small population of particles further away from the current sheet

edges, which alters the initial current density profile to a thinner, more peaked one.

Scholer et al.(2003) found in their PIC-simulations that the thinning of the current

profile, discussed previously byHoriuchi and Sato(1999) andLapenta and Brackbill

(2002) occurred not due to the plasma compression, but due to the acceleration of elec-

trons. The particle density and ion drift velocity profiles across the current sheet remained

practically unchanged, while the electron current, initially small compared to ion one, in-

creased almost by an order of magnitude at the current sheet center.Scholer et al.(2003)

suggested that this was the result of the electron acceleration by ”the inductive electric

field excited by the lower hybrid drift instability”.Shinohara(2003) proposed a multi-

stage mechanism of this electron acceleration. The LHD waves at the edges of the sheet

decrease the initial current. As a result, the magnetic field decreases everywhere through-

out the current sheet. The change of the magnetic field, in turn, leads to electron accel-

eration at the current sheet center, where electrons are unmagnetized.Shinohara(2003)

tried to diagnose this electric field in their simulations by producing the history plots of

the electric fields experienced by the accelerated electrons, but they failed to demonstrate

any convincing evidence of a DC electric field.

The results concerning the effects of magnetic guide field also seem quite contradic-

19



tory. On the one hand,Scholer et al.(2003) suggested a significant decrease of recon-

nection rate in the presence of��� � �� although without any significant changes of the

reconnection pattern in the anti-parallel fields. On the other hand,Pritchett and Coroniti

(2004) found that a significantly larger guide field is required to affect the reconnection

rate mainly by suppressing the quadrupolar�� pattern and the Hall currents. However, it

should be mentioned that in the former case spontaneous reconnection was studied, while

in the latter case it was triggered as in the GEM challenge approach. Also, according to

the theory ofGaleev et al.(1985);Kuznetsova and Zelenyi(1985, 1990a) there must be

a family of obliquely propagating modes in current sheets with guide fields, which were

not found in any simulations so far. We try to clarify this situation by our Vlasov-code

simulations of spontaneous reconnection in the presence of guide fields.

Finally, in this work we address the problem of reconnection through non-symmetric

current sheets at the magnetopause. Since magnetopause is highly variable and has a

complicated structure, the process of reconnection through it is far more complicated

compared to the symmetric current sheets. For example,Quest and Coroniti(1981) cal-

culated analytically linear growth rates of tearing-mode instability at the day side magne-

topause, based on typical parameters measured by ISEE 1 and 2 and assuming a simple

2D reconnection geometry. They found that the linear growth rate was very sensitive to

the interplanetary magnetic field (IMF) orientation, current sheet thickness and plasma

density. They showed, that due to the finite transition time of electrons through the re-

connection region, which is smaller than the Landau resonance time, the eigen-functions

and hence also the wave spectrum of the tearing modes are necessarily two-dimensional

in the magnetopause plane. On this ground, the authors speculated that the reconnection

at the magnetopause is intrinsically three-dimensional.

A recent review ofRussell(2003) summarizes the problems concerning magnetopause

reconnection. The community is presently divided into two groups. One of these sup-

ports the ”component reconnection” where the magnetic fields at the opposite sides of

the magnetopause are not necessarily anti-parallel (e.g.Sonnerup(1974)). The other

group believes that reconnection occurs only in the regions where magnetic fields are ex-

actly anti-parallel at the magnetopause (e.g.Luhmann et al.(1984)). The observations of

FAST spacecraft suggest that reconnection at the magnetopause, indeed, occurs primar-
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ily in the regions of antiparallel fields. However, there are also undisputed evidences of

reconnection in the presence of guide field (e.g.Kim et al.(2002)).

Previous theoretical and simulational investigations, indeed, suggest that the guide-

field �� suppresses reconnection at the magnetopause. Thus,Kuznetsova et al.(1994)

considered analytically magnetopause with anti-parallel asymptotic magnetic fields but

with the finite�� component at the maximum density gradient horizon. They found that

strong magnetic field�� component leads to sheared plasma flow in the magnetopause

plane and stabilizes the magnetopause against the tearing-type modes. This conclusion

was also confirmed by three-dimensional MHD simulations ofLee et al.(2002) and PIC

simulations ofSwisdak et al.(2003). In particular,Swisdak et al.(2003) pointed that

in the presence of guide-field component the reconnection region advects with electron

diamagnetic drift velocity. In case of large relative ion-electron drift velocities this may

prevent the formation of plasma outflows and reconnection is completely suppressed.

The reason for reconnection onset at the magnetopause also remains largely a mys-

tery. Otto et al.(1995) carried out 2D MHD simulations with the aim to compare the

consequences of reconnection and solar wind pressure pulse at the magnetopause for the

flux-transfer events (FTE’s). They found that the normal magnetic field amplitude is pro-

portional to the pressure impulse and is typically smaller than in the case of magnetic

reconnection. Also, reconnection leads to strong plasma acceleration that does not corre-

late with solar wind pressure pulses. Although both pressure impulses and reconnection

transport impulse and energy, it is only reconnection that leads to plasma penetration

through the magnetopause. However, under certain conditions pressure perturbations can

trigger reconnection, e.g. by compressing the magnetopause thickness, which can explain

certain correlation between FTE’s and solar wind inhomogeneities.

Apart from the classical tearing-mode reconnection, microscopic instabilities like

LHDI, are also very active at the magnetopause. In-situ observations onboard ISEE 1

and 2 (Gurnett et al.(1979)), Prognoz-7 and 8 (Vaisberg et al.(1983)), Equator-S (Lucek

et al. (2001)), Polar (Bale et al.(2002)) and Cluster (Vaivads et al.(2004)) spacecraft

reveal strong electrostatic noise near lower-hybrid frequency. Theoretical and numerical

investigations of LHDI evolution at the magnetopause suggested that it might be quite

grow up to a nonlinear regime and produce strong perturbations. For instance,Gary and
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Sgro(1990) carried out PIC simulations of LHDI at the magnetopause. They considered a

”flat” configuration with just one drift direction and one magnetic field component. After

the rapid growth of the small-scale LHD instability, the wavelength increased, the pertur-

bations coalesced and formed large ”plateaus” and ”inclusions”. The authors suggested

that these surface waves were qualitatively similar to the structures observed by ISEE 1

and 2 spacecraft at the magnetopause. Similarly , the quasi-linear calculations ofShapiro

et al. (1994) revealed that LHDI should lead to a nonlinear ”modulational” instability at

the magnetopause. RecentlyShukla and Mamun(2002) solved the system of nonlinear

equations governing the dynamics of short wavelength LHD waves at the magnetopause-

like boundaries in the so-called hybrid approach (ions - particles, electrons - fluid). For

derivation of saturated LHD wave spectra mixing length hypothesis and mode coupling

process were assumed. The equations have stationary solutions in a form of vortices. The

instability is driven by electron density inhomogeneity and ion drift. For typical magne-

topause parameters its growth rate is estimated as�����. The vortices induced by LHDI

effectively lead to particle trapping an diffusion through the magnetopause boundary.

Does the reconnection occur only in the regions of the anti-parallel magnetic fields,

as suggested, e.g. byRussell(2003), or can it happen at any location, and what controls

it? How can the microscopic instabilities and reconnection explain stochastic percolation

or flux-transfer events (FTE’s) through the magnetopause? As we have shown, some

attempts were made to apply the classical 2D tearing-mode reconnection scenario directly

to the non-symmetric magnetopause current sheets. But the structure of fields and currents

at the magnetopause is different from the one-dimensional Harris-type model used in the

investigations. Thus, we developed our own model of dynamic tangential magnetopause

equilibrium with magnetic field and currents rotating through the magnetopause plane.

We investigated the stability of this configuration by numerical Vlasov-code simulations.
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Chapter 2

Thin current sheet models

2.1 Symmetric current sheets

For the investigation of current sheets by analytical methods and numerical simulations an

appropriate analytical model of the equilibrium plasma and electromagnetic fields distri-

bution is required. The most widely accepted model of a current sheet equilibrium is the

so-called Harris model (Harris, 1962). The aim of this approach was to explain plasma

confinement by magnetic fields.

This model is based on the assumption that both particle species have Maxwellian

distribution functions:
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where index� � ��  corresponds to ions and electrons, respectively. From now on,

we shall express particle temperature� in energy-units and omit the Boltzmann’s constant

 . The classical Harris model considers the case of equal ion and electron temperatures

�� � �� � � and the equal, but oppositely directed, particle drift velocities�� � ��� �

! . Using this form of distribution functions as a setup, the stationary Vlasov-Maxwell

equations were solved:
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Harris considered an equilibrium, where� ,� and� depend only on one coordinate,

we shall call it�. In this configuration there are three constants of motion of charged

particles, namely the full energy, and the momenta conjugate to x and y,
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Further, it is assumed that� and� have only z- and x-components, respectively.

Then, the vector potential� must have only y-component. Using a special combination

of constants of motion,Harris (1962) then expressed the velocity-dependence of the dis-

tribution functions and obtained a set of ordinary differential equations for electrostatic

and vector potentials:
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The first equation (2.4) is satisfied by� � 	, which corresponds to charge-neutral

plasma in the given frame of reference. The remaining equation (2.4) gives the exact

solution of the problem:
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where�� is the Debye length. From this relation it follows immediately:
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where�� is the maximum particle number density at the current sheet center. This

classical result can be easily extrapolated to the situation of the unequal particle tempera-

tures:
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where�� �
	

�����
�������

is the current sheet half-width. The plasma is charge-neutral in

the frame where particles drift with mean velocities related as����� � ������.

Another simple but very important extension of the Harris model is the so-called

”guided-field” current sheet with a constant magnetic field component in the y-direction.

In fact, one can see that an addition of a constant term
��

��

���
to the pressure balance equation

does not break the equilibrium:
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���
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Recently there appeared also some non-Harris models of current sheets. For example,

Mottez(2003) found a family of pure analytical solutions of non-linear Vlasov-Maxwell

equations using expansion of generalized distribution function in infinite series and pa-

rameterizing it by the vector-potential.Mottez(2003) presented convincing examples of

analytical solutions for well-known structures encountered in interplanetary and auroral

plasmas. Interestingly enough, the contributions of different particle species to the total

current are proportional to their temperatures, like in Harris model, although no special as-

sumption is made for that. The main problem of this model is that it is mono-dimensional,

i.e. there is only one dimension of density and magnetic field gradients and one (orthogo-

nal) particle drift dimension. As such, this model is only suitable for description of current

sheets with antiparallel magnetic fields.

Génot et al.(2003) applied the mono-dimensional model ofMottez(2003) for descrip-

tion of the so-called ”bifurcated” current sheets, which were observed by Cluster, ISEE

and Geotail spacecraft. Contrary to the Harris model, where current is concentrated at the

current sheet center, here the current is located at the edges of the sheet near the density

gradient maxima.

The main motivation for the current sheet model ofYoon and Lui(2004) was that

in the classical Harris equilibrium the particle drift velocity ratio is equal to the particle

temperature ratio����� � ������. The authors introduced the particle drift velocity as a

new independent parameter and solved analytically the Vlasov-Maxwell equations. How-

ever, this new degree of freedom was obtained through the loss of charge quasi-neutrality

across the current sheet. This is, perhaps, one of the weak points in this model, because

the charge separation occurs on the scales comparable to the current sheet thickness, i.e.
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ion gyro-scales, while, for example, in the Earth magnetotail these scales are typically

three orders of magnitude larger than Debye length. And since plasma tends to reach

a quasi-neutral state on the distances larger than Debye radius such large non-neutral

plasma structures seem rather artificial.

2.2 Magnetopause-like current sheets at the boundary be-

tween two plasmas

Further we discuss a model of an interface between plasmas with comparable but different

densities, temperatures and magnetic fields. This model will be used to describe analyt-

ically the local equilibrium at the Earth magnetopause. Some examples of current sheet

models of the magnetopause have been developed byLee and Kan(1979);Kuznetsova

and Roth(1995);De Keyser and Roth(1997, 1998);Mottez(2003). However, these mod-

els have serious drawbacks. First, the models of Lee and Kan, Kuznetsova and Roth

and the later model of De Keyser and Roth (the so-called DKR-model) assume that the

plasma on both sides of the magnetopause has equal temperatures, while from in-situ

measurements it is known that, e.g., proton temperature changes across the magnetopause

at least by a factor of 10 and sometimes by a factor of 100. Secondly, in both these mod-

els plasma is represented as a superposition of several particle populations, stationary

and drifting, warm and cold, which further complicates the definition of temperature in

such mixed plasmas. Lastly, all the above-mentioned models, except the one-dimensional

model ofMottez(2003) are not analytical, i.e. the differential equations are integrated

numerically, which makes these equilibria hardly applicable for computer simulations.

The one-dimensional fully analytical model ofMottez(2003), on the other hand, does

not allow magnetic field rotation in the magnetopause plane. That is why we decided to

build up our own model, which would correspond to the realistic magnetopause properties

observed by numerous spacecraft missions (see e.g.Gosling et al.(1982)).

