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Motivation

The latitudinal banded appearance of the clouds in the uppermost atmosphere of
Jupiter and Saturn (figure(0.1) is a surface manifestation of strong tropospheric zonal
(east-west) winds (figure 0.2), as it was established after the observations by the Vo-
yager missions in the 80’s (Ingersoll et al., 1981; Limaye, 1986; Smith et al., 1981;
Smith et al., 1982). The origin of these winds is controversial. One theory assumes
that they are driven by absorbed sunlight in a shallow upper atmospheric layer
(Williams, 1985) while the other assumes that they originate in the interior and
are driven by thermal convection in the molecular hydrogen envelope (Busse, 1976;
Busse, 1983). The in-situ measurements in Jupiter’s atmosphere by the Galileo
probe in the 90’s give some credibility to the latter, showing that the wind speed do
not vanish nor decrease below the cloud deck (Atkinson et al., 1998).

Fig. 0.1: Left: True colour mosaic of Jupiter constructed from images taken by the
narrow angle camera on board Cassini spacecraft on December 29, 2000
during the closest approach at a distance of approximately 10 million kilo-
metres.

Right: Image of Saturn taken with the Cassini spacecraft wide angle cam-
era on January 23, 2005 at a distance of approximately 2.8 million kilo-
metres.
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Fig. 0.2: Zonal velocity vs. latitude after the Voyager missions as given in Ingersoll
(1990). The velocities were measured relative to the interior (System III)
tracking features in the upper cloud layer.

Numerical simulations of thermal convection in rotating spherical shells applied
to the giant planets succeeded in the generation and maintenance of zonal flow.
However, the models present difficulties to reproduce the zonal winds as ob-
served in the giant planets. For example, Christensen (2001) found strong alter-
nating zonal wind but the number of bands were less than observed in Jupiter.
Studies with different mechanical boundary conditions (Aurnou and Olson, 2001;
Aurnou and Heimpel, 2004) showed that strong zonal flow is driven when both
boundaries are mechanically stress-free although a non-slip condition at the
inner boundary might be more adequate to model giant planets’ dynamics
(Starchenko and Jones, 2002).

The Boussinesq approximation was widely employed for this kind of simulations. It
assumes that the fluid is incompressible but allows small density changes in the buo-
yancy force in order to retain convection. In the molecular hydrogen envelope the
density increases inwards by about two orders of magnitude (Guillot et al., 1994a).
Therefore, the Boussinesq models are certainly limited to describe the dynamics in
the molecular envelope where density stratification is significant.

The anelastic approximation (Ogura and Phillips, 1962; Gough, 1969) provides a
more realistic representation of a stratified fluid compared to the Boussinesq appro-
ximation while reducing the complexity of the fully compressible case. Its main
advantage is that the effects of compressibility are retained while filtering out fast
acoustic waves which would require a very small numerical time-step. Previous
anelastic models have been focused in studies of mantle convection (e.g. Jarvis and
McKenzie, 1980; Glatzmaier 1988; Bercovici et al., 1992) as well as thermal convec-
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Motivation

tion in the Sun (e.g. Gilman and Glatzmaier, 1981; Glatzmaier, 1984; Elliott et al.,
2000; Miesch et al., 2000). However, these models do not describe adequately the
physics of rapid rotating spherical systems as the giant planets.

The problem of thermal convection for a compressible fluid in rapidly rotating spheri-
cal systems has drawn little attention because of computational limitations as well as
mathematical convenience. A few anelastic studies have been performed on the lin-
ear onset (Glatzmaier and Gilman, 1981a; Drew et al., 1995) while recent anelastic
non-linear simulations were focused on applications to Jupiter’s atmosphere but in
the two-dimensional case (Evonuk and Glatzmaier, 2004). The study of this thesis
is devoted to time-dependent, three-dimensional simulations in the linear and non-
linear regime under the anelastic approximation in the limit of vanishing Griineisen
parameter. This limit simplifies the traditional anelastic approximation leading to
a problem with a nearly unmodified temperature equation and the same number of
non-linearities with respect to the Boussinesq case.

The structure of this thesis comprises four chapters, conclusions and three appendix
sections. In chapter 1 the theoretical formulation of thermal convection for rotating
spherical systems is presented. Special emphasis is put on the anelastic approxi-
mation with negligible Griineisen parameter as well as the choice of the reference
state. A study of linear onset for different fluid properties is given in chapter 2
while in chapter 3, the Taylor-Proudman theorem is reformulated to the compressi-
ble case. Results in the non-linear regime are presented in chapter 4 followed by the
conclusions of the work and some additional theoretical details given in the appendix
sections.

17
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1 Thermal convection formulation in
rotating spherical shells

1.1 Fully compressible formulation

The general equations describing thermal convection of a rotating compressible fluid
are the starting point from which the assumptions of the anelastic or Boussinesq
approximations will be done.

The spherical shell rotates at uniform angular velocity €2 with respect to an inertial
reference frame. The spherical coordinate system (r, 6, ¢) describing radius, cola-
titude and longitude respectively of each fluid element in the shell is illustrated in
Fig. [1.1.

The continuity equation

dp
— 4+ V- (pu) =0, 1.1
5 TV (pw) (1.1)
the Navier-Stokes equation
p(a—u+(u~V)u> = -Vp + pg -20Qxu + _F |, (1.2)
ot -~ —— ~ N—— ~
inertia pressure grad. gravity Coriolis friction
and the energy equation
oT op
pcp(a tu- 7T> :aT(a - Vp)/— VYT 4 & (1)
advection - ~~ - dif fusion viscous heating
adiabatic heating

describe the conservation of mass, momentum and internal energy, respectively. The
symbols u, p, T" and g represent velocity, pressure, temperature and gravity acce-
leration fields respectively. The rest of the symbols, p, C,, o and k, represent fluid
properties, respectively, density, specific heat at constant pressure, thermal expan-
sivity and thermal conductivity.

The observed polar flattening is (6.5 £ 0.1)% for Jupiter (Hubbard, 1977) and
(8.8+0.8)% for Saturn (Gehrels et al., 1980), values which are significant compared
to 0.34% polar flattening for Earth. To keep the model geometrically simple, we ex-
plicitly ignore the centrifugal force, although if the density of the fluid is constant it
can be proven that the centrifugal force becomes unimportant (e.g. Tritton, 1988).

19



1 Thermal convection formulation in rotating spherical shells

Fig. 1.1: Sketch of the spherical shell model with its coordinates.

The fluid is heated differentially with prescribed constant temperatures at the
boundaries. Furthermore, there are no internal heat sources due to decay of ra-
dioactive elements.
A Newtonian fluid with zero bulk viscosity is assumed, so that the viscous force is
given by

F = uViu + %uV(V -u) + D(Vy,u,0u). (1.4)

Here, 11 is the dynamic or shear viscosity of the fluid, and D is a vector which
components are given in (A.10) and depends on Vy, velocity and their spatial
derivatives.

The viscous heating ® is a non-linear contribution whose expression can be found
in in Appendix A.

To complete the system of equations, a constitutive relation between p, T" and p is
needed as well as mechanical and thermal boundary conditions. For simplicity, we
consider a perfect gas with equation of state

p=pR'T (1.5)

where R* is the universal gas constant per unit mass.

1.2 Boussinesq approximation

Compressibility effects are neglected in the Boussinesq approximation and therefore
the density is constant. However, in order to retain convection, some degree of

20



1.3 Anelastic approximation

density variation has to be allowed. The Boussinesq approximation thus, allows for
small density variations due to temperature perturbations in the buoyancy term:

p=p(l=a(T=Ty) =po+dp  (6p < po) (1.6)

where py and Tj are the constant density and temperature reference values and dp
is the density perturbation. Density variations due to pressure perturbations are
neglected in this approximation. Since relation (1.6) links density and temperature
it may be considered as the equation of state for a Boussinesq fluid.

In the Boussinesq approximation the continuity equation becomes

V-u=0 (1.7)

which describes the incompressible nature of the fluid. The general Navier-Stokes
and energy equations (1.2) and (1.3) transform to

ou
p0<— + (u- V)u) = =Vp + dpg 202 xu +uViu (1.8)
inertia pressure grad. buoyancy Coriolis friction
and
C (aT + VT) V- (kVT) (1.9)
—_ u . = . .
eI e
advection dif fusion

where in addition the dynamic viscosity p was assumed constant leading to the
usual expression for the viscous force. The definition of p here differs from the
one in equation (1.2) although the symbol is the sam&. The viscous and adiabatic
heatings are negligible compared to the other terms in the energy equation
since the fluid is incompressible (see for details).

The Boussinesq approximation does not imply any additional conditions other than
incompressible fluid with small density variations in the buoyancy term. However,
fluid properties like y, k and C), often are assumed to be constant to further simplify
the problem. The details how this approximation applies to the general equations
can be found in many textbooks (e.g. Tritton, 1988).

1.3 Anelastic approximation

1.3.1 Basic assumptions

The anelastic approximation lies somewhere between the fully compressi-
ble formalism and the Boussinesq approximation. It has been de-
rived in slightly different ways by different authors, depending on the

!The definition of p in is given by p in +po®, where g = -V .
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1 Thermal convection formulation in rotating spherical shells

specific problem (Ogura and Phillips, 1962; Gough, 1969; Latour et al., 1976;
Gilman and Glatzmaier, 1981; Braginsky and Roberts, 1995). Following Ogura and
Phillips (1962) and Gough (1969), the basic assumptions are

i) that the departures of the thermodynamic state variables due to convection
are small with respect to a reference state, and

ii) that the short-period acoustic waves are filtered out.