We shall focus here on a relatively simple model of tangential magnetopause (without

initial normal magnetic field��) because this configuration prevents the flux transfer

between magnetosphere and magnetosheath, and the aim of the present investigation is
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to find out how it happens that such configurations eventually become ”open”. There are

also other aspects, like for example shear plasma flows at the magnetopause, which might

play an important role in destabilizing the equilibrium situation, but this will be a matter

of a separate investigation.

Our aim is to construct a preferably simple analytical particle distribution function

which would balance the expected profiles of plasma density and temperature and mag-

netic fields across some limited region. Strictly speaking, this is not necessarily a kinetic

equilibrium situation, where particle kinetic energy and momenta are conserved. The rea-

son is that, as such, magnetopause occurs at the regions where the solar wind (previously

slowed down by the bow-shock) encounters an obstacle, a geomagnetic field. Thus, two

magnetized plasmas are pressed against each other and a certain local balance appears.

It is known from in-situ observations that this balance is very dynamical, the location

and width of the magnetopause depend very strongly on the pressure and drift velocity of

the solar wind, the magnetopause is practically in constant motion with velocities up to

�		 km/s. This means that the equilibrium in the classical sense of particle constants of

motion can hardly be applied there.

We consider a boundary between two stationary plasmas with different densities, tem-

peratures, magnetic fields and plasma betas. We assume that away from the boundary re-

gion all plasma properties and magnetic fields asymptotically reach some constant levels.

As input parameters we shall employ asymptotic values of plasma density, plasma betas

(� � ����	�����

�� ) and total pressure)� � �
�� ����� ��

���
. In order to reduce the number

of unknowns in the problem we make several assumptions, like in the Harris approach.

We presume, that ion and electron temperatures at both sides of the magnetopause are

proportional, i.e.����� � �'��( and both particle species have mean drift velocities re-

lated as����� � ������. The velocity distribution functions of both species are assumed

Maxwellian. So far this has been typical for all analytical solutions (seeHarris (1962)

andMottez(2003)). We impose some model dependence for plasma density, temperature

and the�� magnetic field component and seek for the particle distribution functions that

will keep such a structure at equilibrium. Let us assume that:
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where�� now denotes a typical thickness of the magnetopause region,���� and

���� are the asymptotic values of the magnetic fields in the magnetosheath and magne-

tosphere, respectively. The corresponding asymptotic plasma density and temperature

in magnetosheath and magnetosphere are���� � �� � ��, ���� � �� � �� and

���� � �� � ��, ���� � �� � ��. The values of�� and �� are calculated from

the plasma betas and the total pressure. The in-situ measurements do not show that there

are any typical values of plasma betas near magnetopause, but as a starting point we take

���� � 	��, ���� � 	�� � ���. In our description� is just a dimensionless function.

The real particle species temperatures are obtained by multiplication of� by the nominal

�� and��, typically of the order of few�! . The asymptotic values of magnetic fields are

then calculated to maintain the pressure balance at both sides of the interface.

Now, with the model functions for�
��, �
�� and� 
�� we shall look for particle

distribution functions in the form
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(� � ��  for ions and electrons, respectively) which would also satisfy the pressure-

balance equation
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Using this form of distribution functions in the Maxwell equations and applying the

assumption������� � ������� � ������, we obtain a system of differential equations

for the particle drift- velocities:
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�
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� � �������
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"��

"�
� (2.12)

where the analytical expression for��
�� can be obtained by

��
�� �
�

���
)� � �
��� 
��
�� � ����� ��
�
��� (2.13)
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Figure 2.1: Examples of magnetic field (left) and ion drift velocity (right) hodographs

across the model magnetopause current layer. The coloured curves correspond to the

different rotation angles: black -� � �, red -� � ����, blue -� � ��� and green -

� � ���. All contours proceed from magnetosphere into magnetosheath in the counter-

clockwise direction.

The main question concerning reconnection at the magnetopause is whether it occurs

only at the regions of antiparallel field or there is also a possibility of ”component recon-

nection”. In other words, how does the stability of the boundary depend on the magnetic

field full rotation angle�. In order to solve this question we introduce a finite asymptotic

�� component at the magnetosheath side and the magnetic field rotation angle is defined

as� � � � ������
������, where the asymptotic ratio
������ in the magnetosheath

is taken.

The resulting analytical expressions for the particle drift-velocities (as they are rather

lengthy we shall skip the full expression here not to overload the text) give the solution

of the problem. The advantages of this model are that it is fully analytical and can be

directly ported in the numerical simulation and that it allows particle drifts and magnetic

field rotation in the magnetopause plane. Three examples of hodographs of ion drift ve-

locities and magnetic fields are shown in Figure (2.1). The black curves correspond to

the antiparallel asymptotic magnetic fields (total rotation angle� � �), the red curves

show the� � ���� case, the blue curves show a case of perpendicular asymptotic fields

(� � ���) and green curves -� � ���. Similar magnetic field hodographs with mag-

netic field rotation angles between��� and���� were obtained experimentally during
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the magnetopause crossings of ISEE 1 and ISEE 2 spacecraft (see e.g. Figures (8 - 12)

in Gosling et al.(1982)).

In Figure (2.1) one immediately sees the consequence of the decreasing rotation angle

of the magnetic field of a given magnitude - the total current (proportional to the linear in-

tegral of velocity hodograph) also decreases. Intuitively, this leads to stabilization of the

magnetopause against Kelvin-Helmholtz instability (KHI) and other streaming-type in-

stabilities due to weaker tangential velocity discontinuity. This argument seems to favour

the scenario of anti-parallel reconnection at the magnetopause (seeRussell(2003)).
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Chapter 3

Linear theory of instabilities in thin

Harris current sheets

3.1 Previous kinetic linear perturbation theories of thin

current sheets

Dobrowolny(1968) suggested, that the main contribution to the instability is made by

the electrons, meandering close to the neutral plane with perpendicular velocity�� � 	.

Thus, he assumed the particle orbits as straight lines and obtained very good agreement

with more accurate but much more complicated analysis. To further simplify his analy-

sis he also neglected the perturbations of the electrostatic potential and considering only

the perturbation of the main component of vector potential&�. Dobrowolny(1968) was

probably the first to suggest, that the instability is driven by a resonant mechanism of the

inverse Landau type.

The first discovery of cross-field propagating instabilities in current sheets should

probably be attributed toYamanaka(1978). He developed a linear stability theory of

current sheets, considering only symmetric perturbations (sausage-type) of the current

aligned vector-potential component and neglecting all other perturbations including elec-

trostatic. In this approximation he found two modes, of which he considered only the

electron mode as meaningful. It appeared that a linear instability can grow in thin current

sheets with half-width�� � 	��	��. Yamanaka(1978) suggested that this unstable mode
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would cause dissipation and consequently could trigger reconnection, e.g. in solar flares.

Lapenta and Brackbill(1997) further developed the linear kinetic theory ofYamanaka

(1978). They considered the perturbations of all vector-potential components but still

neglected the electrostatic perturbations. The particle trajectories near the center of the

sheet were approximated by straight lines as byDobrowolny(1968). They found that,

in general, the cross-field propagating eigen-mode of the current sheet is not necessarily

symmetric or antisymmetric about the central plane. Theoretical results were compared

to implicit PIC-code simulations with particle mass ratios up to realistic. The simulations

confirmed the growth rates predicted by linear dispersion relation. But the observed in-

stability was asymmetric kink for small mass ratios and symmetric DSI for higher mass

ratios. The growth rate of the instability slightly increased with the particle mass ratio.

Daughton(1998) reconsidered the linear instabilities of thin current sheets solving

the Vlasov-Maxwell equations for the exact particle orbits instead of using the straight-

line approach ofDobrowolny (1968). Contrary to previous analytical investigations,

Daughton(1998) took into account also electrostatic perturbations. He found that the

linear growth rate of the asymmetric DKI decreases with the particle mass ratio faster

than the growth rate of the tearing mode instability, becoming negligible for the realistic

mass ratio.Daughton(1998) considered only long-wavelength asymmetric kink modes

with ��� � 	��. He confirmed his results by a two-fluid approach in the long-wavelength

limit ��� � 	�� Daughton(1999a,b). This has put the entire previous discussion about

current-aligned instabilities of current sheets under question.

3.2 Derivation of linear perturbation theory of thin Har-

ris sheets

In our analytical and numerical investigations we shall use the following coordinate sys-

tem: X – direction of magnetic field generated by the current flowing in Y-direction, Z –

axis perpendicular to the current sheet plane (see Figure (1.1)). Throughout this chapter

we shall denote all initial unperturbed quantities by 0-subscript and all perturbations by

1-subscript.
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The unperturbed distribution function is the drift-Maxwellian

��� �
��
��


����	
���
���

���
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�
� � 
�� � ���

� � ���
���	
��

�
� (3.1)

where index� � ��  stands for ions and electrons, respectively;�� are drift velocities

of particles. Due to the charge-neutrality, the number density of both particle species

is equal everywhere (�� � �� � �). The thermal velocity of particles is defined as

�	
�� �
�
�����, where�� is temperature (which already includes Boltzmann’s constant

 ) and�� is the mass of�-type particle species.

As shown byHarris (1962), if drift velocities of the drift-Maxwell distributions are

related as����� � ������, the zero-order electric field vanishes. This leads to a current

sheet equilibrium with particle number density and magnetic field profiles:

�
�� � �� ������

�
�

��

�
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���
�� � �� ����

�
�

��

�
� (3.2)

In such configuration plasma pressure inside the current sheet
�

� ��� is exactly bal-

anced by magnetic pressure��
��
���� from outside the sheet.

In order to obtain the expression for the perturbation of distribution function we use

the Vlasov equation for collisionless plasma

"��
"(

� � � "��
"�

�
�
��


� � � ��� � "��
"�

� 	� (3.3)

From Vlasov equation we get the linear perturbation of the distribution function at mo-

mentt by integration along the unperturbed trajectories

���
(� � � �
��

� 	

��

�

�� � � ���� � "���

"�

�
#(�� (3.4)

The perturbation of the distribution function generates perturbations of the initial plasma

and current densities

	�� � �

�
���#

���

��� � �

�
����#

��� (3.5)
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We express electromagnetic fields by electrostatic and vector-potentials� and�

�� � ���� � "��

"(
�

�� ������ (3.6)

Thus we arrive at a system of D’Alambert equations for potential perturbations

��� � �

��
"���

"(�
� �	�

��
�

��� � �

��
"���

"(�
� ������ (3.7)

We combine the oscillation frequency and the wave damping/growth rate in a complex

frequency� � � � �� and consider waves propagating in the current sheet plane:� �


��� ��� 	�, so that� � � � ��* � ��+. We shall denote the angle between the wave

propagation direction and the X-axis as
. Then, in the polar coordinates we can write

� � 
� ��� 
� � � � 
� 	�.
So far we have made no serious simplifying assumptions, except linearizing the Vlasov

equation. There we assumed that the perturbation of the distribution function is small and

its derivative is small too. In order to further simplify the analysis we now make some

approximations. First, we neglect the displacement current, since the phase velocities of

the instabilities which we investigate are small compared to the speed of light

��

����
� �� (3.8)

Second, it can be shown that in our long wavelength approximation��� � � (or "�"� 
	) the equation for&� is decoupled from equations for&�, &� and�.

After substitution of expressions for electromagnetic fields into Equation (3.4)

��� �
����
����	
��

� 	

��

�
���� � "��

"(
� � � 
�����

�
� �#(�� (3.9)

Some reordering should be made in order to simplify the equation (3.9). Taking the double

vector product,� � 
����� � 
���� � � � 
� �����, and using the fact that

#

#(
�

"

"(
� � ��� (3.10)

we separate the full derivatives. We investigate the stability of the current sheet against

perturbations of the following wave form:

��
*� +� �� (� � ��
�� ���
���( � �� � ���
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Hence, applying the Fourier transformations
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we can now partially take the integral:
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Now, if we confine our theory to modes of even symmetry, for which"&��"� � 	 at

� � 	, we can use the so-called�'��( & and�'��( � approximation. Thus, variations of

potentials are small in the center of the sheet on the scale of particle orbits and we can take

& and� out of integration over time, which would simplify our analysis. This is possible

only for even modes and that is why we are not considering odd kink-type modes here,

which were considered in detail byDaughton(1998).

We shall use straight-line orbit approximation. Argumentation of this approach was

given byDobrowolny(1968) and discussed in detail byLapenta and Brackbill(1997).

In fact, by integration over time, we average the real orbit over fast nonlinear oscillations

around the neutral plane. Because average magnetic field�, in which particles are bounc-

ing is zero, after averaging one arrives at a situation, that although particles are oscillating

around� � 	 plane, the projection of their motion in� � 	 plane occurs as if magnetic

field is absent and particles move along straight lines, in analogy to the guiding-center

motion.

For unstable modes, i.e. for� � 	, the perturbation grows with time as���
�(� and

the integral over(� converges:� 	

��


��� � ���#(
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��� � ���
� (3.13)

Thus, we can write the system of equations (3.7) in the form
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where we introduce the plasma frequency��
�� � ��

�
��
�����, � � ��  for ions and

electrons, respectively.