Filtering out acoustic waves allows larger numerical time steps since the time scale
of the fast acoustic waves is typically much smaller than the convective time scales.
The strict elimination of acoustic waves forces the system to evolve on convective
rather than acoustic time scales. It is formally realized by taking
op
o = 0 (1.10)
in the continuity equation, where p’ represents density perturbations of the reference
state.
The reference state is a background state against which perturbations due to con-
vection are described. For simplicity it is generally assumed that it depends only on
one spatial variable, which is the radius in spherical models or the depth in cartesian
models. It may as well be explicitly time dependent.
In accordance to i), each thermodynamic state variable f is expressed as a sum of a
spherically symmetric, time independent quantity fand a fluctuating quantity f’:

p(r,0,0,t) = p(r)+p'(r,0,0,1),
p(r,0,0,t) = p(r)+p'(r,0,¢,t), (1.11)
T(r,0,p,t) = T(r)+T'(r,0,p,t).

The separation of variables given in (1.11) is introduced in the general equations
(1.1)-(1.3) to perform a formal scale analysis taking into account that f’/ f=e< 1.
All the dependent variables are expanded in power series in € and only terms up to
the lowest order in e are retained. As a result, the anelastic equations describing
the evolution of the fluctuating (or dynamic) quantities can cope with large density
variations preserving at the same time the non-linearities of the model.

In summary, the anelastic approximation lives on filtering out acoustic waves which
are inherent in a compressible medium, as well as an adequate linearisation of the
fluctuating thermodynamic variables about some appropriate state. The resulting
equations can be solved numerically with larger time steps since fast acoustic waves
are not present. The Boussinesq approximation suppresses acoustic waves as well
but imposes in addition a constant density background, condition that is unsuita-
ble for most geophysical problems where motions can extend over several scale
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1.3 Anelastic approximation

heights. Moreover, the Boussinesq approximation neglects variations of density due
to pressure perturbations, which are present in anelastic problems.

Particularly for the case of the giant planets’ atmospheres, the density stratification
is very high (Guillot et al., 1994a) since the pressure varies by more than six orders
of magnitude from top to bottom (Stevenson, 1982; Guillot, 1999). Thus, anelastic
models provide a more realistic representation of these systems than the Boussinesq
ones.

1.3.2 Reference state

The giant planets’ atmospheres are believed to be mostly convective (Hubbard, 1968;
Stevenson and Salpeter, 1977; Chabrier et al., 1992; Guillot et al., 1994b). In a
vigorously convecting system the superadiabaticity is very small since transport
of heat due to convection is highly efficient. Thus, all current interior models of
giant planets are obtained under the assumption of convective transport and adia-
batic stratification (Guillot et al., 1994b). Therefore, a stratified adiabatic reference
state seems to be the appropriate one to describe the equilibrium state of the fluid
in the spherical shell.
The determination of our reference state requires the integration of the hydrostatic
equilibrium equation

P pwitr) (112)
using the fact that for an ideal gas in an adiabatic state, density and pressure are
related by

pp 7 = const = pop, . (1.13)

The constant value is fixed with a value of p and p at certain radius. The choice of
the outer boundary r,, i.e. p, = p(r,) and p, = p(r,), is in principle arbitrary for our
purpose. However, in general the structure of the giant planets’ atmospheres is fixed
by their specific entropy determined from observations at the surface of the planet
(Saumon and Guillot, 2004) supporting our initial choice. As it will become evident
later (e.g. Fig.2.2), the chosen radius to define the constant value corresponds to a
shell surface where the values of the Boussinesq reference state are recovered.

The relation (1.13) was obtained under the assumption that 7, defined as the ratio
of specific heats @, / G’U, is constant. For diatomic gases like H, which is the major
component of the giant planets’ atmospheres, in ideal gas conditions, namely low
temperatures and pressures, 7 = 7/5. This assumption certainly breaks down as
soon as we move deep into the atmospheres, where the temperatures and pressures
are very high and the fluid behaves progressively non-ideal.

To complete the specification of the reference state, all the necessary fluid properties
such as a, E, 5,;, X1, etc., which may be a function of radius, have to be given in a
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1 Thermal convection formulation in rotating spherical shells

consistent way (see Table 1.1).
Prescribing the gravity background g(r) as a constant value g, the integration of
(1.12) using the expression of p(p, po, po, V) resulting from (1.13) leads to

Y R,
- - -1 g ()
plr) = po<1+ = R*i(ro—r)) (1.14)
T = T 11 To—T
() = T(1+ (o))

where the ideal gas equation of state p = ﬁR*T was used.
Taking advantage of some conventional thermodynamic parameters we can reformu-
late the previous relations into

p(r) = ﬁ()(l + Col’ (TO; r)) ()

F+1)
T

plr) = 50(1 +cor(Te= T>) ( (1.15)

d
T(r) = TO(HCOHT%T))

where [ is the Griineisen parameter, C'o is the compressibility parameter, both non-
dimensional, and d = r, — r; is the shell thickness.
The Griineisen parameter [ is defined as

r

1 /0p a D R

:7(—3) S .Y (1.16)
pC, \oT /v pCyx, TpC, C,

The definition on the left of (1.16) shows that I' measures the increase of pressure
with temperature (while volume is held constant) and therefore I' is a measure of
thermal effects.

The non-dimensional Dissipation number Di defined as

_agd y—1 gd

Di T (1.17)
C, 7 RT

links the compressibility parameter C'o and I in the following way:

_Di_ 1

Co =T
r yRrT

(1.18)

where the Dissipation number Di, defined at the outer boundary has to be used
in to rewrite (1.14) into (1.15). The choice of the outer boundary to fix the
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1.3 Anelastic approximation

Ideal gas | Dimensionless expression

Symbol Fluid property expression in the reference state

p Density p/R*T p = see (1.23)

L Dynamic viscosity: pv a) 1 ; b) p

v Kinematic viscosity a)l/p b) 1

k Thermal conductivity: xpC), c) 1 ; d) p

K Thermal diffusivity c)1/p d) 1

Q@ Thermal expansivity:—% (g_p » /T 1

X Isothermal compressibility:% (g—Z)T 1/p 1/p

r Griineisen parameter: p%v (22), v—1 0

C, Specific heat at constant pressure %R* 1

Cy Specific heat at constant volume szk T 1

Y Cp/Cy=1+al'T 1

Table 1.1: Definition of fluid properties symbols and their expression in the reference
state for the simplified anelastic approximation (case III in the following
page). Any dimensionless reference state variable f is obtained by f/ f,.

constant value in (1.13) fixed as well the same level for Di in (1.15).

The Dissipation number Di is a measure of thermal effects due to compressibility,
namely, adiabatic heating and viscous heating (Christensen and Yuen, 1985;
Schmeling, 1989). Since both effects are scaled with the same dimensionless num-
ber, both terms are neglected in the temperature equation when Di = 0, as
it is the case in the Boussinesq approximation. Furthermore, Di is a ratio between
two length scales: the thickness of the shell d as the characteristic convection length
scale of the system, and the temperature scale height Hy defined as

1dT
H — = |
r <T dr

as the vertical (or radial) distance over which a parcel of fluid must be moved in

CETANT: (119

—1 —~ —~
) _ ART G,
order to change its reference temperature by adiabatic expansion or compression by
a factor of e. When

d
Di=— 1 1.20
) o, < ( )

the region where convection can develop has nearly constant reference temperature
and thus, since there is no basic temperature stratification, viscous and adiabatic
heatings which are a consequence of the thermal stratification due to compressibility
are negligible in the convecting region.

The compressibility parameter C'o, on the other hand, is a measure of the mechanical
effects due to compressibility, namely, the density stratification. Similarly as Di, C'o
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1 Thermal convection formulation in rotating spherical shells

is a ratio between d, and the density scale height H, defined as

71 —~
11dp YR*T
H, = (: dp ) _ IR (1.21)
pldr g
When y
=<1 1.22
Co H, < ( )

the region where convection can develop has nearly constant density background
and thus, since there is no basic density stratification, the continuity equation in
(1.1) simplifies to V -« = 0. This simplified continuity equation is characteristic for
a system with constant density, as in the Boussinesq approximation.

Approximations resulting from Co and Dz

The values or asymptotic limits of Co and D, which univocally establish the
value or asymptotic limit of I" through (1.18), determine whether the Boussinesq
approximation or the anelastic approximation is valid. Between them, there are
two intermediate cases of particular interest.

I) Boussinesq approximation: Co—0 , Di—0 , I'>0
II) Extended Boussinesq approximation: Co—0 , Di>0 , ' =00
III) Simplified anelastic approximation: Co>0 , Di—0 , I'=0
IV) Anelastic approximation: Co>0 , Di>0 , I'>0

In the cases I) and II) as it was previously explained there is no density
stratification or it is negligible in the convecting region, leading to the classical
condition of incompressibility V - w = 0. However, in II) the reference temperature
is stratified since Di > 0 and therefore, the adiabatic and viscous heatings, referred
in the literature as “non-boussinesq effects”, have to be taken into account in the
energy equation.

In the cases III) and IV) the density stratification is not negligible and as a
consequence V - u # 0. However, in the case III), since Di — 0 or equally said
I' — 0, the adiabatic and viscous heatings can be neglected leading to a similar
temperature equation as in the Boussinesq case.

The extended Boussinesq approximation has been applied to study Earth mantle
convection (Schmeling, 1989; Steinbach et al., 1989; Steinbach and Yuen, 1998).
Since the density of silicates increases by 60% from the top to the bottom (taking into
account phase and compositional changes) (Dziewonski and Anderson, 1981), the
density stratification of Earth mantle is moderate to slight. Furthermore, the latent
heat effects of phase transitions scale also with Di (Christensen and Yuen, 1985),
and therefore, the “non-boussinesq effects” including the phase transitions can be
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1.4 Anelastic formulation with zero Griineisen parameter

studied ignoring the effects of density changes except in the gravity term.
Considering the simplified anelastic approximation, there has been no work

published yet. Its main advantage is that the effects of compressibility arising from

the density stratification can be studied in an isothermal rather than adiabatic
Thus, the amount of non-linearities in the problem remains the

reference state.
same as in the Boussinesq case (recall that the viscous and adiabatic heatings are
non-linear terms in the temperature equation (1.3)).
Since gas giant planets’ atmospheres display high density stratification, the
simplified anelastic approximation seems to provide an appropriate starting model

to study compressible thermal convection in these systems.

Reference state for the simplified anelastic approximation
The hydrostatic, adiabatic reference state (1.15) is valid for any arbitrary, finite C'o

and ['. Taking the asymptotic limit I' — 0, the dimensionless reference state for
. T

) 5 T - = = 1,

T,

To—T)
(1.23)

b _ exp (C’o )

the simplified anelastic approximation yields
Do
with exponential density variation. The

p=2L
(1.24)

Po
which corresponds to an isothermal state
T
1,

~>
I

Boussinesq reference state
L1 p=L=1
Po

p=1

Po
is recovered taking Co = 0 in (1.23).

1.4 Anelastic formulation with zero Griineisen

parameter
1.4.1 Scale separation and perturbation equations
In other

One of the assumptions imposed in the anelastic approximation is that the fluc-

tuations due to convection are much smaller than the reference state.
words, the anelastic approximation lives on the assumption that two different scale

sizes coexist in the system making possible the explicit separation of the spherically

symmetric state from its perturbations.
pressible equations for a rotating spherical shell for solar applications. Braginsky

and Roberts (1995) did formally a similar scale analysis for the case of the Earth’s

Gilman and Glatzmaier (1981) performed the formal scale analysis on the fully com-
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1 Thermal convection formulation in rotating spherical shells

outer core. In both cases, the reference state was adiabatic and no further assump-
tions were done on the Griineisen parameter I" resulting in the usual equations for
the anelastic approximation.
The scale separation as given in (1.11) can also be expressed in terms of a small
parameter ¢ taken as a measure of the relative magnitude of the perturbations
¢ = f'/f < 1. Gilman and Glatzmaier (1981) considered ¢ as the measure of the
slight superadiabaticity of the fluid. Since departures from the adiabatic tempera-
ture gradient are responsible for driving the global convection, they stated that this
definition of € should also be a measure of the relative magnitude of the perturba-
tions: / , /
ezﬂ:@%%i«l. (1.25)
p p T

Following Gough (1969), and Gilman and Glatzmaier (1981) another interpretation
to € is given by

2

-2

= Ma? (1.26)

e

Cs

where u is the characteristic convective velocity, c, is the characteristic adiabatic
sound speed and Ma is the Mach number. Then, as (1.26) suggests, ¢ < 1 is
achieved when the characteristic convective velocities are subsonic.

Characteristic convective velocities estimated from the convective flux are of the or-
der 0.1ms™! for Jupiter’s molecular hydrogen envelope (Guillot et al., 2004). How-
ever, at the surface, the characteristic velocities are much larger reaching values
of the order of 120ms~! for the zonal winds (Ingersoll et al., 1981). Characteris-
tic values of the sound speed ¢, for Jupiter are 1200 — 1500ms~! at 10 — 100bar,
which correspond to the uppermost region of its molecular hydrogen envelope
(Lorenz, 1999). Since for an ideal gas the adiabatic and isothermal sound speeds
are related as ¢, = \/ycr, with v = 7/5 = 1.4 for a diatomic gas, it results ¢, ~ cr.
Taking 1500ms~! as a representative value of ¢y gives an estimate of € ~ 6 x 1073
taking 120ms~! at the surface as characteristic velocity. Taking u ~ 0.1ms~! gives
€ ~ 1072, estimate which is even smaller in deeper atmospheric regions since sound
velocities are larger (Duffy et al., 1994).

Provided that the fluid motions cause only small departures from the reference state,
the equation of state may be written as a linear expansion of p about the reference
state p in the following way:

P e N g

=D+ = D)+ (5) 0+ (50) T

oT
= p(p,T) + pxrp’ — paT’
e =T
= p(,T) S ThE (1.27)

o
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1.4 Anelastic formulation with zero Griineisen parameter

from which arises that . —
Pl ~e (1.28)
p o p T,
To obtain the perturbation equations the dependent variables are expanded in power
series of € and the resulting expansion is introduced in the fully compressible for-
malism. The terms ordered € give the reference state equations while the terms up
to the next lowest order in e give the perturbation equations. We ignore perturba-
tions in the diffusivities, i.e. v/ and &/, since the uncertainty in these fluid properties
is great (Gilman and Glatzmaier, 1981). The details of the scale analysis and the
derivation of the perturbation equations are given in Appendix B.
The continuity equation (1.1), Navier-Stokes equation and energy equation
(1.3) take respectively the following form in the simplified anelastic approximation:

V- (pu) =0, (1.29)
~(Ou / J~ o~ ~
p(a+(u-V)u) =-Vp +pg+pg —202 xu+F, (1.30)
and o7
7Cy (S +u- VT') = V(EVT), (1.31)
where F', is the viscous force given by
- 1. dp |1 0 [u 2
f— 2 — . —_— p— _— —_— _—— . P
F,=iVPu+ 3iV(V-u) + 2= -V (ru,) +rar(r) ~(v u)r]. (1.32)

The continuity equation (1.29) resembles the Boussinesq continuity equation
but with the mass-flux field pu instead of the velocity field w. The resemblance
between the energy equation (1.31) and its Boussinesq counterpart (1.9) is a con-
sequence of neglecting I'. Without this assumption, the viscous and adiabatic
heatings would have remained in the anelastic energy equation (see §B.4 for fur-
ther discussion).

Inserting in (1.30) the expression of p’ given in the linearised equation of state (1.27
we obtain

~(Ou N Lo o Sl ~

p(a + (u . V)u) = —Vp + pXrp g: pal'g+pg" —2pQ x u+ F, (1.33)

buoyancy

which contains buoyancy due to temperature and pressure perturbations. The
Navier-Stokes equation given in this way can be rewritten following Braginsky and
Roberts (1995). They introduced a “reduced pressure” P defined as

B p/ ~|>ﬁ<1>l
5

P (1.34)
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1 Thermal convection formulation in rotating spherical shells

where g’ = —V &', The pressure defined in this way transforms (1.33) in

ﬁ(%—? + (u- V)u) = —pVP—7pal'g -2 xu+ F, (1.35)

making use of Vp = % with ¢2 = R*T,,.

T
The remarkable point in Braginsky and Roberts’ pressure-transformation is that
the buoyancy force associated with pressure variations does not contribute expli-

citly, leading to an anelastic Navier-Stokes equation which resembles the Boussinesq
counterpart (1.8).

1.4.2 Non-dimensional description

The Navier-Stokes equation (1.35) and the energy equation (1.31) will be solved
numerically in non-dimensional form with the constraint (1.29) of solenoidal mass
flux. The gravity is assumed constant, i.e. g = —¢g7. The dimensionless reference
density p is given in (1.23). Using the shell thickness d as length scale, d?/7, as time
scale, the temperature contrast AT between the inner and the outer boundary as
temperature scale and p, as density scale we obtain:

V- (pu) =0, (1.36)
E

E(a—“’ + (u- V)u) _ _vp 8% osvus BF, (1.37)

ot ———— S—— Pr —_—— =

inertia pressure grad. Cloriolis friction

buoyancy
and
(0T .
Prp(— tu VT) = v (kVT) (1.38)
ot Vd - N ,
advection dif fusion

where % is related to p according to (1.41).
F', in the viscous force in (1.37) is given by
dpt

R e 1. 1 0 (u 2 .
F,= ; [,UV u+ gMV(V . U) + ar [;V(TUT) "‘TE(?) - §<V ) ’U,)T:” (139)

where /i is related to p according to . From here on (except in Appendix B)
the primes are omitted for clarity.
The temperature contrast AT between inner and outer boundary is set to 1. The

subscript “0” indicates in all cases the value at the outer boundary, which is 1 for
dimensionless variables and dimensionless fluid properties.
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1.4 Anelastic formulation with zero Griineisen parameter

The equations in non-dimensional form introduce three dimensionless numbers that
act as control parameters of the model. They are

ATd?
Rayleigh number: Ra = gaT
UpRo
Vo
Ekman number: E = 5
Qd
Prandt]l number: Pr = A%O

The Rayleigh number represents a measure of the strength of the buoyancy force.
It is defined as the ratio of the factors driving convection relative to the ones that
inhibit it. Ra determines not only the strength of convection but also its occurrence:
convection starts when the Rayleigh number reaches a threshold value called the
critical Rayleigh number Ra.. When Ra < Ra. the heat is transported only by
conduction, when Ra > Ra, also by convection. The Ekman number is the ratio of
viscous to Coriolis forces and therefore is a measure of the effects of viscosity relative
to rotation. The Prandtl number depends only on fluid properties and indicates the
relative importance between viscous and thermal diffusion.

Together with these three numbers we have to indicate the degree of density stra-
tification which is given by Co as previously discussed. Co is usually a function of
radius, however the assumptions of vanishing I" and gravity constant results in C'o
constant throughout the shell as follows from (1.18).

The dimensionless reference shear viscosity /i is related to p through the dimension-
less reference kinematic viscosity o by

(1.40)

H
Il
> =

Similarly, the dimensionless reference thermal conductivity k is related to p through
the dimensionless reference thermal diffusivity < by

~

k
PCy

k=

(1.41)

We have the freedom to choose the profile of one of the two fluid properties related
to p in (1.40) and in (1.41). We will consider four possible cases:

Kk = const | k = const

v = const | Case A Case B
it = const | Case C Case D

The dimensionless numbers as previously given are defined according to the values of
the diffusivities at the outer boundary. When one or both diffusivities are radially
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1 Thermal convection formulation in rotating spherical shells

Case Ra E Pr
A gaATd’ v v
UK O K

ﬁgOfATdBCp UV ~~ V

b vk O Pl
C pgoATd* M M
AR Q> pE

D P gaATdC, i e

pik pQd kT

Table 1.2: Variation of dimensionless numbers with density stratification.

dependent, the dimensionless numbers will have a different value throughout the
shell depending on the radius chosen to define them. Therefore, they change locally
with radius in a fashion that depends on the case to study as table 1.2/ shows.