In system of equations (3.14) all functions under the integral, which are antisymmetric

in �� will give 0 after integration. Besides, one should notice that�� is not included in the

� � � expression, since� lies in the X-Y plane. One could show that, due to symmetry

properties of��, if term with &�� is included formally in the expression�� � � in the

formulas for current and density perturbations���, ��� and	��
&����

� � � � ������#
�� � 	��

&����
� � � � ������#

�� � 	� (3.15)�
&����

� � � � ����#
�� � 	�

Thus, our system (3.14) is decoupled from perturbations of&��. So, implicitly the Lorentz

gauge condition that we use can be written as:

���&�� � ���&�� �
"&��

"�
� ��

��
�� � 	� (3.16)

Although&�� is not necessarily 0 it doesn’t play any significant role for the instabilities

propagating in the current sheet plane. Indeed, wave and particle motion along the z-axis

which could generate&�� is strongly suppressed by the current sheet symmetry. That is

why in our further derivations we shall omit&�� and describe the electromagnetic part of

instability using with&�� and&�� components. However, the&�� can be always derived

from the gauge relation (3.16).

From the system of equations (3.11) we obtain for the Laplace operator� � #��#�� � ���

Thus, we get
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For convenience in further computations we introduce dimensionless variables, � ���,

-� � � � �������	
��,.� � ����	
��and express the integrals over��, �� in terms of plasma

dispersion function:
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#(� (3.18)

Following the approach ofBulanov and Syrovatskyi(1974), we consider the current sheets

as infinitely thin. Then, the equations for potentials have the form

#�&

#��
� ��& � .Æ
��� (3.19)

where we use& for �� &��� &�� and. for the right-hand expressions from Equations (3.17).

The solutions of Equation (3.19) have the form

&
�� �
.

�
������ (3.20)

The perturbations are limited to a thin region across the neutral sheet. Then, if we integrate

Equation (3.19) in the layer of thickness�Æ along Z-axis, we get� �Æ

�Æ

#�&

#��
#� � ��

� �Æ

�Æ

&#� �
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�Æ

.Æ
��#�� (3.21)

It is easy to see, that withÆ tending to zero the second integral in the left-hand part of

Equation (3.21) vanishes. Thus, in the limit of infinitely thin current sheet we get

&�
� � &�

� � .
	� � 	� (3.22)

Here we used&�
� and&�

� notations to indicate derivatives as�  	 from above and from

below. Linking solutions of the form (3.20) at the neutral plane gives us

&�
� � &�

� � ���&
	�� (3.23)

This allows us to reduce the problem of coupled differential equations (3.14) to much

more simple algebraic system and write the system of equations in the following form

�,&�� �
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In fact, one could easily verify that this solution represents the, � �� � � expansion

of the standard solutions, expressed before via Legendre polynomials)  
� 
����� (seeDo-

browolny(1968) andGaleev and Zelenyi(1976)).

To make the formulas more compact we used/� instead of/�
-��. After rearranging

the expressions in (3.24) we obtain a system of algebraic equations for perturbations of

potentials:

0��&�� � 0��&�� � 0���� � 	�

0��&�� � 0��&�� � 0���� � 	� (3.25)

0��&�� � 0��&�� � 0���� � 	�

The coefficients of the matrix in Equations (3.25) are:
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Finally, we set real and imaginary parts of determinant of this system of equations to zero

and obtain the dispersion relation:

�!"��!0## � 	�

�!"��!0## � 	� (3.27)

In order to consider separately the action of electromagnetic and electrostatic modes we

also looked for solutions of the reduced matrix. Thus, to exclude the perturbations of the

electrostatic potential, instead of determinant of�� � matrix we used its�� � minor

�!0��0�� � 0��0��# � 	�

�!0��0�� � 0��0��# � 	� (3.28)

3.3 Numerical solutions of dispersion relation

In our case the dispersion relation (3.27) is a system of non-linear non-algebraic equations

in �, �, � and
 coordinates. The region of interest for present investigation extends from

0 to approximately��� (ion gyro-frequency) in� and�, from 0 to	����� in wavenumber
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Figure 3.1: Dispersion relation for the tearing mode. Solid curve - including the influence

of electrostatic potential, dashed curve - with� perturbations neglected.

� and from 0 to��� in 
. We investigate the dependence of dispersion relation solutions

on such parameters as�, 
, 	�����. For comparison with numerical simulation results we

also find solutions of the dispersion relation for artificial ion-electron mass ratios.

There are no unique methods for solving systems of non-linear non-algebraic (in re-

spect to wavenumber and complex frequency) equations. Since we have a system of only

two equations (3.27) and the number of variables is four, the only way out is to fix two

variables, according to some assumptions, and vary the other two. We applied the fol-

lowing procedure to find solutions: the real and imaginary parts of the dispersion relation

were plotted in� - � coordinates and the region were they both turned to 0 was localized.

Further, to find an exact solution, the Newton - Raphson method (see e.g.Press et al.

(1988)) was applied in the vicinity of this point.

From calculation point of view, the simplest case is the tearing mode, because then


 � 	 and� � 	. Figure (3.1) shows the dispersion of the tearing modes with and without

taking electrostatic perturbations into account.

Figure (3.2) shows the dependence of the tearing-mode growth rate on the current

sheet thickness. Logically, thinner current sheets are less stable.

The pairs of curves presented in Figures (3.1,3.2) are almost identical. This verifies

the theoretical assumption ofDobrowolny(1968) that the tearing-mode instability does

not depend on electrostatic potential perturbations and contradicts the linear theory and

PIC-simulations ofHoshino(1987). The same results are obtained if only one perturbed

component&�� is considered.
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Figure 3.2: Tearing mode growth rate for different sheet thickness. Solid curve - including

the perturbations of electrostatic potential, dashed curve -� neglected.
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Figure 3.3: Dispersion relation for sausage quasi-modes (left panel - real frequencies,

right - growth rates) when perturbations of� are suppressed. Solid curve - ion quasi-

mode, dashed curve - electron quasi-mode.

Quite different situation appears with the mode propagating in the current direction.

Since our theory was developed only for symmetric perturbations, this mode corresponds

to the sausage-type instability.

When the electrostatic potential is excluded from the consideration, two distinct branches

of solutions are found (we shall further call them quasi- solutions or quasi-modes). One

corresponds to electron, the other to ion drift. Figure (3.3) shows real frequencies and

growth rates for ion (solid line) and electron (dashed line) quasi-modes. One can see

that for electron quasi-mode the real frequency is negative, which means that the wave

propagates in the direction of the electron drift. This mode was considered in detail by

Yamanaka(1978).

From the ratio of electron and ion growth rates in Figure (3.3) it is clear, that the ion
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Figure 3.4: Dependence of sausage quasi-mode frequencies (left panel) and growth rates

(right panel) on the current sheet thickness. Solid curve - ion quasi-mode, dashed curve -

electron quasi-mode.

quasi-mode should dominate for all wavelengths, contrary to assumption ofYamanaka

(1978). The dependence of wave properties on the sheet thickness is demonstrated in

Figure (3.4).

It is difficult to draw direct comparison of these results with those ofLapenta and

Brackbill (1997), because these authors did not discuss real frequencies or wavelengths

of the modes, for which the growth rates were drawn (for��� range 0.1 to 0.5 the absolute

values of growth rates differ by an order of magnitude). But the general dependence of

instability growth rate on the sheet width in our case is the same as reported by them (for

the range considered here). This contradicts the main result ofYamanaka(1978) that the

wave becomes unstable only for current sheets with�� � 	��	��. When the electrostatic

potential perturbations are taken into consideration both branches of solution disappear.

They reappear only if the particle mass ratio����� is artificially decreased to values of

the order of 10.

In order to trace the transition from tearing to sausage mode, we investigated the

dependence of dispersion relation solutions on the propagation angle
. Figure (3.5)

shows several branches of solutions for current sheet width�� � 	�� and wave num-

ber� � ����	��. The left-hand panel demonstrates the real frequencies, the right-hand

one shows the growth rates. The thick solid curve corresponds to electron mode which is

obtained with electrostatic potential taken into consideration. The thin dashed line shows

the properties of the electron quasi-mode when� perturbations are absent. The thin solid

line shows the ion quasi-mode. The latter appears solely when the perturbations of� are
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Figure 3.5: Dependence of dispersion relation solution (left panel -�, right panel -�) on

the propagation angle
. Thick solid curve - electron mode obtained when electrostatic

perturbations are included, thin dashed curve and thin solid curve - electron and ion quasi-

modes with perturbations of� neglected, respectively.

neglected.

It follows, that the perturbations of electrostatic potential stabilize the modes, which

propagate at angles larger than approximately��� to the magnetic field direction. Thus,

in accordance with the previous subsection we see, that in the general case of linear per-

turbation theory for long wavelengths, there are no sausage-type solutions when perturba-

tions of� are taken into account. This is in perfect agreement with findings ofDaughton

(1999a) (in particular, see Figure 8 on page 1337 therein).

The dependence of oblique modes with� � ����	�� on the sheet thickness is demon-

strated in Figure (3.6). All solutions were obtained with full dispersion relation Equa-

tion (3.27). As expected, thinner current sheets are found to be more unstable against

tearing-type instabilities. But the oblique modes are strongly stabilized with the increas-

ing propagation angle.

Perhaps, the main result of this linear perturbation theory is reflected in Figure (3.5).

Namely, this diagram shows that the linear long-wavelength ion and electron oblique

modes (including the cross-field propagating sausage mode) found in previous linear the-

ories are artifacts of neglecting the electrostatic part of perturbations. As soon as the

problem is treated with the full contribution of the electrostatic potential perturbations,

these modes vanish, leaving only the aperiodic tearing-mode instability. A similar re-

sult has been previously obtained byDaughton(1998) in a more sophisticated investi-
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Figure 3.6: Dependence of dispersion relation solutions (left panel -�, right panel -�)

on the sheet thickness for several propagation angles
. Thick solid curve - tearing mode

(
 � 	), thick dashed curve -
 � ����, thin solid curve -
 � ���, thin dashed curve -


 � ���.

gations of the long-wavelength anti-symmetric kink-mode instability of current sheets.

This finding puts under question the observed kink and sausage instabilities obtained in

numerical simulations. As was shown bySilin et al. (2002), for artificial particle mass

ratio����� � �	 the instability still exists in all regimes, while for higher mass ratios

����� � �		 all the oblique linear modes are suppressed. However, it turns out that in

different simulations the kink and sausage modes still exist for high mass ratios, up to

realistic (see e.g.Ozaki et al.(1996);Büchner and Kuska(1996);Lapenta and Brackbill

(1997, 2002);Daughton(2002)). There are at least two plausible explanations for this

fact. One is that the long-wavelength approximation��� � � usually adopted in the lin-

ear theories does not correspond to the fastest-growing modes. The other is that there are

some processes which can trigger the current instabilities nonlinearly. To name just a few

- Kelvin-Helmholtz instability (KHI), ion-ion kink instability, lower-hybrid-drift instabil-

ity (LHDI). In order to consider the nonlinear evolution of current sheets we developed

the numerical code which directly integrates Vlasov-Maxwell system of equations. The

results of this investigation are discussed in the following chapters.
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Chapter 4

Vlasov-code simulations

4.1 Description of the numerical code

The main feature which distinguishes the Vlasov-code simulations from other numeri-

cal methods of plasma simulation, such as magneto-hydro-dynamic (MHD), hybrid and

particle-in-cell (PIC) codes, is that plasma is represented by particle distribution func-

tions. For comparison, in MHD codes plasma is considered as fluid, in PIC-codes as an

ensemble of so-called super-particles, in hybrid codes - ions are represented by super-

particles and electrons by fluid. MHD-codes allow diagnostics only of the mean local

velocity of plasma. In PIC-codes, the number of super-particles per cell usually does not

exceed 100. In case of inhomogeneous plasmas, the number of particles in low-density

regions even turns to zero. Thus, information about particle distribution in the velocity

space is available only in dense plasma regions. But even there the number of particles

per each velocity dimension is only�		��� � �.

The advantage of the Vlasov approach is the detailed information about the distribu-

tion of particles in the velocity space. This allows investigations which cannot be carried

out in MHD or PIC approaches, e.g. of collective kinetic effects, like resonant wave-

particle interactions, pitch-angle scattering, etc. The distribution functions have to be

sampled by at least 15 - 20 points in every velocity dimension. Besides, the local plasma

density changes only the amplitude of the distribution and does not affect the velocity

range coverage. Theoretically, such simulation corresponds to using a PIC code with
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3400 - 8000 super-particles in every cell.

There are, however, limits of application of Vlasov-code simulations. First, the classi-

cal Vlasov equation describes only collisionless plasmas, i.e. very hot and rarefied matter.

It cannot be directly applied to simulations of laboratory and stellar plasmas, where col-

lisions are important. Also, the Vlasov approach is based on consideration of a limited

volume in velocity space. Thus, high energy tails of distribution function usually can-

not be taken into consideration. This is, however, not of great concern since the classical

Vlasov equation is valid only for non-relativistic interactions. In order to describe very hot

plasmas or energetic tails of particle distributions one has to use generalized relativistic

kinetic equations. Thus, the present work is only limited to the non-relativistic energy-

range, which is, however, sufficient for considering most processes in magnetospheric

plasmas where relativistic particles are rare and do not produce significant influence.

An important question is the normalization of the code and the selection of the con-

sistent set of physical and technical parameters for each simulation. We shall briefly list

the physical and technical constraints for a typical kinetic simulation and discuss the con-

sequent parametric relations between the input parameters.