The case A is particularly important since every dimensionless number does not
change across the shell. In the case B Pr increases towards the interior while in the
case C its behaviour is opposite. In the cases C and D, the local Ekman number
decreases inwards but Pr does not change across the shell in the case D.

Further simplifications can be applied to the equations (1.37) and (1.38) assuming
that i or k are constant. The assumption of it constant leads to a viscous force in
which the terms including the gradient of /i in F', vanish:

1 1
F,=~ [V%, +5V(V- u)], (1.42)
p
The assumption of & constant leads to an energy equation that reads

T
Prﬁ(%—t - VT) — VT (1.43)

Boundary conditions

The fluid cannot flow beyond 7; and r, in the radial direction, condition known as
“non-penetration”. In the tangential direction, we impose the stress-free (or free-slip)
condition. These two conditions can be summarised as

u, =0 and T9=7,=0 at 7 =-—— and 7,=—— (1.44)

where n = r;/r,, and 7,4 and 7., are given in §A.2.1 taking /i instead of f.

The stress-free condition is appropriate at the outer boundary while at the inner
boundary, a non-slip condition might be more adequate to model giant planets
(Starchenko and Jones, 2002). Modelling with non-slip boundary condition intro-
duces to the problem boundary layers, whose influence was studied for the Boussi-
nesq case by Zhang (1993). To keep the model simple we consider in our studies
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1.5 Numerical technique

both boundaries mechanically stress-free.
The temperature at the boundaries is prescribed such that 7; = 1 at r; and T, = 0
at r,.

1.4.3 Non-dimensional linearised equations

Under the assumption that at onset of convection the dependent variables undergo
infinitesimal disturbances, the non-linear terms can be neglected since they are of
higher order in disturbances. Additionally, reformulating the problem in terms of
O =T — T, the deviation of temperature T from the conductive static temperature
profile 7§, the non-dimensional linearised equations governing perturbations to the
basic state are:

ou RaFE
— = P — 22 EF 1.4
E@t VP + B OFf — 22 xu+ EF, (1.45)
and 00 i
Prﬁa = —urd—; + V(kVO) (1.46)

together with the constraint of solenoidal mass flux (1.36).

1.5 Numerical technique

1.5.1 Poloidal-toroidal decomposition

The code used to simulate thermal convection in rotating spherical shells is a modi-
fied version from the original code implemented by Glatzmaier (1984), which takes
advantage of the property that a solenoidal field, the mass flux, can be represented
by poloidal (1¥) and toroidal (Z) scalar potentials:

pu =V x V x (Wi)+V x (ZF) = (pu) yor + (p)10r- (1.47)

This decomposition automatically satisfies the conservation of mass (1.36) and re-
duces three dependent variables, the three components of the flow, to two, W and
Z. The poloidal and toroidal parts of the mass flux contain mixed horizontal flow
components, but the radial component of the flow enters only in the poloidal part.
From (1.47), the components of the mass flux take the form

1
pu, = —T—2£2W (1.48)
) 19 /0w 1 07
pio = ;5(80>+rsin0% (1.49)
) 19, 1 oWy 102
e = volmras) o (1.50)
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1 Thermal convection formulation in rotating spherical shells

where £? is an operator defined by
1 0 0 1 0?
2 _ 9 (npnl
~ sinf 00 <Sm980> + sin? @ 0p?

The poloidal and toroidal potentials together with the temperature field 7" and

(1.51)

the pressure perturbation field P are expanded in spherical harmonics functions
Y,™(0,¢) in angular coordinates. Introducing this expansion in (1.48)-(1.50) the
three components of the mass flux are given in spectral space by

A 1 m m
pur = = > e+ 1wy, (1.52)
{m
1 ow;r ay,” ay,"”
dup = inf—5 + 7' — 1.53
po 7 sin 6 zzn; ( ar Vo8 + 2 dp ) (1.53)
. 1 oW, oy,™ . oY
= — Z)"sinf 1.54
Pe rsin 6 zzn; ( or 0y ¢S5y (1.54)
where it is used the property of the spherical harmonics that
LY (0,9) = UL+ 1)Y]"(0, ¢). (1.55)

The complex coefficients W, and Z}" are further expanded in Chebyshev polyno-
mials 7,,(r) up to a degree n. in the radial direction and the Chebyshev coefficients
are calculated separately for each harmonic mode (¢, m) by a collocation method on
n, grid points given by

ro+mr; 1 (lmr
T, =

— oS —) with £ =0,1,...,n,.
2 2 n,

The system of equations solved by the code are the equation for the temperature,
the radial component of (1.37) and the horizontal divergence of (1.37) which give
two coupled equations for W and P, and the radial component of the curl of (1.37)
which gives the equation for Z using that

~ 1 1 my/m
<V X (pu))r = L2 = =S U2 (1.56)
lm

The advection and the Coriolis terms are treated explicitly in the physical space and
the result is projected on the different harmonic modes (¢, m). All the remaining
linear terms decouple in (¢, m) and are treated implicitly. The solution is advanced
in time in spectral space with a combination of an explicit Adams-Bashforth scheme
with an implicit Crank-Nicholson treatment of the diffusion terms, both schemes
second order accurate. The time step is limited by the Courant criterion which in
other words means, that the time step has to be less than the time the fluid needs
to flow from one grid point to another. A detailed description of the numerical
technique is given in Glatzmaier (1984) and Tilgner (1999).
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1.5 Numerical technique

1.5.2 Code implementation

The modification of the Boussinesq code to compressible anelastic is straightforward
since the scalar potentials describe mass flux field instead of velocity. However, the
anelastic viscous force is more complex and requires to be expressed in spectral
representation to be included in the code. The derivations in spectral space of the
radial component of (1.39) and (1.42) as well as their respective horizontal divergence
and radial curl are cumbersome and therefore their final expressions are given in

of Appendix C.

The free-slip boundary condition in spectral space is modified in the anelastic case.
Since the scalar potentials describe mass flux and the free-slip boundary condition
given in (1.44) applies to the velocity field, the condition in spectral space writes
slightly different from the Boussinesq case:

or

0(18W) 8(1

-~ _ z) —0. (1.57)

5 or T

When there is no density stratification, i.e. p =1, (1.57) recovers the expression of
the boundary condition for the Boussinesq case.

The non-penetration as well as non-slip boundary conditions are not affected in the
anelastic case and remain the same as in the Boussinesq case in spectral space.

1.5.3 Testing the anelastic code

Before performing any simulation with the modified code, we have to test that the
modifications were correctly implemented. The idea behind is simple: we take the
output solution given by the code and check if it satisfies the equations (1.37) and
1.38) at a certain time and grid point. To accomplish this, finite differences me-
thods were used to approximate the radial gradient of fluid properties as well as the
temporal and spatial derivatives of P, T, and the three components of velocity in
the equations (1.37) and (1.38).
Approximation of derivatives by finite differences is a common and well-known prac-
tice specially if the grid is evenly spaced as it is the case for 6, ¢ and ¢t. However,
the code solves the equations in an unequally spaced radial grid which has to be
taken into account when approximating derivatives.
For evenly and unevenly spaced grid we approximate first and second-order deriva-
tives with three grid points. Except for the second-order radial derivatives which
are first order accurate, all the other derivatives have an accuracy of second order.
Mixed derivatives are approximated with three grid points in each direction resul-
ting in a mesh of nine grid points.
Finite differences representations have the clear disadvantage compared to spectral
methods of less accuracy for the same resolution. Two to four times more grid points
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1 Thermal convection formulation in rotating spherical shells

are required to obtain numerical accuracy comparable to spectral collocation me-
thods (Orszag, 1971; Christensen et al., 2001). We have to keep this in mind since
the grid to discretise the derivatives is the same as the grid used by the code to solve
the equations.

The code was tested for the cases A, B, C and D setting the aspect ratio r;/r, in 0.35
which is representative of a thick shell. The Rayleigh number was always chosen
supercritical. The Prandtl and Ekman numbers were taken respectively as Pr, =1
and £, = 1072 in all the four cases. The value chosen for the Ekman number is
relatively high compared to the values normally used in the simulations because
for smaller F higher resolution is needed but finite differences require much higher
resolution than spectral methods for the same accuracy. Therefore, to test the code
with finite differences, the resolution used to obtain a solution of the equations with
the code was much higher than the one actually needed to resolve adequately the
calculations.

The choice of the grid point to test if the solution satisfies the equations is arbitrary
as well as the choice of the time. However, the radial grid point was chosen at
mid-depths of the shell since the radial grid is evenly spaced in that region resulting
in an increase of the accuracy of the radial second order derivative.

The number of grid points and times tested were enough to be sure that for every
equation, the left hand side (LHS) having only time derivatives, and the right hand
side (RHS) having the rest of the terms, were equal within the accepted error.