� Courant-Friedrichs-Levy condition for resolving the electromagnetic wave propa-

gation:�� � �#(

For all leap-frog numerical schemes, except iterative ones, the information at every

time step is updated only using the information at the adjacent grid points. That

is why, if the time step is so large that the electromagnetic waves propagate the

distance longer than one space grid, the usual finite-difference numerical scheme

produces a non-physical result.

� Resolution of electrostatic interactions:�� � ����

It has been shown byBirdsall and Langdon(1991) that in case the grid space con-

tains more then approximately 3 Debye radii a strong numerical instability arises

which resembles a resonant interaction of particle beam with electrostatic perturba-

tions.

� Fitting of at least 3 LHD wavelengths in the simulation box:�� � �����

Since LHDI is the fastest instability, which is expected to grow in our simulation
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we have to resolve its wavelength. And since periodic boundary conditions allow

only an integer number of wavelenghts in the simulation box, there is a danger of

artificial modifying the wavelength by introducing a box length slightly smaller or

slightly larger than the natural wavelength. Thus, it is important to have as many

wave periods in the box as technically possible, and 3 is a kind of compromise.

� Exclusion of relativistic particles:� � ��	
��

Since the classical Vlasov equation does not describe relativistic particle dynamics,

one has to make sure that the limits of the velocity space are fixed at the appropriate

values. Usually three thermal velocities are sufficient to confine the Maxwellian

distribution without cutting away too many energetic particles.

� Charge-separation condition:��� � �!��

This condition has been shown to play essential role during the charge separation

processes. Besides, this situation is also typical for the magnetospheric plasmas.

That is why it is important to comply with this relation when investigating electro-

static effects in the magnetospheric plasmas.

For our investigations we have to consider spatial scales of the order of several ion

gyroradii 	�� on temporal scales of the order of several ion gyroperiod���
�� . These are

two basic normalizing units in our system. The unit velocity is the ion thermal velocity

�	
�� � 
������
��� � 	�����. In order to fully determine the simulated plasma regime we

input five dimensional values, namely the speed of light�, the elementary charge, a mass

of proton��, the maximum plasma density�� and the ion temperature��. Additionally,

we have to define some dimensionless parameters: particle mass and temperature ratios

����� and�����, current sheet half-width and simulation-box sizes in terms of ion gy-

roradii���	�� and1�� 1�� 1�, the number of grid-points in every dimension�*, �+, �� and

��, and the time-step in terms of electron gyrofrequency#( � 	�	���!�.

In order to allow the growth of investigated global instabilities the simulation box

must usually contain at least several ion gyroradii in every spatial dimension and at the

same time the smallest scale (electron gyroradius or Debye radius) must be also resolved

by at least one grid-step in order to prevent numerical instability. This dilemma poses

a limit on the particle mass ratios (we could only reach as high as����� � �� in 3D
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and����� � ��	 in 2D simulations so far). In a typical three-dimensional simulation

we used��� �� � �� coverage in the velocity space and�	� �	� �	 resolution in the

configuration space which amounts to approximately 30 Gb of RAM. Such a high memory

task can be only completed on a parallel machine. The production runs were carried out

on parallel IBM machines RS6000-SP and p690. The details about the parallelization

techniques and efficiency and original technical solutions are discussed in the following

section.

Our realization of Vlasov code consists of four separate blocks. First, the particle

distribution functions are initialized as drift-Maxwellians:

��
�� �� ( � 	� �
�
��


����	
���
���

��� 
��
�
� � 
�� � ���

� � ���
���	
��

�� (4.1)

where� � ��  for ions and electrons, respectively. The number density for both types of

particles is set equal to ensure charge-neutrality.

The charge and current densities are integrated (zero- and first-order moments of the

distribution function):

	 �

�

�

�
��#

��

� �

�

�

�
���#

��� (4.2)

Further, the Maxwell equations for electromagnetic fields are solved. In our version

of the code the electromagnetic fields are expressed in terms of electrostatic and vector-

potentials:

� � ���� "�

"(

� ����� (4.3)

The potentials are calculated by solving the Poisson and D’Alambert equations using the

Coulomb gauge (� �� � 	):

�� � � 	

��

��� �

��
"��

"(�
� ����� (4.4)

Because we want to suppress the propagation of electromagnetic waves and subsequent

heating of plasma we omit the part of displacement current�����"��"(. There are two
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reasons for doing this. The technical reason is that fluctuations during the initialization of

simulation generate non-physical electromagnetic waves which heat the plasma and de-

stroy the equilibrium within the first ion gyroperiod. Another theoretical argument against

the displacement current term is that the investigated phenomena are all slow compared

to the electromagnetic waves, i.e.
��
����� � �. For example, linear theories, which

describe the instabilities investigated by our code, neglected completely the displacement

currents. Thus, provided the technical problem with the initial noise and plasma heating

could be eliminated, in the long-term dynamics the displacement currents would cause

only a small error, probably comparable to the errors introduced by finite differentiation

methods.

Finally, the electromagnetic fields are used to solve the Vlasov equations in order to

update the particle distribution functions:

"��
"(

� � � "��
"�

�
�
��


� � � ��� � "��
"�

� 	� (4.5)

From this step the program returns to Equation (4.2) and the cycle repeats. This is the

main program loop. The numerical analogues of Equations (4.2-4.5) are readily obtained

by replacing integrals and derivatives by the numerical time- and space-centered sums

or differences, respectively. The only exception is the Poisson equation (4.4), which is

solved by the Gauss-Seidel iterative method (see e.g.Press et al.(1988) andHockney and

Eastwood(1988)).

4.2 Parallelization architectures

Because in our simulations we describe plasma by particle distribution functions in the

six-dimensional phase space (three velocity coordinates and three configuration space

coordinates) we have to provide sufficient computer memory and hence also processing

power for our simulations. This can only be done on massively parallel computers. Typi-

cal requirements are of the order of 10 gygabytes (Gb) of memory. In order to process the

data arrays in acceptable time we used up to 64 CPU’s. We have implemented several par-

allel architectures, which are optimized for use with various types of parallel machines,

depending on the memory access. In this section we shall describe the basic principles of
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Figure 4.1: Schematic data-array decomposition between CPU’s (left panel) and fork-join

execution scheme (right panel) in parallel OpenMP region.

parallel computing and also give examples of particular technical solutions implemented

in our numerical code.

4.2.1 OpenMP

One of the simplest parallelization standards is the OpenMP library (for details see”Sci-

entific Applications in RS6000 SP Environments” at www.redbooks.ibm.com). On a

machine with shared memory such as IBM p690 the parallelization is straightforward.

The code is executed in a usual sequential manner and only the massive calculation loops

are parallelized. Within each parallel loop the array of data is shared between different

CPU’s. The domain decomposition of the data array and the so-called ”fork-join” ex-

ecution of the code in the parallel region are shown schematically in Figure (4.1). In

all our parallel simulations the domain decomposition was carried out along the spatial*-

coordinate. For the optimal performance one has to ensure that the size of the decomposed

array, i.e. the number of grid-points in the*-dimension, is proportional to the number of

CPU’s used. Then the job will be shared equally between all CPU’s and the time losses

for synchronization will be minimized.

The use of OpenMP is enabled by including the header file

#include <omp.h>

and by appropriate comments in the makefile during compilation and linking

mpcc_r -c -O3 -qsmp=omp ...
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and

mpcc_r -lm -o vlasov -qsmp=omp ...

With the option�,��% � 2�(' every loop in the program will be parallelized automati-

cally, which often leads to a less efficient execution of the run, since time will be lost for

parallelization and synchronization of all small loops. With the option�,��% � '�%

only the loops which are provided with a preprocessor header, e.g.

#pragma omp parallel for private(i)

will be executed in parallel. This allows to efficiently share the massive calculations

between the CPU’s and at the same time avoid the time losses during parallelization of the

small loops, where the calculation time is comparable or smaller than the parallelization

and synchronization time.

4.2.2 Message-Passing Interface (MPI)

On parallel machines with distributed memory where each CPU has access to its own

block of memory, e.g. a Linux-PC cluster, the OpenMP parallelization looses sense. In-

stead, one has to use the message-passing interface (MPI) library (details underwww.mpi-

forum.organd”RS6000 SP: Practical MPI Programming” atwww.redbooks.ibm.com).

Being probably the most wide-spread and thus fully portable parallelization library, MPI

has the only disadvantage that it must be explicitly programmed in the code. The MPI

library is activated by linking the header file

#include <mpi.h>

The parallel environment is launched by the commands

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &npid);

where�%3'�� and�%�# correspond to the total number of MPI-tasks and the private id-

number of a given task. The aim of parallelization is to decrease the calculation time
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Figure 4.2: Schematic domain decomposition between nodes (left panel) and parallel

execution scheme (right panel) of an MPI code.

or to bind together separated memory resources. From this point of view it is worth to

initialize only one task on every CPU/memory block, although technically it is possible to

launch more than one task on every CPU. Now, the domain decomposition is carried out

in the same manner as in the shared-memory case, with the only exception that each CPU

”knows” only its own part of the data and ”does not know” anything about the rest of the

field. The domain decomposition and the execution scheme are illustrated in Figure (4.2).

In every calculation loop corresponding to a differential equation, each CPU needs the

parts of the data-arrays from the neighbours directly adjacent to it. In the Equations (4.3-

4.5) we encounter the following spatial derivatives along the x-axis:"��"*, "&��"*,

"&��"*, "&��"*, "���"* and "���"*. It means that the layers of arrays containing

�, &�, &�, &�, �� and�� must be sent from each CPU to its neighbours. In a typical

production run the size of such data blocks can reach up to 16 Kb for the potentials

and up to 60 Mb for the distribution functions. Such volumes of data do not cause any

significant time delays on machines connected by Gigabit Ethernet or on IBM RS6000-

SP with high performance switch. An example of distribution function layers exchanged

between different MPI-tasks is given below:

Vlasov_solver(...);

for(ip=0;ip<nprocs;ip++){

if(npid==ip){

if(ip==0){
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for(i=0;i<sx;i++){right[i]=fi[sall-2*sx+i];}

istat=MPI_Send(&right[0],sx,MPI_FLOAT,ip+1,0,

MPI_COMM_WORLD);

}

if(ip>0 && ip<nprocs-1){

istat=MPI_Recv(&right[0],sx,MPI_FLOAT,ip-1,0,

MPI_COMM_WORLD,&status);

Vlasov_bound(...);

for(i=0;i<sx;i++){right[i]=fi[sall-2*sx+i];}

istat=MPI_Send(&right[0],sx,MPI_FLOAT,ip+1,0,

MPI_COMM_WORLD);

}

if(ip==nprocs-1){

istat=MPI_Recv(&right[0],sx,MPI_FLOAT,ip-1,0,

MPI_COMM_WORLD,&status);

Vlasov_bound(...);

}

}

}

istat=MPI_Barrier(MPI_COMM_WORLD);

for(ip=0;ip<nprocs;ip++){

if(npid==ip){

if(ip>0){

for(i=0;i<sx;i++){left[i]=fhelp[i];}

istat=MPI_Send(&left[0],sx,MPI_FLOAT,ip-1,0,

MPI_COMM_WORLD);

}

if(ip<nprocs-1){

istat=MPI_Recv(&left[0],sx,MPI_FLOAT,ip+1,0,

MPI_COMM_WORLD,&status);
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Vlasov_bound(...);

}

}

}

istat=MPI_Barrier(MPI_COMM_WORLD);

In this code passage first the Vlasov equation is solved in the inner volume of each

domain. Then, every MPI-task with id-number�%�# first sends its right part of the array

�41% consisting of�* elements of size5)6 7�8&� to its right neighbour with id-

number�%�# � �. Then each task receives the parcel and solves Vlasov equation at the

left-most boundary of the domain. The thread corresponding to the left-most domain

(�%�# �� 	) only sends the parcel and the thread corresponding the right-most domain

(�%�# �� �%3'�� � �) only receives the parcel. Then, the left-most boundaries of all

threads are exchanged in the similar manner. Afterwards the left-most layer from the left-

most node�%�# �� 	 is sent to the right-most node and, vice-versa, the right-most node

sends the right-most part of its distribution functions arrays to the left-most node in order

to satisfy the periodic boundary conditions.

A particularly tricky situation occurs with the iterative Gauss-Seidel solver for the po-

tentials. The point is that this loop carries out the differentiation many times per cycle. In

this case transmitting/receiving even small packages of data is too costly. In order to avoid

it we gather the arrays of charge and current densities from all MPI-tasks on the Master

(�%�# � 	) and solve the iterative routine locally on the Master-thread, while other tasks

are suspended. Then, the necessary domains of the resulting potentials are redistributed

among all the threads. Compared to jobs parallelized with OpenMP architecture, the pro-

ductivity of MPI-runs increases slower with the increasing number of CPU’s, because the

inter-processor traffic (the number of communication commands and the volume of data

sent) increases proportionally.

4.2.3 Hybrid architecture

The most general case of parallel architecture is the ”hybrid” one when MPI and OpenMP

libraries are combined (recommended reading”Scientific Applications in RS6000 SP
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Figure 4.3: Schematic domain decomposition between nodes and CPU’s (left panel) and

execution scheme (right panel) of a code with hybrid parallel architecture.