The code for the incompressible case was verified against other codes in a benchmark
test (Christensen et al., 2001). For this reason, our finite differences testing method
for the anelastic code was first probed for the Boussinesq case. Taking 49 radial grid
points, 64 grid points in # and 128 points in ¢ the relative error between LHS and
RHS was around 30% for the components of the Navier-Stokes equation and around
7% for the energy equation. With a finer grid consistent of 81 radial grid points, 200
grid points in € and 400 grid points in ¢ the relative error between LHS and RHS
decreased to 2% for the components of the Navier-Stokes equation and to less than
1% for the energy equation. The anelastic code was considered successfully tested
for every case when the previous relative errors for the finer grid were obtained.
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2 Onset of convection

2.1 Fundamentals on linear stability theory

2.1.1 Convective instability

Let us consider a fluid plane layer as an illustrative example. The gravity force
is directed downwards and the temperature decreases with height. Let us imagine
that a hot fluid parcel from below moves upwards a distance dz. If the fluid is
incompressible, the parcel is always lighter than the colder environmeniﬁ and will
rise indefinitely. This necessary criterion of convective instability can be summarised

as:
dr

dz

If the fluid is compressible the previous criterion is not sufficient. The fluid parcel

< 0. (2.1)

in the new position will expand adiabatically since the hydrostatic pressure is lower
and as a result it will cool down. The parcel will continue moving upwards if its local
temperature is higher than the local adiabatic temperature in every new position.
This criterion can be written as

d_T - dTag _ gaT
dz dz G,

(2.2)

where % is the adiabatic temperature gradient.

The instability criterion (2.2) converts to (2.1) when there is no adiabatic tempera-
ture gradient. This is the case when the fluid is incompressible or when the fluid is
compressible but the Griineisen parameter is zero since in both cases the adiabatic
heating effect is neglected.

The previous instability criteria are necessary conditions. However, when viscosity
and thermal conduction are present, the convective instability will take place if the
buoyancy force as the driving force of convection can overcome the frictional ac-
tion of viscosity and the homogenising effect on temperature resulting from thermal

! Assuming that the thermal expansivity coefficient is positive. If it is negative the convective
instability criterion is reversed.
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2 Onset of convection

conduction, factors that inhibit convection. In terms of the Rayleigh number, con-
vection will take place when Ra > Ra.: the higher the value of Ra,, the higher the
driving force has to be to destabilise the system to have convective motions.

2.1.2 Analytical description

The stability of a system is studied through its reaction to small disturbances: if
they gradually die down the system recovers the initial state and in this sense it is
stable with respect to these particular disturbances. If they grow in amplitude in a
way that the system progressively departs from the initial state, the system becomes
unstable (Chandrasekhar, 1961). Disturbances of the variables are infinitesimal in-
crements and therefore, the non-linear terms, which are terms of higher order in the
disturbances, are neglected in the formalism resulting for our problem the equations
given in §1.4.3.

Assuming the time dependence of the unknown variables, W, Z, P and ©, as ¢!, the
system of equations is reduced to a characteristic value problem for ¢. Expanding
the unknowns in spherical harmonics functions, one finds that every term in the
linearised equations (1.45) and (1.46) is decoupled in every (¢, m) mode, aside from

the Coriolis force which couples the degree ¢ with its neighbouring degrees ¢ 4 1.
Thus, each mode m evolves in time independently from the others and the equations
can be solved for each m separately.
In general the characteristic value o is complex. The first mode m, that becomes
unstable when the control parameter Ra reaches the “critical” value Ra,. will be the
one verifying that it is

- stable if Ra < Ra.: the disturbances for the mode m, decrease in amplitude,

condition satisfied by Re(o,,.) < 0,

- marginal stable if Ra = Ra,: the disturbances for the mode m,. don’t increase
nor decrease, condition satisfied by Re(o,,, ) = 0, and all the other modes are
stable, i.e. Re(o,,) <0 Vm # m,, and

- unstable if Ra > Ra,.: the disturbances increase in amplitude, condition satis-
fied by Re(oy,,) > 0.

The critical mode can evolve in time during the transition from stability to instability
in two different ways. It can be

- stationary if I'm(o,,,) = w. =0, or
- oscillatory if Im(o,,,) = w. # 0,

where w, is the oscillation frequency. Thus, Ra., w. and m, characterise, respecti-
vely, the occurrence of the marginal state, its temporal dependence and azimuthal
symmetry.
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2.2 Onset of convection in rapidly rotating
incompressible spherical systems

2.2.1 Taylor-Proudman theorem

Let us consider the Navier-Stokes equation (1.37) in the Boussinesq limit of constant
density (i.e. p = 1). Under the assumptions that the motions are infinitesimal and
steady, and the fluid is inviscid and highly rotating, the equation reduces to the
geostrophic balance

22 xu=—-Vp. (2.3)

By taking the curl of (2.3) and using the incompressibility condition V - u = 0, it
follows that

ou

2 = 0. (2.4)
This result is known as the Taylor-Proudman theorem and it expresses that under
the conditions mentioned above the flow of a rotating fluid is z-independent. If the
system has solid boundaries perpendicular to the rotation axis, (2.4) implies that
u, = 0 everywhere, i.e. the flow is two-dimensional.

In terms of dimensionless numbers, the limit of fast rotation and low viscosity is
expressed as ¥ < 1, and the limit of infinitesimal motions as Ro = % < 1, where
Ro is known as Rossby number and U is a characteristic convective velocity. The
atmospheres of the giant planets are believed to obey these conditions. Taking the
case of Jupiter, the estimate of the order of magnitude of £ and Ro is 10~!° and
10~* respectively, values obtained from mixing length theory (Guillot et al., 2004).
Therefore, the Taylor-Proudman theorem requires z-independent fluid motions in
the atmospheres of the giant planets if the fluid is incompressible.

Looking closer at the problem of thermal convection in a sphere or spherical shell in
fast rotation, the non-penetration boundary condition u, = 0 imposes z-dependence
to the components wu, and uy of the motion. Thus, convection in a sphere or spherical
shell is never geostrophic and additional terms in the geostrophic balance must enter
to set up convection. The only motion that can be truly geostrophic is azimuthal.

2.2.2 Asymptotic studies and style of convection

The physically relevant limit for convection in giant planets’ atmospheres is £ — 0.
Asymptotic theoretical studies are focused mainly on the behaviour of Ra., m. and
w. while experimental and numerical studies try to reach as low values of E as
possible to confirm or discard these theories.

The asymptotic theory for convection in a rapidly rotating sphere was obtained by
Roberts (1968) and modified later by Busse (1970), who predicted that convection
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2 Onset of convection
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Fig. 2.1: Onset of convection in a fast rotating sphere according to Busse (1970).

develops in the form of nearly two-dimensional rolls confined to a cylindrical shell
coaxial to the rotation axis, as it is shown in figure 2.1.

Numerical —and theoretical studies afterwards (Zhang and Busse, 1987;
Zhang, 1992b; Zhang, 1994) showed that the preferred mode of convection
can differ from the columnar one expected from the Roberts-Busse’s theory. The
preferred style of convection in rapidly rotating spherical systems is determined by
the Prandtl number:

a) Large Pr (Pr > 1): Columnar convection
b) Moderate Pr (Pr ~ 1): Spiralling convection

¢) Small Pr (Pr < 1): Wall-attached convection

Columnar convection

The asymptotic laws for onset of convection in a rapidly rotating sphere from the
Roberts-Busse’s asymptotic theory are

P\ 43 P\ 13 . 1/3
R o~ E—4/3 .~ E—1/3 o~ [ —— E—2/3
¢ <1+Pr) M 14 Pr ¥ (1+ Pr)?

(2.5)

as ¥ — 0. They express that the critical values Ra., m. and w, increase with in-

creasing rotation rate, and describe as well their dependence with Pr.
The onset of convection is such that the most unstable mode is usually non-
axisymmetric (m. # 0), time-dependent (w. # 0), and exhibits equatorial symmetry
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2.2 Onset of convection in rapidly rotating incompr. spherical systems

(Busse, 1970) as figure [2.1] shows.
The time dependence of the columnar convection pattern appears as an azimuthal
drift in the eastwards (or prograde) direction. Describing the linear solution for
onset of convection as

u = u(r, e mertiet (2.6)

eastwards drift corresponds to w. < 0. The two-dimensionality condition imposed
by the Taylor-Proudman theorem cannot be achieved when the boundaries are not
strictly perpendicular to the rotation axis. In addition, the non-penetration boun-
dary condition imposes z-dependence to u, and ug. Thus, some time-dependence
appears in the convection pattern because the motion can no longer satisfy the
geostrophic balance due to the inclined outer boundary.

The preferred eastwards direction of the drift is related to the inclination of the con-
fining boundary (Busse, 1994; Busse, 2002). When the heigh of the fluid decreases
with the distance s from the rotation axis, as it is the case for a sphere or spherical
shell, the drift is prograde. When the height of the fluid increases with s, as might
be the case for example, of an annulus with shorter inner cylinder than the outer
one, the drift is in the opposite sense.

The asymptotic laws have been confirmed numerically (Zhang, 1991; Zhang, 1992b)
and experimentally (Busse and Carrigan, 1976; Carrigan and Busse, 1983). How-
ever, the influence of the outer boundary was not fully taken into account in the
original sketch of Busse as it was revealed by these studies: the convex curvature of
the spherical outer boundary induces a prograde tilt in the columns. A retrograde
tilt can be induced in other kind of systems that allow the opposite concavity, like
an annulus with concave top and bottom boundaries (Busse, 2002).

Spiralling convection

At high Prandtl number the effect of viscosity is stronger than thermal diffusivity
and the columnar pattern of convection is well confined to a thin cylindrical layer,
as predicted by the asymptotic laws. However, when the Prandtl number decreases,
the relative effect of the thermal diffusivity increases and convection columns can
extend to the equatorial region (Zhang, 1992b).

According to Zhang (1992b) a columnar convection roll is forced to spiral progradely
since the phase speed of the Rossby-type wave that arises from the change of height
of the fluid column is approximately proportional to the slope of the spherical
boundary. The change from columnar roll to spiralling columnar convection occurs
continuously as the Prandtl number decreases since they constitute the same branch
in phase space (Yano, 1992).

2Height in this context refers to the column of fluid parallel to the rotation axis.
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2 Onset of convection

From the previous discussion in spiralling-columnar convection, it can be concluded
that the curved outer boundary in spherical systems plays a fundamental role in
controlling the structure of the convection pattern and its time evolution at onset.
As well, it is responsible for the existence of prograde drift, eastwards tilt, and
columnar or spiralling structure depending on the value of the Prandtl number, as
different analytical, numerical and experimental studies revealed.

Thermal inertial waves

Further decrease of the Prandtl number leads to marginal convection modes with
different characteristics compared to the spiralling-columnar convection. The first
evidence of this is that the convective motions are trapped in the equatorial outer
region (called therefore wall-attached convection). As a consequence, the inner
spherical boundary does not have much influence on the convection (Zhang, 1993).
There are however, other fundamental differences. In the case of the columnar
convection, the viscous force enters in the geostrophic balance to break the constraint
imposed by rotation. In the equatorial trapped modes the convection oscillates fast
and the constraint imposed by rotation is broken by %—'g’ instead. Thus, the viscous
force does not enter in the leading-order problem and its role is purely dissipative
(Zhang, 1994; Zhang, 1995).

These fast convection modes are inertial oscillation modes of the Poincaré equation.
They are symmetric with respect to the equator and are usually known as thermal
inertial waves. There are two different classes of inertial oscillations: eastwards
propagating (w < 0) and westwards propagating (w > 0). Whether the eastwards
or the westwards propagating modes are most unstable depends on the Prandtl
number. The convection modes eastwards propagating are most unstable however,
further decrease of the Prandtl number leads to a transition from eastwards to
westwards propagating modes (Zhang, 1994).

The value of the Prandtl number at which the transition from spiralling-columnar
convection to equatorially trapped convection takes place depends on the Ekman
number (Zhang, 1994).

The asymptotic laws at low Prandtl number for stress-free boundary conditions are

Ra, ~ E° m.~E° w.,~E’ as E—0 (2.7)
according to Zhang (1995) . Thus, the scale of the convection is large (E°) compared
to the width of the columns that scales as E'/3 according to (2.5). A complete

analysis of thermal inertial waves and asymptotic laws at low Pr can be found in
Zhang (1994; 1995).
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2.3 Numerical marginal stability simulations for compressible fluids

2.3 Numerical marginal stability simulations for
compressible fluids

The numerical simulations were performed for a thick spherical shell of aspect ra-
tio n = r;/r, = 0.35. The shell thickness is normalised in the numerical model,
d =r,—r; = 1. As a result the inner and outer radius in non-dimensional form
are r; = 1—77_—77 and r, = ﬁ with values 0.53846 and 1.53846 respectively for the
chosen aspect ratio.

Actual interior models place the molecular/metallic hydrogen transition at 80% of
the planetary radius in Jupiter, and at 50% in Saturn (Guillot, 1999). Our model
describes a thicker atmosphere with the molecular /metallic hydrogen transition at
35% of the planetary radius r,. This choice, though not very adequate at first glance,
has the advantage of being numerically less expensive.

Our model has a sharp separation between the inner and the outer shell. How-
ever, how and where this transition takes place in the giant planets is still unclear.
Theoretical models of high-pressure, low-temperature liquid hydrogen equation of
state predicts a discontinuous (plasma) phase transition (Saumon et al., 1995), while
shock compression experiments on liquid deuterium favour a continuous transition
since the resistivity of liquid hydrogen decreases up to about 1.4Mbar pressure
(Nellis et al., 1999).

The numerical results of marginal stability were obtained by a different approach
than solving the characteristic value problem. Imposing a perturbation to the linea-
rised system by choosing a value of the Rayleigh number, the characteristic values
of the solution are studied after a sufficiently long integration time. With e’ as
time dependence, the linearised system is time stepped until a steady solution is
reached. The stability of every mode m can be examined checking whether Re(o,,)
is positive, negative or nearly zero. When there was only one unstable mode, we
considered that the marginal state was reached for the value of the Rayleigh number
at which Re(o,,,) differed from 0" in less than 5%.

The characteristic value o, is numerically approximated making use of the poloidal
potential W;™(r,t) at a degree ¢ = m and radial position fixed at mid-depth r. as

W - wr— o)
T = () 5t (2:8)

where 0t is the time step, W™ (t) = W™(r.,t) depends as e°*, and (W™, 0,,) € C.
Additional details about this technique are given in Dormy (1997).

Glatzmaier and Gilman (1981a) studied numerically linear convection onset for
a compressible fluid in a spherical shell assuming the standard anelastic approxi-
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2 Onset of convection

mation. Their results show for all the Taylo numbers studied at different density
stratifications, that the most unstable equatorially antisymmetric mode m,, is always
excited after the most unstable symmetric one ms. In other words, (Ra.), > (Rac)s.
Therefore, we computed only characteristic values for the equatorially symmetric
modes.

For each mode m, the associated degrees ¢ can belong to two independent families,
¢ 4+ m even or ¢ + m odd, which correspond to the two possible symmetries with
respect to the equator. The equatorially symmetric family of solutions exists for
W (r,t) when ¢+ m is even (Glatzmaier, 1984)@. Since for a certain mode m, all
the degrees ¢ of the same family evolve in time in the same way, the characteristic
values were calculated for a fixed ¢. The choice of ¢ = m in W/*(r,t) guarantees
that {4+m = 2m is even for every m, which assures equatorially symmetric solution.

2.3.1 Results for 7 constant, cases A and B

The onset of convection is studied first for the cases where the kinematic viscosity is
constant, i.e. 7 = 1, since the Ekman number does not change throughout the shell
(see table [1.2). From (1.40), constant kinematic viscosity leads to a shear visco-
sity fi with the same radial dependence as the density p. Examples of exponential
background density profiles for different values of C'o are shown in figure 2.2. The
maximum density ratios p;/p, corresponding to the values of C'o used in the simu-
lations are shown in table 2.1.

In the case A, the thermal diffusivity is constant, i.e. K = 1. Therefore, from (1.41)
the thermal conductivity k has the same radial dependence as the density p. Since
Ra, F and Pr are defined in terms of viscous and thermal diffusivities, this case
allows a more straight forward interpretation because all the control parameters of
the problem remain constant throughout the simulated shell.

In the case B, the thermal conductivity is constant, i.e. k = 1, which results from
(1.41) in & with radial dependence as 1/p. The variation with radius of the local
Ra and the local Pr is revealed when they are reformulated in terms of k. Thus,
Ra and Pr increase inwards with the same radial dependence as p.

Tables 2.2, and 2.4 list the critical Rayleigh number Ra,, critical wave number
m,, critical oscillation frequency w. and drift velocity ¢ = w./m. with increasing
stratification at £ = 1 x 1072 and E = 3 x 10~ for the cases A and B. For the
case B, the reference value of # defining the dimensionless numbers was fixed at the
inner and at the outer boundary, models accordingly labelled as BI and BO.

2
3The Taylor number is related to the Ekman number as T = ( %) .

4If the toroidal potential Z}"(r,t) is used to study linear onset, the family ¢ + m odd gives the
symmetric solution with respect to the equator.
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Fig. 2.2: Background density profile for different stratification degrees.

Co | 00 | 05|10 ]| 15|20 |25 | 30| 35| 4.0 | 45 | 5.0

pi/po | 1.00 | 1.65 | 2.72 | 4.48 | 7.39 | 12.2 | 20.1 | 33.1 | 54.6 | 90.0 | 148

Table 2.1: Values of shell density ratios p;/p, associated to Co.

Case A:v=1,k=1 Case B: 0 =1, k=1
Pr=1 Case BO: Pr, =1
Co Ra, Me We c (Rac)o me We c
0.0]2837x10* 4 -3394 -8.49 |2837x10* 4 -33.94 -8.49
0.5]4.050x 10* 5 -51.83 -10.37 | 3.100 x 10* 5 -36.63 -7.33
1.0 | 5,500 x 10* 6  -69.80 -11.63 | 3.003 x 10* 6 -31.49 -5.25
1.5 7263 x 10* 7 -89.23 -12.75|2.570 x 10* 7 -23.64 -3.38
2.0 9420 x 104 8 -112.42 -14.05 2.040 x 10* 8 -17.56 -2.20
2.5 1173 x 10° 10 -141.68 -14.17 | 1.574 x 10* 8 -13.77 -1.72
3.0[1.281x10° 15 -176.34 -11.76 | 1.182 x 10* 9 -10.37 -1.15
3.5 1316 x 10> 16 -201.37 -12.59 | 8.700 x 10> 9 -7.63 -0.85
4.0 | 1.348 x 10° 17 -220.45 -12.97|6.300 x 10> 9  -5.44 -0.60
451 1.382 x 10° 18 -235.63 -13.09 | 4.500 x 10° 9  -3.79 -0.42
5.0 1.420 x 10° 19 -248.35 -13.07 | 3.190 x 10> 9 -2.60 -0.29

Table 2.2: Critical values for onset of convection for ¥ =1 at £ =1 x 1073,
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2 Onset of convection

Case A:v=1,k=1

Case B: v =1, k=1

Pr=1 Case BO: Pr, =1

Co Ra, Me We c (Rac), (Ra.); Me We c

0.0 9.920 x 10* 6  -79.03 -13.17]9.920 x 10* 9.920 x 10* 6 -79.03 -13.17
0.5 1.560 x 10° 7 -119.48 -17.07 | 1.161 x 10° 1.916 x 10° 7 -84.11 -12.02
1.0 | 2.268 x 10° 8 -161.26 -20.16 | 1.167 x 10° 3.174 x 10° 8 -73.71 -9.21
1.5 ] 3.163 x 10° 10 -201.33 -20.13 | 1.007 x 10> 4.511 x 10> 10 -52.87 -5.29
2.0 4.292 x 10° 11 -249.79 -22.71 | 7.980 x 10* 5.897 x 10° 12 -37.16 -3.10
2.5|5.653x 10° 19 -339.02 -17.84 | 6.110 x 10* 7.454 x 10° 12 -29.34 -2.45
3.0 6.103 x 10° 23 -400.19 -17.40 | 4.580 x 10* 9.206 x 10° 13 -21.87 -1.68
3.5|6.240 x 10° 27 -443.71 -16.43 | 3.360 x 10* 1.112x 105 13 -1595 -1.23
4.0 | 6.266 x 10> 28 -502.32 -17.94 | 2.420 x 10* 1.321 x 10° 13 -11.24 -0.86
45 | 6.286 x 10° 30 -535.89 -17.86 | 1.720 x 10* 1.548 x 106 14 -8.00 -0.57
5.0 | 6.319 x 10° 31 -578.40 -19.66 | 1.205 x 10* 1.783 x 105 14 -5.47 -0.39

Table 2.3: Critical values for onset of convection for
cases A and BO.