Environments” atwww.redbooks.ibm.com). This architecture has been successfully em-

ployed for� �
�
� Vlasov simulations on the IBM RS6000-SP machine at GWDG. On this

machine four processors have access to a common 2 Gb memory block. This unit is

called a node. The nodes are connected between each other by the IBM high-performance

switch, which enables high-rate data traffic between the nodes. Thus, it makes sense to

start a single MPI task on each node to avoid the MPI-communications within the single

memory block and keep only the necessary data traffic between the isolated domains. At

the same time the processing of the data in each domain is carried out by all the CPU’s

which have access to it, i.e. under the OpenMP parallelization. This architecture uses

the advantages of both standards in the most rational way. It is also portable as is on any

other hardware, e.g. several IBM Regatta machines connected by Ethernet. The domain

decomposition and the execution line are schematically illustrated in Figure (4.3).

An example of hybrid parallel code is given below.

#ifdef _OPENMP

#pragma omp parallel for private(i)

#endif

for(i=0;i<nxnz;i++){

glsigma[npid*(nxnz-nz)+i]=sigma[i];

}

for(ip=0;ip<nprocs;ip++){

if(npid==ip){

if(ip==0){
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for(i=1;i<nprocs;i++){

istat=MPI_Recv(&glsigma[i*(nxnz-nz)],nxnz,

MPI_DOUBLE,i,0,MPI_COMM_WORLD,&status);

}

}

if(ip>0){

istat=MPI_Send(&glsigma[ip*(nxnz-nz)],nxnz,

MPI_DOUBLE,0,0,MPI_COMM_WORLD);

}

}

}

istat=MPI_Barrier(MPI_COMM_WORLD);

for(ip=0;ip<nprocs;ip++){

if(npid==ip){

if(ip==0){

Poisson(glsigma,glphi,schritt);

}

}

}

istat=MPI_Barrier(MPI_COMM_WORLD);

for(ip=0;ip<nprocs;ip++){

if(npid==ip){

if(ip==0){

for(i=1;i<nprocs;i++){

istat=MPI_Send(&glphi[i*(nxnz-nz)],nxnz,

MPI_DOUBLE,i,0,MPI_COMM_WORLD);

}

}

if(ip>0){

56



istat=MPI_Recv(&glphi[ip*(nxnz-nz)],nxnz,

MPI_DOUBLE,0,0,MPI_COMM_WORLD,&status);

}

}

}

#ifdef _OPENMP

#pragma omp parallel for private(i)

#endif

for(i=0;i<nxnz;i++){

phi[i]=glphi[npid*(nxnz-nz)+i];

}

istat=MPI_Barrier(MPI_COMM_WORLD);

In this passage the local arrays of charge density��9�2 are gathered from all nodes to the

array91��9�2 on the Master-node. Notice that all assignment operations on each node

are provided with the OpenMP statements. After the Master-node solves the Poisson

equation using the charge density91��9�2 and records new values of the electrostatic

potential in91%4� array the appropriate parts of this array are distributed among other

nodes and copied to usual%4� data-set.

The efficiency of the production runs on different machines, with different numbers

of CPU’s and different parallelization can be estimated by the calculation time per one

program cycle. The time measured for this purpose is not the CPU-time but the so-called

”wall-clock time”. Instead of standard�1'��
� function it is measured by the function

double zeit(void){

static double tima=0.;

double tim, t=0.;

tim=(double)MPI_Wtime(); t=tim-tima; tima=tim;

return (t);

}

Every time the function��(
� is called it returns the time in seconds which elapsed since

it was called last time. Contrary to the�1'��
� function which has different values on
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Figure 4.4: Logarithm of wall-clock time per one program cycle (logarithmic scale) of

OpenMP (red green and cyan lines) on IBM p690 and hybrid parallelization techniques

on IBM RS6000-SP (blue lines) for different numbers of CPU’s used. Solid lines show

the full program cycle duration, dashed lines correspond to fully parallel part of the cycle.

The cyan lines are drawn for the run with 30 Gb memory block, the green - 8 Gb, red and

blue - 800 Mb.

different CPU’s, the5)6 $(��
� function is uniquely defined on all CPU’s/MPI tasks.

The time required for one program cycle depends on the number of CPU’s involved

can be estimated as approximately

�( �
(�"#�
:!�$

� (��� �:!�$ � (4.6)

where(�"#� is the total calculation time and(��� is the time needed for synchronization,

parallelization and communication. The first term(�"#� is usually proportional to the size

of the memory block used by the program, while the other,(���, is constant. Thus, it

is impossible to separate the diagnostics of the program efficiency from its memory con-

sumption. Figure (4.4) demonstrates this effect. In this figure we compare relative calcu-

lation time (in seconds, logarithmic scaling) of a� �
�
� Vlasov-code test-run with approx-

imately 800 Mb on IBM RS6000-SP with hybrid architecture (blue lines) and OpenMP

version with 800 Mb, 8 Gb and 30 Gb (red, green and cyan lines, respectively) memory

on IBM p690 machine. The solid lines correspond to the total program cycle (integration

of distribution function moments, calculation of potentials and electromagnetic fields and

solving the Vlasov equation), while the dashed lines show only the fully-parallelized part

of the cycle (without iterative Gauss-Seidel solver). For the 800-Mb memory test-run
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the amount of calculations is rather small and the synchronization and communication

time with the increasing number of CPU’s become comparable to the calculation dura-

tion. Hence, the strong saturation tendency in both red and blue dashed curves. The

solid red and blue curves even show the increase of the calculation time because they

include a sequential part which is not accelerated by the use of more processors, but the

synchronization and traffic duration before and after it increase. However, for massive

production runs with large memory the amount of calculation work exceeds significantly

the synchronization and communication part and the time gain with more CPU’s is very

efficient. Thus, one can see, that it takes longer to execute a small-memory job on 32 or

64 CPU’s than on 16, while the high-memory jobs may still run faster on an even larger

number of processors.
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Chapter 5

Simulation results

5.1 Thin current sheets with anti-parallel magnetic fields

5.1.1 Resonant interaction of lower-hybrid drift waves with ion flow

As we have already said in the introduction section, in the regions of plasma density gra-

dients a fast lower-hybrid drift instability (LHDI) is excited (see e.g.Krall and Liewer

(1971);Davidson and Gladd(1975);Davidson et al.(1976);Huba et al.(1978)). This

mode is driven unstable by the diamagnetic current produced by the pressure inhomogene-

ity. Originally, it was suggested that the LHDI could increase the reconnection growth

rate by dissipating magnetic field energy. However, it is strongly dependent on the local

plasma beta and is suppressed near the current sheet proper. Some numerical investiga-

tions demonstrated that the LHDI is not completely stabilized in the high-beta inner region

of the current sheetWinske(1981);Tanaka and Sato(1981). Also, the detailed consid-

eration of kinetic effects for both particle species revealed strong tearing mode growth

rate increase in the presence of LHDI (seeSundaram and Fairfield(1995, 1996)). There

are at least two important reasons why numerical simulations are more favourable for

studying this problem. First, the sharp gradients at the current sheet edges might render

the local analytical description of the instability invalid. Second, the nonlinear phase of

the instability, interaction of different modes and various kinetic processes can only be

self-consistently described in simulations, while analytical theory considers each process

separately.
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Figure 5.1: Linear dispersion relations for lower-hybrid drift waves as given byHuba

et al.(1978, 1980): left panel - oscillation frequency, right panel - growth rates. For direct

comparison with simulations the dispersion relations are calculated for particle mass ratio

����� � ��.

In Harris-type current sheets the drift velocities of particles are inversely proportional

to the thickness of the sheet and related by the particle temperature ratio:

�� � ��	
��	�����

�� � ��������� (5.1)

As follows from Figure (5.1), the fastest-growing LHD waves are excited in the re-

gions of maximum density gradient at the edges of the current sheet. At the center of the

current sheet the waves do not grow and further to periphery longer waves tend to be more

unstable. The LHD waves, drifting at the diamagnetic drift velocity, encounter a positive

slope of ion distribution function, i.e. more ions which are faster than the wave and fewer

ions which are slower than the wave. With the counter-streaming electrons the situation

is opposite - the majority of electrons drifts against the wave and only few faster than the

wave. In this situation the free energy of the ion flow can be transformed to amplify the

wave through the inverse Landau resonance. The electrons, on the other hand act to damp

this mode through the direct Landau-resonance.

In order to demonstrate the resonant wave-particle interactions through Landau damp-

ing we diagnose the perturbations of the particles’ distribution functions. Figure (5.2)

demonstrates typical perturbations of particle distribution functions as a result of resonant
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Figure 5.2: Two-dimensional perturbations of local distribution functions (ions - left,

electrons - right) at the edge of a current sheet. Upper panel shows the initial distribution,

lower panel corresponds to the time(��� � �$ obtained in simulation with particle mass

ratio����� � ��.

interaction with LHD waves. One sees a prominent peak forming in ion distribution near

�� � �	
��, which corresponds to the group velocity of LHD waves. In the electron dis-

tribution the perturbation is smoother, since the trapping condition is fulfilled in a wider

phase space volume, but the tendency is the same - an increase of electrons drifting in

the positive Y-direction is seen. This situation is encountered in the local potential well,

the configuration space region with local electrostatic potential minimum. At the poten-

tial barrier the situation is inverse - there is a lack of particles in the vicinity of LHD
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Figure 5.3: Perturbations of reduced local distribution functions (ions - left, electrons -

right) at the edge of a current sheet. Upper and lower panels corresponds to potential

well and potential barrier, respectively. The dashed lines show the initial Maxwellian

distributions. Results of Vlasov-code simulation with particle mass ratio� ���� � ��.

group velocity. For comparison, we show reduced distribution functions with only one

dimension along�� at local potential well and at local potential barrier (Figure (5.3)).

As a result of resonant amplification by ions, the lower-hybrid drift waves grow ex-

ponentially with growth rate of the order of ion gyrofrequency and expand from the cur-

rent sheet edges further to the periphery and towards the neutral plane (Figure (5.4)). In

the Figure (5.4) we plotted the Fourier component of current-aligned electric field (nor-

malized to��) corresponding to the fastest-growing LHD wave mode plotted versus the

cross-current sheet Z-axis and time. The colour coding shows that the LHD waves are

first excited at the current sheet edge (in accordance with the linear theory prediction) and

then the domains of LHD activity expand, also towards the high plasma beta regions near

current sheet center.
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Figure 5.4: Temporal evolution of current-aligned electric field Fourier component cor-

responding to the dominant LHD wave mode revealing penetration of LHD waves to the

current sheet center.

5.1.2 Coupling between the resonantly amplified lower-hybrid drift

waves and the eigenmodes of the current sheet

As was demonstrated by eigen-mode theory ofYoon et al.(2002), the LHD waves are

the higher-order eigen modes of thin current sheets. Apart from these eigen modes

localized at current sheet edges, there are also global modes, which grow at the cen-

tral plane of the current sheet. A linear instability theory or eigen-mode theory cannot

self-consistently describe the interaction between different eigen modes. That is why

numerical simulations are necessary to solve such problems. In our Vlasov-code sim-

ulations we investigated the triggering of global current sheet oscillations by the LHD

waves. It appeared that as the LHD waves from the opposite edges penetrate to the neu-

tral plane. Being completely independent from each other, they can have any relative

phase shift. Since a whole spectrum of different LHD waves is excited, sometimes the

dominant modes at the opposite edges of the current sheet may even have slightly dif-

ferent wavelengths and frequencies. As a result, the interaction of these waves can lead

to excitation of both symmetric sausage-modes and asymmetric kink-modes with equal

probability. We propose to call this global current sheet mode a drift-resonant instabil-

ity (DRI). Frequency and wavenumber of the fastest-growing DRI mode scale with the

LHD frequency��� � ���
� � ��
�����

���
���� � 
�������

��� and the LHD wavenumber
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Figure 5.5: Examples of even sausage-mode and odd kink-mode instabilities in a thin

current sheet (as seen in plasma density). The different wavelengths are due to different

particle mass ratios used in simulations (����� � �� for the left and����� � �		 for

the right figure, respectively).

��� � �����	
�� � 	��
�� 
������

��� � 	��
�� 
������

���, respectively. At the same time, the

growth rate of the instability scales with ion gyrofrequency, thus implying that the global

instability grows due to ion dynamics.

Apart from numerical stability, diagnostics and visualization techniques, one of the

most difficult questions related with simulations is the scaling of results with real physical

values and extrapolation to the realistic parameters, e.g. particle mass ratio. In order to

estimate the relevance of the instabilities discussed above one has to make sure that they

still exist for higher mass ratios and estimate their wavelength and oscillation frequency.

Having this in mind, we carried out simulations for several mass ratio values. The results

are presented in Table (5.1).