=1at E=3x 10"* for the

Case B: 0 =1, k=1
Case BI: Pr; =1

Co (Rac)o (Rac); me We c

0.0 | 9.920 x 10* 9.920 x 10* 6  -79.03 -13.17
0.59.732 x 10* 1.606 x 10> 7 -125.93 -17.99
1.0 | 8.480 x 10* 2.306 x 10° 8 -177.12 -22.14
1.5 | 6.814 x 10* 3.053 x 10° 8 -239.19 -29.90
2.0 |5.204 x 10* 3.846 x 10° 9 -307.09 -34.12
2.5 4.002 x 10* 4.882 x 10> 10 -360.52 -36.05
3.0]2931 x 10* 5.891 x 10° 10 -429.08 -42.91
3.5 2.102 x 10* 6.957 x 10° 10 -501.75 -50.18
4.0 | 1.554 x 10* 8.485 x 10° 11 -530.59 -48.24
4.5 1.033 x 10* 9.297 x 10° 11 -635.15 -57.74
5.0 | 7.183 x 10> 1.063 x 10° 11 -697.53 -63.41

Table 2.4: Critical values for onset of convection for 7 = 1 at E = 3 x 10~ for the
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Fig. 2.3: Modified critical Rayleigh number Ra.E*? plotted as a function of Co.
Squares: £ = 1 x 1073, Circles: F = 3 x 107*. Gray: & = 1 (case A).
Black: k£ =1 (case BO).

Ra., m. and w,. form for each value of E separate groups with similar variation with
Co as shown for Ra, in figure 2.6. This indicates that the dependence on E and Co
is separable and then, Ra., m. and w,. may be rescaled as

Ra.E*3 = f(Co), m.EY? = g(Co), wE*®=h(Co), as E — 0, (2.9)

where f, g and h are functions that include as well the dependence with the Prandtl
number. Figures 2.3, and display the respective rescaled curves, which show
in most of the cases a striking collapse from two curves into one. It is not clear why
for the case BO, Ra.E*? displays two curves with the same offset at each value
of C'o. Since Pr > 1 at every point of the shell for Co > 0, the asymptotic power
4/3 should be better satisfied than for the case A, where Pr = 1 (Zhang, 1991).
Critical values at lower F are required to see whether this behaviour persists.

Figure (2.7 and 2.8/ show equatorial cuts of z-vorticity and temperature at different
Co. The increasing stratification confines the convection to increasingly narrower
regions and the wave number increases accordingly. The most remarkable change
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Fig. 2.4: Modified critical wave number m.E'/? plotted as a function of Co.
Squares: E = 1 x 1073, Circles: E = 3 x 107%. Gray: & = 1 (case
A). Black: k£ =1 (case BO).

appears around Co = 2.5 for the case A. For smaller C'o, convection remains
attached to the inner boundary as it is also in the Boussinesq case. Beyond
Co = 2.5, convection sets in close to the outer boundary. A sharp increase in the
wave number marks this transition in figure 2.4, The separation of curves beyond
Co = 2.5 somehow suggests that the power 1/3 may not be well suited when
convection is localised closer to the outer boundary.

At smaller values of Co in the case A, density stratification has a stabilising
effect on convection, indicated by the increase of Ra,. with Co. At larger Co, the
steeper outer boundary slope stabilises the convection as well. How much is the
contribution of the density stratification compared to the slope effect cannot be
distinguished with this model. However, the nearly constant Ra,. suggests that the
density stratification and the outer boundary inclination modify only slightly the
convective instability.

The decrease of (Ra.), with C'o in the case B is related to the variation of the

radial profile of & with different Co. As Co increases, the ratios &;/k, decrease and
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Fig. 2.5: Modified critical oscillation frequency w.E?/? plotted as a function of Co.
Squares: E = 1 x 1073. Circles: E = 3 x 107, Gray: & = 1 (case A).
Black: £ =1 (case BO).

therefore, (Ra.), reflects the convective instability of a shell with smaller mean &
that results in the decrease of (Ra.), with C'o. Thus, comparisons between (Ra.),
for different values of C'o don’t give a clear picture whether density stratification
stabilises the system or not.

When the Rayleigh number changes throughout the shell appears the problem of
where to define it. Glatzmaier and Gilman (1981a) have in their anelastic linear
models a local Rayleigh number that increases with radius. Although they have ©
and A constant as in our case A, their gravity decreases slightly with radius and
their superadiabatic temperature gradient increases very rapidly with radius for
large stratifications. They found, evaluating the Rayleigh number in the centre of
the shell, that Ra,. are essentially the same for a Boussinesq fluid and a compressible
fluid with different levels of stratification. However, since the convective velocity is
maximum in the region where the local Rayleigh number is large, i.e. at the outer
boundary, evaluating Ra. where the convective velocity peaks results in relatively
more stable stratified fluid.
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Fig. 2.6: Ra, plotted as a function of Co for o = 1. Squares: E =1 x 1073, Circles:
E =3 x107% Gray: # = 1 (case A). Black: k = 1 (case B); solid line:
BO, broken line: BI.

In the case B, (Ra.), do not characterise the onset of convection since the flow is
located adjacent to the inner boundary as figures 2.7 and show. Evaluating the
Rayleigh number at the inner boundary as (Ra.); = p;(Ra.), leads to an increase of
(Ra.); with Co as figure 2.6 shows. The radial change of the local Prandtl number
adds further complexity in the comparisons. However, it can be concluded for the
case BI that density stratification stabilises convection since for every C'o the local
Prandtl number remains unchanged where the flow peaks.

Drew, Jones and Zhang (1995) studied onset of convection for anelastic models with
7 and k constant. They, on the contrary to Glatzmaier and Gilman (1981a)’s study
and this study, agreed to define the dimensionless numbers at mid-depth. They
observed an increase of Ra, with compressibility for the Prandtl numbers 1 and 10.
On the other hand, for Pr = 0.1, at Ta = 10° (= F = 2 x 107?), they found a
sharp decrease of Ra. with growing compressibility becoming even negative. They
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Fig. 2.7: Snapshots at the equatorial plane of z-vorticity (left) and temperature
(right) at £ = 3 x 107* and Ra = 1.1Ra, for the cases A (left panel) and
BO (right panel). The Boussinesq case for Pr = 1 is in the upper panel.

investigated this phenomenon through energy considerations and found out that
negative Rayleigh numbers are not possible in the Boussinesq case since entropy
and temperature are the same variable. According to this, in our anelastic models
with vanishing Griineisen parameter, we should not expect negative values of Ra,.
at low values of Pr.

The prograde drift of the convection pattern in the incompressible case persists
when the fluid is stratified. Glatzmaier and Gilman (1981a) found as well prograde
drift in their anelastic models. In the Boussinesq case, the inclined outer boundary
imposes a variation of the height of the fluid with the distance s to the rotation
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Fig. 2.8: Snapshots of equatorial z-vorticity (above) and temperature (below) at
E =3 x107* and Ra = 1.1Ra, for the case BL.

axis which produces that convection columns shrink as they move away from
the rotation axis and stretch as they move towards it, providing a mechanism to
generate vorticity in the form of Rossby waves (Busse, 1994; Busse, 2002). For a
stratified fluid, Glatzmaier and Gilman (1981b) showed with a simple analytical

model of a rotating annulus concentric with the axis of rotation and with horizontal
boundaries at top and bottom, that the oscillation frequency is prograd& and
vanishes when there is zero density stratification. Thus, fluid columns expand
as they move away from the rotation axis into lower ambient fluid density and
compress as they move towards the axis where the density is higher providing a
mechanism to generate “vorticity waves”. Moreover, they argued that the effects of
compressibility and boundary inclination are additive in the generation of vorticity
and therefore, w, is influenced by both effects.

In the case A, w,. increases in absolute value with C'o, in agreement with Glatzmaier
and Gilman (1981a)’s results. In the case BO, w. decreases in absolute value
with Co, while the opposite behaviour results for the case BI. The asymptotic
laws of Roberts-Busse predict that w. behaves inversely with Pr. Since for the
case BO, Pr increases towards the interior, the mean Prandtl number along the
column increases with Co and leads in a decrease of the absolute value of w..
The opposite behaviour in the case BI can be explained following similar arguments.

5Retrograde drift requires a change in the sign of both gravity and the radial density gradient as
these authors claimed.
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2.3.2 Results for i constant, cases C and D

The onset of convection for the cases where the dynamic viscosity is constant,
i.e. i = 1, presents the particularity that the local Ekman number changes with
radius as 1/p. Therefore, the local Ekman number is lower in the regions where
the density is larger. From (1.40), constant dynamic viscosity leads to kinematic
viscosity v with 1/ as radial dependence.

In the case C, the thermal diffusivity is constant, i.e. K = 1, which results in a local
Rayleigh number that changes with radius as p, and local Ekman number and local
Prandtl number that change with radius as 1/p. Since this case has the highest
amount of local dimensionless numbers that change with radius, makes it as well
the most difficult to study. The dimensionless numbers were defined at the outer
boundary choosing E, = 3 x 10~* and Pr, = 1.