It follows immediately, that the wavenumber and oscillation frequency of the insta-

bility change with mass ratio in terms of ion gyroradius and gyrofrequency, but remain

practically constant in terms of hybrid spatial and temporal scales:� � 	����� �

	��	��
�� 
������

��� � 	��3��
�� 
������

��� and� � ����
���. Indeed, the wavenumber of

the instability is almost exactly proportional to
������
���, as first discovered byPritch-

ett et al.(1996) (see Figure (5.6)). At the same time, the growth rate in terms of lower-

hybrid frequency changes stronger than in terms of ion gyrofrequency. Indeed, as we have

shown, the global mode is driven by the inverse Landau-resonance of LHD waves with
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����� ����� �	�� ����� ����� ����� ����� �����

4 1 1.2 0.6 0.12 0.06 0.7 0.35

10 2 1.6 0.5 0.18 0.06 0.62 0.2

16 2 - 7 1.7 0.44 0.29 0.07 0.53 0.13

32 3 2.3 0.41 0.5 0.09 0.45 0.08

50 5 3.1 0.45 0.65 0.09 0.42 0.06

64 7 3.9 0.5 0.75 0.09 0.4 0.05

100 11 4.5 0.45 0.8 0.08 0.38 0.04

Table 5.1: Dependence of the nonlinear global instability properties (wavenumber�, fre-

quency� and growth rate�) on the simulation parameters (particle mass����� and

temperature����� ratios).

�� �� �� �� ���

mi����������
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�

�




�
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Figure 5.6: Dependence of the wavenumber of the drift resonant instability on the particle

mass ratio used in simulations (dots, solid line). For comparison, analytic dependence

	�� 
������
��� is given (dashed line).

ions and thus it should come as a logical consequence that the instability growth rate is

different from the one of LHDI.

When the simulation box allowed a large number of wavelengths we also observed

excitation of several LHD modes to the same amplitude. In this case the waves can lo-

cally enhance or deplete each other along their propagation direction. This effect further

complicates the situation with global modes triggering. As an example, we show current-

aligned electric field and plasma density obtained in a simulation with����� � ��
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Figure 5.7: Examples of mixed sausage and kink modes obtained in a thin current sheet

(upper panel -;� electric field, lower panel - plasma density). Obtained in a simulation

with ����� � ��.

(Figure (5.7)). One sees clear odd-parity waves near the edges of the simulation box and

even-parity wave at the center of the box. Since in turbulent space plasmas there are strong

variations in plasma and magnetic field properties, the local dispersion of LHD waves may

favour development of different wavemodes and thus, the mixed-parity instability shown

in Figure (5.7) is probably the most realistic one.

We have considered thin current sheets (half-width�� � !	��	��� �	��#) with anti-

parallel magnetic fields. The measured growth rates of global oscillations at the current

sheet center decrease drastically for thick current sheets with��  �	��� and slightly sat-

urate when the half-width decreases below	��	�� (see Figure (5.8), solid line). The exam-

ination of the electric fields in the extremely thin sheets showed that the global instability

follows immediately after the LHD waves appear. Thus, current sheets with half-widths

�� � 	��	�� decay due to direct interaction of LHD waves with the meandering particles

at the current sheet center. Figure (5.8) also demonstrates that the tearing-mode instability

(thin line) grows almost as fast as the current-driven mode in thin current sheets. This is

due to the direct coupling of these two modes, as we show below.

We also compared the growth rates of the tearing-mode instability from two- and

three-dimensional simulations for various current sheet thicknesses (see Figure (5.9)).
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Figure 5.8: The dependence of the global wave-mode (thick line) and tearing (thin line)

growth rates on the current sheet thickness.

Contrary to the forced two-dimensional reconnection case, where magnetic island is in-

troduced into the simulation by thinning of the current sheet, in our simulations we did

not perturb the current sheet, but looked for spontaneous reconnection. As a result, in-

stead of linear growth of reconnected flux, as typically obtained in forced reconnection

configurations (see e.g.Birn et al. (2001);Silin and B̈uchner(2003)), we obtained expo-

nential growth. This growth of the tearing-mode instability at the current sheet center also

strongly increased for thinner current sheets. However, in the two-dimensional case the

tearing-mode is always weaker than the current-driven instability, while in the 3D simu-

lations for thin sheets the growth of the tearing mode becomes almost equal to the growth

of the LHD-induced mode. We would like to explain the increase of tearing-mode growth

rate due to the LHD-waves. The tearing mode starts growing exponentially immediately

after the simulation begins, while the perturbations due to the current-driven waves first

appear after the LHD waves have been excited at the current sheet edges. Then, the wave-

perturbations need some time to penetrate to the current sheet center. This time delay also

strongly depends on the current sheet thickness - for�� � �	�� it is approximately�����
�� ,

while for �� � 	�� it is only 7 - 8���
�� . In thinner sheets the LHD waves interact directly

with the meandering particles at the center of the sheet, i.e. there is no time delay.

Let us now consider the consequence of the global LHD-induced drift-resonant insta-

bility (DRI) for reconnection. Figure (5.10) demonstrates the three-dimensional structure

of the instability. The dark and light domains correspond to the maximum positive and

minimum negative domains of current-aligned;� electric field (left) and normal�� mag-
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Figure 5.9: The dependence of the tearing-mode instability growth rate on the current

sheet thickness measured in the two-dimensional (thick line) and three-dimensional (thin

line) simulations. In the two-dimensional simulations the growth rate smoothly increases

for thinner sheets but always remains small compared to the growth rate of the current-

aligned waves.
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Figure 5.10: The maximum and minimum domains of current-aligned electric field;�

(left) and normal magnetic field�� (right) at (��� � �� obtained in 3D simulation with

antiparallel fields.

netic field (right), respectively. These structures drift in the ion flow direction with veloc-

ity �� � �	
��. The formation of the ”cigar-like” LHD domains in magnetized plasmas is

an example of the self-organizing structures, described, for example byTsytovich(1995).

The cross-section of�� field at the neutral plane at(��� � �� (Figure (5.11)) shows a

wave-like profile in the Y-direction and at the same time a tearing-mode reconnection, i.e.

the change of sign at* � 	.
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Figure 5.11: Cross-section of normal magnetic field component����� at the neutral

plane� � 	 at (��� � �� in a 3D simulation. One sees the periodic wave structure in

current direction which corresponds to the sausage-mode instability and the change of

sign across the line* � 	 which shows the tearing-mode instability.

Figure (5.12) demonstrates the temporal evolution of the main unstable modes of the

current sheet. The curves show the temporal evolution of the Fourier modes of the current-

aligned electric field;� corresponding to the LHD waves at the edge of the sheet (dashed

line), the global mode with the dominant LHD wavelength at the center of the sheet (solid

line) and the tearing-mode with half-period along the X-axis (dash-dotted line). These

Fourier modes were obtained for a single data set with����� � �� and����� � �. They

show the consequent action of the global wave and reconnection structures growth shown

in Figures (5.10) and (5.11). One sees that in the beginning the tearing-mode quickly

reaches certain level and then continues to grow very slowly (dash-dotted curve). At

the same time, the LHD modes are excited at the edges of the sheet (dashed curve) and

then, as a consequence, the global current-driven instability of the sheet follows (solid

curve). After the;� component of the global current-aligned mode reaches the level of

the reconnection;� perturbations they continue their growth together at the rate of the

global LHD mode.

The topology of the resulting 3D reconnection is presented in Figure (5.13). One can

see two classical X- and O-line structures changing polarity along the Y-axis. There is

a clear periodicity in the Y-direction. This way the structure of tearing-mode instability

can directly couple to the current-driven mode of the current sheet. At a first glance, the
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Figure 5.12: Temporal evolution of the dominant LHD mode���� � 	��� at the edge of

the current sheet (dashed line), the global mode at the center of the sheet (solid line) and

the tearing-mode instability obtained in 3D simulation (dash-dotted line).

Figure 5.13: The three-dimensional structure of reconnected magnetic field lines at(��� �

�� obtained in a simulation run with antiparallel magnetic fields and current sheet half-

thickness�� � 	������. For the sake of clarity of presentation the box size in the Y

dimension is limited to one LHD wavelength only.

small-scale structure of reconnection contradicts the traditional expectation of reconnec-

tion as a large-scale process, because long-wavelength modes more efficiently interact

with particles, since particle travel time in the wave field is longer. But there is one aspect

which must be kept in mind, the longer waves must be excited before the short waves

destroy the current sheet. Here we are dealing with competing processes: either LHD

waves destabilize the current sheet through the inverse Landau resonance with ions, or
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Figure 5.14: Two dimensional vector-plots of electric fields in the XY-planes at� � ��

(left panel) and� � ��� (right panel). The upper and lower panels show simulation

results for the guide field������ � 	��� and	�� respectively.

tearing-mode instability will be excited by the Landau resonance with electrons. If a 2D

tearing-mode is triggered, e.g. by current sheet thinning along the* � 	 line, it will

suppress the current-aligned modes from ever appearing and the current sheet will decay

through the classical 2D reconnection. But, alternatively, if the current-aligned modes

are excited first by internal turbulence of the current sheet, they will subsequently trigger

kink- or sausage-eigenmodes of the sheet in the current direction and the tearing-mode. In

that case the current sheet will quickly decay through the three-dimensional small-scale

reconnection.

5.2 Thin current sheets with guided magnetic fields

In order to investigate the influence of a constant guide field we varied������ up to 1 and

show here the results for mass ratio����� � ��. The simulations with different values of

guide magnetic field amplitude revealed the generation of two independent LHD modes,

one above the neutral plane and one below propagating at angles
 � � ������
�������

to the current flow direction. This way the LHD waves propagate always perpendicular to
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Figure 5.15: The ratio of electric field components;��;� at different distances from the

neutral plane with guide field������ � 	���. The dashed solid line shows theoretical

dependence�	��� (2�4
������

the local magnetic field
��� �� � 	� (see e.g.Huba et al.(1980)). An example shown

in Figure (5.14) demonstrates the electric fields in the horizontal planes� � ���. The

mean electric field in the X-Y planes also are longitudinal, i.e. in the wave propagation

direction. Since the local magnetic field direction rotates around the Z-axis, the electric

field of the LHD waves follows the law��
�����
�� � ����
�����. In fact, the ratio

;��;� is equal to tangent of the angle between the electric field orientation and the current

flow direction. In the regions where the LHD waves have non-zero electric fields this ratio

should also follow the����
����� dependence. Figure (5.15) demonstrates that, indeed,

the direction of the electric field of the wave tends to keep perpendicular to the local

magnetic field. One can notice that;��;� turns to zero at the neutral plane due to the

fact that the LHD waves are excited outside the current sheet. The electric fields can only

reach the� � 	 plane due to penetration of the LHD waves towards the center of the sheet

similarly to the 2D case (see Figure (5.16)). Hence, at distances��� � �� from the neutral

plane the y- and x-components of the electric field are proportional;� � ;����
� where

the propagation angle
 � � ������
�������� Taking this into account, one can visualize

the evolution of instability in the 3D space by diagnosing the amplitude of oscillations of

;�.

In Figure (5.17) we show the domains of maximum positive and negative;� in cases

with guide fields������ � 	��� and	��� These structures of the electric field repre-

sent cigar-like magnetized lower-hybrid modes stretched along the magnetic field lines.
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Figure 5.16: Logarithm of the most unstable Fourier modes in Y- and X-directions for

�� � � and�� � � of ;� (left and right panels) obtained in 3D simulation with guide

field ������ � 	��� One sees the wave-field grow at the periphery of the current sheet

and gradually penetrate to the neutral plane.

Their formation was predicted byTsytovich(1995). These waves are an example of self-

organizing structures in plasma due to the resonant excitation of waves by ions. The Lan-

dau resonance of these waves with electrons leads to their damping. This way the energy

is transferred from the ion flow via the unstable wave to electron heating. A temporal se-

quence of these pictures (see our web-page http://www.linmpi.mpg.de/ ˜silin/simulations)

demonstrates that the waves above and below the neutral plane drift in different directions.

This way the magnetic guide field effectively ”splits” the two LHD-ion resonances at the

opposite edges of the sheet and, therefore, lowers the efficiency of their coupling to the

global eigenmodes of the sheet (kink or sausage modes). As the wave propagation turns

further away from the current-flow direction the density of resonant particles decreases,

as shown in Figure (5.18), and as a result the instability grow slower.

This theoretical prediction is fully supported by our simulations results. In Fig-

ure (5.19) we show the ion (left) and electron (right) distribution functions at the edge

of the current sheet. For better orientation in space we also show the direction of the

local magnetic field (inclined solid line) and the cross-field wave propagation direction

(the inclined dotted line). One sees a principal difference in the evolution of the ions and

electrons. As we expected, contrary to the zero guide-field case shown in Figure (5.11),

the peak of the resonant plateau in ion distribution appears not in the current flow direc-
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Figure 5.17: Domains of the maximum positive (white contours) and negative (grey con-

tours) values of;� showing the three-dimensional structure of the unstable LHD modes.

The left and right panels show simulation results for the guide fields������ � 	��� and

	��, respectively.

tion but along the line of cross-field wave propagation. The electrons in this case remain

magnetized and demonstrate slight temperature anisotropy, i.e. the width of the distribu-

tion function in the magnetic field direction gradually increases while in the perpendicular

direction it remains close to the initial.

The peaks of the wave amplitudes are located at the edges of the current sheet, as in

the classical Harris current sheet, with the only exception that now the wave structures are

propagating at different angles to the current flow direction (see Figure (5.17)). Compari-

son of several simulations with different������ ratios demonstrates that the electrostatic

field domains, indeed, follow the local magnetic field directions.

Assuming that the growth rate of the instability is proportional to the density of the

resonant particles, one obtains a growth rate dependence on the magnetic guide field as

� � ���
� � ��
������

���

��
��� 
���
������


���

��
��� ����%���� (5.2)

where�� is the ion drift velocity and�% is the phase velocity of the fastest-growing LHD

wave. This situation is schematically illustrated in Figure (5.18). Without guide field the

velocity of LHD waves is directed along the Y-axis (
 � 	) and the wave encounters the

maximum population of resonant particles. With the increasing ratio������ the LHD

waves turn further away from the Y-axis and encounter ever smaller fractions of resonant

76



�� �� � � �
vx�vth�i

�

�

�




�

vy�vth�i

f i�vx�vy�

Figure 5.18: The regions of ions’ resonance with the LHD waves. The shaded contours

represent ion distribution function (darker area shows the density maximum) and the thick

line shows the velocity of LHD for different values of local magnetic field from���� to

��� across the current sheet. For example, two inclined radius-vectors correspond to

resonant velocities above and below a current sheet with a guide field��� � ��.
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Figure 5.19: Contour plots of particle distribution functions (ions - left panel, electrons

- right panel, respectively) at the upper edge of the current sheet
� � ���. Result of a

simulation with������ � 	���.

particles.

The deviation of Landau resonances in velocity space is also confirmed by our di-

77



��� � ��� �
By�B�

���
���
��

���
���
���

Γ����i

Figure 5.20: Analytical dependence of the resonant LHD waves growth on the value of

magnetic guide field according to equation ( 5.2) for mass ratio����� � �� extrapolating

from the pure DRI growth rate�� � 	�����. The solid dots show results of 3D simulations

for ������ � 	� 	���, 	�� and��	

agnostics of resonant plateaus in the particle distribution functions (Figure (5.19)). We

found that the resonant plateau in ion distribution lies exactly on the line of cross-field

propagation. At the same time, the behaviour of electrons undergoes significant changes.

It has been known before, that the presence of guide field can lead to the stabilization of

electron tearing-mode instability by introducing a new degree of freedom in the recon-

nection geometry (Wiegelmann and B̈uchner, 2002). Thus, instead of being trapped in

circular orbits, electrons escape from the reconnection regions along the spiral Speiser-

like orbits in the central plane along the guide field. We have observed a consequence of

this escape process in our simulations. Right panel of Figure (5.19) does not show any

distinct plateau in the electron distribution. Instead, one finds that electrons are anisotrop-

ically heated, i.e. the parallel temperature increases, due to electron scattering along the

guide field.

For guide fields in the range	 � ������ � � we obtain a strong growth rate de-

crease for������ � � as shown in Figure (5.20). The agreement between the theoretical

curve and the results of simulations suggests that our assumption of growth rate being

proportional to resonant ion density was, in fact, correct.

In the light of our results we now propose a new physical mechanism of stochas-

tic percolation of plasma through current sheets in the presence of guide magnetic field.

Although no numerical simulations found evidence for oblique drift-tearing modes pre-
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Figure 5.21: Magnetic field lines in the simulation with������ � 	��� at time(��� � ��.

The colour shows the position of the line along the Z-axis (blue - top, red - bottom).

dicted byGaleev et al.(1985);Kuznetsova and Zelenyi(1985, 1990a), we, nevertheless,

observed a similar process in the course of nonlinear evolution of LHD waves. The re-

sulting magnetic field structures are shown in Figure (5.21). Originally, all field lines are

launched at the distance��� from the central plane of the current sheet. Eventually, as

one finds from the figure, the lines start twisting, forming spirals around their original

directions, and when they reach sufficiently close to the center of the sheet they become

reconnected. On the one hand, this is similar to the percolation scenario, proposed by

Kuznetsova and Zelenyi(1990a), when different magnetic islands at different magnetic

horizons start merging and eventually lead to field lines connection across the current

sheet. But, on the other hand, the underlying physical process of turbulence and magnetic

field chaotization found by us here is different. Although we also have a spread of drift

directions and wavelengths as a function of distance from the current sheet center, the

peak of the instability corresponds to the relatively short wavelengths and the growth ini-

tiates at the periphery of the current sheet, not at the center. Also, contrary to the results

of Scholer et al.(2003) andPritchett and Coroniti(2004), no classical X- or O-lines are

formed, the reconnected normal fields present quite a chaotic picture in the central plane.
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Figure 5.22: Linear dispersion relation for LHD waves at the magnetopause model de-

scribed in Section (2.2): left panel - oscillation frequencies, right panel - growth rates.

The asymptotic plasma betas are���� � 	�� and���� � 	��.

5.3 Magnetopause-like boundaries

As the first step, let us consider the linear dispersion relation of lower hybrid waves for

the model presented in Section (2.2). Figure (5.22) demonstrates the linear dispersion

relation for LHD waves derived byHuba et al.(1980). One sees that contrary to the

symmetric current sheet case with plasma beta changing from zero to infinity, here with

beta remaining everywhere close to unity the range of unstable wavelengths becomes very

limited. Also, the fastest-growing wavelength is approximately two times shorter than in

a symmetric Harris current sheet of the same width.

Perhaps, the most interesting feature in Figure (5.22) is the asymmetry across the

� � 	 line, which marks the density gradient peak. One sees a distinct shift of the

unstable region to the magnetosphere side (negative z region). Also, in this case there is

a slight difference of wavelengths of the most-unstable modes at the opposite sides of the

magnetopause. This asymmetry becomes more distinct with the increasing difference of

plasma betas from the two sides of the magnetopause. Thus, one can expect that during the

magnetopause transitions with plasma betas being of the same order, the wavelet analysis

should give almost constant estimate of LHD wavelength, while in the presence of strong

changes in plasma beta, the wavelength of the dominant LHD mode must significantly

change, as follows from Figure (5.23). It is not a rare case, that plasma beta changes
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Figure 5.23: Same as in Figure (5.22) but for asymptotic plasma betas���� � 	�� and

���� � ���.

during a magnetopause crossing by a factor of 10, as was observed by Cluster, e.g., on

15.02.2002 at 23:37 - 23:43 or on 11.02.2002 at 4:00 (Panov(2004)).

In order to investigate the evolution of tangential discontinuities at the magnetopause

we carried out Vlasov-code simulations with various asymptotic plasma betas from the

opposite sides of the interface and with different total angles of magnetic field rotation in

the magnetopause plane. For all simulated cases the typical scale of density gradient in

the Z-direction and thus current sheet layer�� was equal to one ion gyroradius from the

magnetospheric side. The particle mass and temperature ratios were chosen as����� �

�� and����� � �. The asymptotic value of plasma betas in magnetosphere and in the

magnetosheath were selected as���� � 	��, ���, ��� and���� � 	��, respectively.

The total angle of magnetic field rotation in the XY-plane through the magnetopause was

varied from��� to � radians.

Numerical simulations confirm the linear theory prediction and in-situ observations

concerning the region of electrostatic wave activity maximum being shifted to the Earth-

ward side of the density ramp. Figure (5.24) demonstrates an example which was obtained

in a simulation with magnetic field rotation� � �. First, the;� arises at the magneto-

spheric side of the density gradient. Then, it penetrates towards the magnetosheath side

and in the region near� � 	 the dominant field is;�. This is an expected result, since

near� � 	 the magnetic field is directed along y-axis, and thus the electric field remains

quasi-perpendicular to the magnetic field.
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Figure 5.24: Evolution of electric field components;� (left) and;� (right) across the

magnetopause in time interval(��� � 	 � ��. Result of simulation with asymptotic

plasma betas	�� and��� and rotation angle� � �.

At the same time, the amplitude of normal magnetic field�� fluctuations is either

stronger to the magnetosheath side or practically equal everywhere. However, the origin

of these fluctuations is also LHD waves. One sees that the magnetic field fluctuations

have a much smaller amplitude than the electric field (the mode is quasi-electrostatic) but

they have the same wavelength and arise in the same region as the initial electrostatic

perturbations.

The confirmation of LHD waves cross-field orientation is demonstrated in Figure (5.25).

We calculate the angle between electric and magnetic fields in a simulation with total rota-

tion angle� � �. At the edges of the box, along the z-axis, the magnetic field is directed

along the X-axis, and there;� component of LHD wave should be much larger than the

;� component. In the central region, the magnetic field is predominantly oriented in the

y-direction and;� should prevail there. This theoretical expectation is confirmed. The

sporadic peaks in both plots in Figure (5.25) are due to; approaching zero.

As a result of the LHD excitation, we see characteristic perturbations in the particle

distributions which can be attributed to resonance with lower hybrid waves, similarly

to the symmetric Harris-type current sheets (see Figure (5.26)). The main difference
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Result of simulation with asymptotic plasma betas	�� and��� and rotation angle� � �.

from the Harris current sheet is that the propagation direction changes with the distance

from the magnetopause (sometimes called magnetic horizons) in accordance with the

normal to the local magnetic field direction. This leads to loss of coherence of wave-

particle interactions. When a particle performs gyro-motion across the magnetic field it

crosses different magnetic horizons and at each horizon it experiences electrostatic field

with different orientation. In combination with wave asymmetry due to large plasma beta

gradients this effectively leads to particle scattering in the velocity space and the efficiency

of resonant Landau damping interactions decreases. Thus, even despite a relatively strong

electrostatic fields we do not observe any significant particle heating, compared to the

symmetric current sheet simulations.

In all simulations which continued for about 10 ion gyroperiods (with� � ���,

����, ���� and�) we observed that in the late non-linear phase longer waves started

to dominate due to some coalescence process. The transition is very clear: we show a

sequence of three snapshots of normal magnetic field�� from one simulation with� � �

and plasma betas	�� and��� in the magnetosheath and magnetopause, respectively (see

Figure (5.27)).

We present here two limiting cases - with� � ��� and
 � � (Figure (5.28)). In the

first case with perpendicular asymptotic magnetic fields the wave profile appears in the

XZ-plane and it is shifted to the magnetospheric side. In the second case with anti-parallel

asymptotic fields the wave is seen in the YZ plane and is shifted to the magnetosheath side.

It must be noted, that although the asymptotic antiparallel fields are aligned along X axis,
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Figure 5.26: Deformations of ion distribution functions at(��� � � at the magnetosheath

(left) and at the magnetospheric (right) sides of the magnetopause. In the left plot the

dashed line marks local magnetic field and the normal solid line corresponds to the cross-

field propagation direction. In the right plot the cross-field propagation approximately

corresponds to the vertical line. Result of simulation with asymptotic plasma betas	��

and	�� and rotation angle� � ����.

local magnetic fields near the magnetopause are predominantly in the Y-direction. Also,

the wave appears to be a standing one, there is no significant drift. Whether this long

wave can be compared to classical aperiodic tearing-mode is not clear, but there is certain

resemblance.

Perhaps the main reason why we obtain tearing-type instabilities, although previous

theories and simulations suggest that these modes should be strongly suppressed by the

�� field (see e.g.Kuznetsova et al.(1994);Nakamura and Scholer(2000);Swisdak et al.

(2003)), is that in the previous models�� was introduced as a current-aligned component

on top of the antiparallel magnetic field reversal. This effectively led to particle drift

being almost aligned with magnetic fields. In our model, on the contrary, the particle drift

velocities keep approximately normal to the local magnetic field at all magnetic horizons.

This makes the configuration linearly unstable against the lower-hybrid waves as well as

provides efficient Landau damping necessary for the tearing-mode instability. Also, from

the point of view of wave-particle resonances, it is logical that the longer waves should

eventually prevail in this system. Since the gyrating particles move between different
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Figure 5.27: Coalescence of short lower hybrid waves and formation of the long-

wavelength mode (as seen in normal magnetic field�� fluctuations). Result of simulation

with asymptotic plasma betas	�� and��� and rotation angle� � �.
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Figure 5.28: Long-wavelength perturbations of normal magnetic field��. Results of

simulations with rotation angle� � ��� (left) and� � � (right).

magnetic horizons they experience small scale electrostatic fields of lower-hybrid waves

of different orientation but the interaction time is too short for any coherent structure to

form from such random interactions. When, however, a longer wave forms, particle travel
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time in its domain increases and the interaction becomes more efficient.

5.4 Comparison of simulation results with space experi-

ments

Our linear kinetic theory and numerical Vlasov-code simulations have demonstrated that

among the variety of possible instabilities of thin current sheets the particularly fast and

common one is the lower-hybrid drift instability (LHDI), associated with lower-hybrid

(LH) waves. Luckily, LH waves are also relatively well investigated by spacecraft in

the Earth magnetosphere, because they are encountered everywhere near plasma density

gradients and contrary to the long waves, like tearing, KHI or kink/sausage modes, LH

waves do not require non-local multi-point analysis for their identification. That is why

we would concentrate on the comparison of properties of LH waves found in our simu-

lations with those observed in-situ and avoid speculative discussions about the origin and

structure of reconnection in general, since at present no appropriate experimental tech-

niques exist to answer this question.

At present, the theoretical and simulational results concerning the activity of LHD

waves in magnetospheric tail are more numerous and advanced than laboratory experi-

ments or spacecraft in-situ observations. Perhaps the first observations of LH turbulence

in magnetotail were carried out byGurnett et al.(1976) using the IMP 8 spacecraft. It

was discovered, that the most common wave type was electrostatic broadband noise with

frequencies from approximately 10 Hz to few kHz. It occurred practically everywhere but

was particularly active near magnetic field gradients at plasmasheet edges. The electric

field of the wave was always perpendicular to the local magnetic field. Because the linear

theory of LH waves still was not established at that time the authors could not explicitly

prescribe their observations to this mode and instead tried to draw comparisons with other

plasma waves known at that time.

Using the electric and magnetic field measurements of ISEE 1 and ISEE 2Gurnett

et al. (1979) investigated the waves at the magnetopause. By comparison of signals

received by 215 m antenna on ISEE 1 and 30 m antenna on ISEE 2 spacecraft it was
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shown, that the wavelengths of the low-frequency waves (below 10 kHz) are significantly

larger than typical antenna length. Comparison between magnetic and electric fluctuations

showed that the part of the spectrum with frequencies� � kHz is nearly electromagnetic

and is most probably generated by whistler modes. However, waves with frequencies

of the order of�	 Hz have a strong electrostatic component. Two possible instabilities

were named which could account for the observed electrostatic turbulence - ion cyclotron

and lower-hybrid. However, even taking into account the Doppler shift effects, very high

harmonics of ion cyclotron mode have to be excited in order to produce continuous wave

spectrum. That is why lower-hybrid waves seem to be more plausible explanation.

Another observation of lower-hybrid waves at the magnetopause was made by Equator-

S spacecraft (see e.g.Lucek et al.(2001)). The authors analysed magnetic fields during

several ”smooth” magnetopause crossings with the aim to identify small-scale structures

predicted theoretically byShapiro et al.(1994) and in simulations ofGary and Sgro

(1990). Similar to the previous experiments of ISEE 1 and 2, sub-km scales were not

observed. As far as typical LH wavelengths are concerned, the predictions of linear the-

ory and simulations point not to the sub-km scales, but rather 10 - 100 km, i.e. there

seems to be no disagreement with observations. The regions of strongest wave activity

were usually located at the magnetospheric side of the magnetopause. A new interesting

result was obtained by comparison of field-aligned and transverse power of the turbu-

lence. It turned out, that for frequencies below 10 Hz the power of transverse waves was

almost an order of magnitude higher than that of the field-aligned ones, while above that

frequency they became practically equal. Besides, the energy density increased towards

the lower-frequency range of the spectrum, which could mean that longer waves are more

favourable and some cascading effect, similar to the one found in our simulations can

take place. Also, our simulations showed that the turbulence is primarily electrostatic and

transverse.

A comprehensive study of LH waves at the magnetopause was carried out byAndré

et al.(2001). They analysed electric and magnetic field data from Electric Field and Wave

(EFW) instrument and STAFF and FGM instruments on all four Cluster spacecraft. It was

discovered, that electric fields in the lower-hybrid frequency domain near 10 Hz can have

amplitudes of up to 5 mV/m. They are persistent feature at all magnetopause crossings
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and occur at the Earthward side of the magnetopause on the scales of several hundred

kilometers, i.e. comparable to ion gyroradius. At the same time, relevant magnetic field

fluctuations were observed also at the magnetosheath side of the density ramp. In fact,

our simulations showed, that quasi-electrostatic perturbations first arise on the magneto-

spheric side of the density gradient, but later penetrate also to the magnetosheath side, i.e.

the electromagnetic perturbations in the magnetosheath can be induced by the LH waves

from the magnetosphere.

Based on electric and magnetic field and plasma measurements on Polar spacecraft,

Bale et al.(2002) investigated lower hybrid waves at the reconnecting magnetopause.

Large amplitude electrostatic fields (� �	 mV/m) were found at the edges of the current

layer. The polarization of the electric field was almost perfectly perpendicular to the mag-

netic field. At the center of the reconnection region, where plasma beta was large the

instability was quenched. The authors extrapolated their observations to the correspond-

ing Harris current sheet and tried to analytically derive the contribution of LH waves

to anomalous resistivity in the reconnection region. According to their estimates it was

negligible and thus it was concluded that LH waves could not play any significant role

in reconnection. However, the authors remarked that the intensity of LH waves could

be underestimated in their experiment due to instrumental limitations and also that re-

cent numerical simulations suggested that theoretical estimates of wave contribution to

anomalous resistivity could be several orders of magnitude too low.

RecentlyVaivads et al.(2004) andAndré et al.(2004) analysed one magnetopause

crossing by Cluster spacecraft at 2002-02-06 0811:57. They found, a thin current layer

with a thickness of the order of several electron gyroradii near the magnetopause. The

activity of LH waves was confined to vicinity of this thin current layer. Thus, the authors

concluded that LH turbulence does not play any significant role for the global processes at

the magnetopause. However, there are several ambiguities in this work. Firstly, the mag-

netopause location and its normal were obtained by the time-delays between the density-

gradient detection by different spacecraft. The authors did not mention about checking

deHoffmann-Teller frame or Walen relation. Later tests with Cluster magnetic field and

plasma measurements showed that, in fact, the moment considered in this work corre-

sponded rather to an FTE at an open magnetopause and then a tangential magnetopause
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crossing followed 5 minutes later, at 0817:00 (Panov(2004)). Secondly, the magnetic

field normal had large x- and y-components, which was rather far from the expected

direction, and the thin current sheet was ”not completely flat and aligned with the mag-

netopause plane” (seeAndŕe et al. (2004)). In the frame calculated by magnetic field

variance method for this event, which coincided with the Tsyganenko model estimate,

there is a strong normal magnetic field and it is logical to expect a strong flux across the

imaginary magnetopause plane in the earthward direction.
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Chapter 6

Summary of the main results

In this work we tried to clarify the role of kinetic effects in the process of magnetic

reconnection through thin collisionless current sheets. For our investigations we devel-

oped a linear perturbation theory and a numerical simulation method. The linear theory

was aimed in particular at linear symmetric sausage-modes of symmetric current sheets,

while numerical simulations had to clarify the possible nonlinear interactions of different

plasma instabilities in current sheets. The results obtained by these two methods are now

summarized.

Although the linear perturbation theory failed to find unstable global sausage-modes

in thin current sheets, it revealed several important aspects. We found that the long-wave

approximation, in fact, leads away from the fastest-growing waves which evolve in current

sheets. This shows the importance of correct scaling of instability properties with particle

mass ratio used in numerical simulations. For example, an instability with a wavelength

� � �		�� found in simulations with����� � �� would have a wavelength of only

� � �	�� for ����� � �		. This explains the paradox of stabilization of linear current-

aligned kink instabilities predicted byDaughton(1998, 1999a,b) which, nevertheless,

were obtained in simulations (e.g. byLapenta and Brackbill(1997);Büchner and Kuska

(1998);Horiuchi and Sato(1999)). The fastest-growing wavenumber is proportional to

the 
������
��� and the long-wavelength approximation is only valid for small particle

mass ratios. Another consequence of the linear theory is the confirmation of validity

of averaged particle motion first used byDobrowolny(1968) and later byLapenta and
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Brackbill (1997). Indeed, using the same approximate approach we managed to obtain a

result which is very close to the one obtained by far more sophisticated calculations of

Daughton(1998) for anti-symmetric modes. By including and excluding the electrostatic

perturbations from our dispersion relation, we demonstrated that it is the electrostatic

interactions which stabilize the long-wavelength eigen oscillations of current sheets. At

the same time, we showed that the tearing-mode instability is fully electromagnetic.

Our new simulation technique, using particle distribution functions instead of fluid

or super-particles allowed detailed description of collective kinetic phenomena, which

were either neglected or underestimated in the previous numerical simulations. Although

the use of six-dimensional phase space posed large demands on computer memory and

computing time, we managed to parallelize the program and execute it in a rational way

on parallel machines, so that one production run took at most 48 hours.

The main unexpected result of our simulations is that in symmetric mono-dimensional

current sheets the lower-hybrid drift (LHD) waves get in a strong Landau-type reso-

nance with the ion flow. As these waves grow in amplitude, they also penetrate to

the current sheet center and couple to the global eigen-mode oscillations of the current

sheet. The resulting global instability (we proposed to call it drift-resonant instabil-

ity (DRI)) has wavelength and oscillation frequency proportional to hybrid ion-electron

scales� � 	��
������
��� and� � 
�������

���, while its growth rate scales with ion

gyrofrequency� � ���. The reason for this scaling has a clear physical explanation:

the instability is initiated by charge separation effects near the plasma density gradients,

while in the late nonlinear regime its growth is governed by the resonant interaction with

thermal ions.

We observed the direct coupling of current-aligned instabilities with aperiodic tearing-

mode, which can explain the fast onset of reconnection in thin current sheets. According

to our results, even if the tearing-mode is relatively strong in the beginning of simulation,

its growth rate is always smaller than that of current-aligned modes. After a certain time,

which strongly depends on the current sheet thickness and the initial perturbation, the

wave-mode eventually reaches higher amplitude than tearing and they both continue to

grow further at the high growth rate.

Our simulations clarified the stabilizing effect of current-aligned magnetic guide field
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in thin current sheets. The diagnostics of electrostatic fields showed the persistent self-

organized structures of LHD drifting across the magnetic field. The shift of resonant

plateau in ion distribution functions in accordance with cross-field propagation direction

demonstrated the principle of instability stabilization through the weakening of ion-LHD

Landau resonance.

We proposed a new physical explanation for stochastic percolation through thin cur-

rent sheets in the presence of guide magnetic field. Instead of oblique drift-tearing modes

predicted by analysis ofGaleev et al.(1985);Kuznetsova and Zelenyi(1985, 1990a) we

found that the LHD waves, which propagate across local magnetic fields and penetrate

to the current sheet center, lead to chaotic pattern in reconnected magnetic fields. The

field lines, initially parallel to the current sheet plane, with time start winding around the

original direction and form spirals, reaching to the center of the current sheet and to the

periphery. This eventually allows plasma diffusion through the current sheet and could

account for flux-transfer events (FTE’s) at the magnetopause.

We have developed an analytical model of tangential discontinuity typical for Earth

magnetopause, as observed by ISEE 1 and 2 and Cluster spacecraft. The linear dispersion

relation and numerical simulations of this model predict strong activity of short lower-

hybrid waves at the magnetospheric side of the density gradient region. We found, that in

case of large plasma beta differences from the magnetosheath and magnetosphere sides

there is a significant asymmetry in wave properties. Some weak traces of resonant in-

teraction of LHD waves with particles exist, but due to magnetic field rotation the LHD

waves at different magnetic horizons are incoherent and Landau damping is saturated.

Thus, we do not find any stochastic percolation like in the symmetric current sheets with

guide magnetic field. With time, the short-wavelength LHD modes trigger longer tearing-

type waves through some kind of cascading or coalescence process similar to the one

predicted byGary and Sgro(1990). Probably the key reason for lower-hybrid and tearing

modes stabilization found in previous works and not found by us appears to be the particle

drift profile. While in previous studies the�� field was imposed over a mono-dimensional

current sheet, the particle drift was getting field-aligned, in our model the particle drift ve-

locities remain quasi-perpendicular to local magnetic fields, which is the main condition

for lower-hybrid waves excitation, as well as for efficient Landau damping mechanism
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of tearing-mode instability. Another result of our investigation is that there seems to be

no strong dependence of reconnection through the magnetopause on the magnetic field

rotation angle, which suggests that ”component reconnection” is possible.

Our simulations are in agreement with the existing experimental knowledge about

small-scale instabilities and waves in thin current sheets encountered in Earth magne-

tosphere. We verified that lower-hybrid waves are excited at the Earthward side of the

magnetopause. In accordance with Cluster observations the electrostatic perturbations

are strongest at the Earthward side of the density gradient, while corresponding magnetic

perturbations penetrate further to the magnetosheath. Also, in agreement with observa-

tions of Cluster and Equator-S missions, we see that the electrostatic waves are primarily

transverse to the local magnetic field.

Unfortunately, not much can be said in connection with the Earth magnetotail. Firstly,

because the current sheet in the tail is typically much thicker than ion gyroradius and as

we showed the LHD waves there do not influence the global dynamics directly - they

are weak and located too far from the neutral plane. Secondly, most of the effort in

experiments has been invested so far in investigation of global structure and dynamics of

the current sheet, e.g.Sergeev et al.(2004). But the general properties observed in-situ,

e.g. by IMP 8 spacecraft, - cross-field propagating quasi-electrostatic mode located at the

plasma sheet boundaries - have been confirmed in our simulations.

It must be mentioned, that our results do not render other recent theories or simula-

tions invalid (e.g.Lapenta et al.(2003);Karimabadi et al.(2003a,b)). In our simulations

we observe the scattering of particles in the phase space and formation of nonlinear res-

onant plateaus in the course of interaction with LHD, which can be compared also to the

streaming secondary ion population or stationary plasma background. At this stage the

arguments ofLapenta et al.(2003);Karimabadi et al.(2003a,b) become valid: the tan-

gential velocity discontinuity or relative ion-ion streaming come into play and can lead to

the longer-wavelength instabilities, such as Kelvin-Helmholtz or ion-ion kink instability.

However, we emphasize that all these processes take place after the resonant instability

discussed in this work, since they are much slower.
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