In the case D, the thermal conductivity is constant, i.e. k= 1, which results in
a local Prandtl number constant throughout the shell. Reformulating the local
Rayleigh number in terms of /i and k gives a radial dependence as p? since both
and & change with radius as 1/p.

Tables 2.5/ and 2.6 list the results for Ra., m., w. and ¢ = w./m. with increasing
stratification for the cases C and D. The cases labelled as DO and DI indicate that
FE was defined at the outer and at the inner boundary respectively.

Figures and show z-vorticity and temperature at the equatorial plane
In the case C, the flow is attached to the outer
boundary at large C'o in the same way as observed for the case A. In the case D,
the convection sets in at the inner boundary at small and large Co likewise the

for two different values of Co.

case B. Therefore inner boundary values to define the dimensionless numbers are
more appropriate in this case. Two solutions for the case DI are given in figure

Case C: p=1, k=1 CaseD:,&zl,l%:l,Przl
Pr,=1,E,=3x10"* Case DO: E, =3 x 1074

Co (Rac)o me We c (Rac)o (Rac); Me We c

0.0 9920 x10* 6 -79.03 -13.17]9.920 x 10* 9.920 x 10* 6 -79.03 -13.17
0.5 | 1.440 x 10> 7 -130.13 -18.59 | 1.090 x 10> 2.970 x 10> 7 -94.03 -13.43
1.0 | 1.882 x 10° 9 -192.57 -21.40 | 1.055 x 10° 7.805 x 10° 10 -93.88 -9.39
1.5 2332 x10° 11 -264.44 -24.04 |9.215x 10* 1.852 x 105 13 -87.28 -6.69
2.0 2835 x 10> 13 -341.27 -26.25| 7.624 x 10* 4.163 x 10°® 16 -88.14 -5.51
2.5 | 3.435 x 10> 14 -422.97 -30.21 | 6.300 x 10* 9.422 x 10 20 -91.22 -4.57
3.0 | 4.154 x 10° 16 -497.22 -31.08 | 5.203 x 10* 2,102 x 107 24 -95.89 -4.00
3.5 | 4.353 x 10> 27 -599.84 -22.21 | 4.243 x 10* 4.648 x 106 30 -96.45 -3.22
4.0 | 4.403 x 10° 30 -670.34 -22.33 | 3.405 x 10* 1.015x 10® 37 -94.43 -2.55

Table 2.5: Critical values for onset of convection for i = 1 for the cases C and DO.
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2 Onset of convection

Case D: p=1,k=1, Pr=1
Case DI: £, =3 x 1074

Co (Rac), (Ra.); me We c

0.01]9.920 x 10* 9.920 x 10* 6 -79.03 -13.17
0.5 6.221 x 10* 1.694 x 10° 6 -66.13 -11.13
1.0 | 3.350 x 10* 2478 x 10> 7 -47.80 -6.83
1.5 1.612x 10* 3.235x19° 8 -30.88 -3.86
2.0 7.420 x 10> 4.053 x 10° 9 -21.45 -2.38
2.513.293 x 103 4.901 x10° 9 -16.16 -1.80
3.0|1.477 x10® 5.967 x10° 9 -11.94 -1.33
3.5 |6.478 x 10> 7.097 x 105 9  -8.47 -0.94
4.0 | 2.810 x 10> 8.684 x10° 9 -5.86 -0.65

Table 2.6: Critical values for onset of convection for ji = 1 for the case DI.

2.10. Using outer boundary values to define the dimensionless numbers in the case
DO means that the convection at the inner boundary sees a much lower effective
Ekman number than in the DI model. Consequently, the scale of the convection is
significantly smaller in case DO than in case DI.

2.3.3 Flow structure

In the cases with k constant, namely B and D, increasing the stratification degree Co
leads to convection more concentrated towards the inner boundary. Therefore, the
convection pattern does not exhibit the global character typical of the Boussinesq
solutions (see figure [2.7). For global character of convection we imply that there is
a large part of the shell where the fluid is in motion. The extreme localisation of
convection at large stratifications in the case DO is a consequence of the very low
local Ekman numbers in the region where convection develops. For Co = 4, F; is as
low as ~ 3 x 1079,

In the cases with & constant, namely A and C, the convection pattern exhibits
somewhat a more global character at intermediate to large C'o than in the cases B
and D. As soon as convection localises closer to the outer boundary, the fluid motion
losses its global character.

The spiralling pattern observed in the Boussinesq case is not present when the
convection rolls are very much confined towards one of the boundaries, independent
of the local Prandtl number. The cases BI and C show clear spirals in the equatorial
cuts of z-vorticity since in these cases the local Prandtl number is 1 or less than 1.
The prograde tilt is evident in all the cases.

Correlating where convection takes place with its local Rayleigh number, reveals that
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2.3 Numerical marginal stability simulations for compressible fluids

Case DO

Co=1.5

Co=4.0

Fig. 2.9: Snapshots of equatorial z-vorticity and temperature at Ra = 1.1Ra, for
the cases C and DO.

for all the cases where convection sets in near the inner boundary the local Rayleigh
number is not lowest. In fact, as table(1.2/shows, the local Rayleigh number increases
towards the interior as p for the cases B and C, and as p? for the case D. Moreover,
the Rayleigh number has the same value throughout the shell for the case A and even
there, the preferred pattern of convection for larger stratifications is not adjacent
or closer to the inner boundary as one usually obtains in the Boussinesq models.
Therefore, there must be another mechanism determining where convection sets in
which must be related with the choice of the radial profile of k.

Co=4.0

Fig. 2.10: Snapshots of equatorial z-vorticity and temperature at Ra = 1.1Ra, for
the case DI.
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2 Onset of convection

Static conductive temperature profile

The location of the convection pattern at onset is governed by the gradient of the

static conductive temperature 7. The term proportional to Cg} in the linearised
equation (1.46) inputs energy into the system against its diffusivities, and therefore,

the fluid is convectively most unstable where 627;3 is steepest.

The static conductive state of the system is described by V - (l%VTs) = 0. It has

spherical symmetry when k = l%('r’) and the imposed boundary conditions have no

angular dependence. Fixed temperature (7}, ,,)) or fixed heat flux (Cg}

(T‘i,T‘o))
as thermal boundary conditions, don’t break the spherical symmetry of the static

conductive state and thus, O _ 0 and 0L _
00 dp
The equation
1 d/ ,-dT
— L (2 ) - 2.1
r2dr (r dr 0 (2.10)

governs the form of T,(r) for a given thermal conductivity k(r) and boundary con-
ditions. With fixed boundary conditions, 7s|,, = 1 and T}|,, = 0, the analytical
solution of (2.10) for k = 1, i.e. for the Boussinesq case or the anelastic cases B and
D is
T, = _rori 1 _ M (2.11)
(ro—mri)r 1o—71;

This profile decreases as 1/r and depends on the geometry of the system through
the non-dimensional radii r; and r,,.

The analytical solution of (2.10) for k= exp <Co<r"fgr>), i.e. for the cases A and
C, is much more complicated:

T.-B + A{%exp (_ Co"" n) [mm Y (Tc:or);«n‘]
- Low[-colz=2]1 212

where
D ey 213)
T T [m (2) 5 (o) e ‘m)")]
and
B4 %_ (TOCO S e (—Coror_ 'm) [1n(ro)+z (TOCLOTZ) SZZH (2.14)
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2.3 Numerical marginal stability simulations for compressible fluids

0.9
= 0.8
0.7
0.6
0.5
0.4
0.3

Static conductive temperature

0.2 — k const (Co=0.0)
k const (Co=1.5)
k const (Co=3.0)

k const (Co=5.0)

r 0.6 0.8 1. 1.2 1.4 r
[ Radius (r) o

0.1

Fig. 2.11: Static conductive temperature profile 7T plotted for different values of
Co.

The static conductive profile given in (2.11) is recovered setting Co = 0 in the pre-
vious solution given by (2.12), and (2.14).

The figure [2.11 shows the static conductive temperature profile T for different va-
lues of C'o. The profiles were truncated at n = 100 although at n = 20 they had
already converged. The black solid line corresponds to C'o = 0 (i.e. incompressible
case) as well as when k is constant. This profile has the steepest gradient at the
inner boundary. When & is constant, the profile of i changes with Co resulting
therefore in different profiles of 7. The profiles display a transition in which the
steepest gradient moves from the inner to the outer boundary with growing Co.
Glatzmaier and Gilman (1981a) found convection adjacent to the outer boundary
for their models with 7 and & constant. In another study, the same authors found
convection adjacent to the inner boundary when /i and k were considered as constant
(Glatzmaier and Gilman, 1981c). According to them, the differences in the solutions
appear because in the latter model the velocity was damped in the outer region due
to high viscosities. Drew, Zhang and Jones (1995) studied different models where
v and [ were constant, both with constant k. They found convection concentrated
near the inner boundary but they didn’t investigate further why in their models con-
vection sets in near the inner boundary while the results by Glatzmaier and Gilman
(1981a) show onset near the outer boundary.

Obtaining the static conductive temperature profile is a necessary requirement to
study onset of convection as long as the thermal conductivity is not constant. How-
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2 Onset of convection

ever, this might not be an easy task depending on the form of k. A qualitative
method to see whether convection might set in adjacent to the inner boundary or
not comes from a closer inspection to the equatorial cuts of temperature for the
cases A and C. In these cases, k is larger at the inner boundary than at the outer
boundary. We see that there is a large region from the interior of the shell where heat
is transported through conduction until the most convectively unstable regions are
reached and then heat is more efficiently transported through convection. There-
fore, looking at the thermal conductivity profile gives a rough estimate of where
convection will set in.

2.4 Summary and conclusions

The onset of convection in rotating spherical systems has been widely studied in
Boussinesq models. The well-known asymptotic laws (2.5) that describe convection
onset in incompressible fluids, may roughly hold in compressible models as the re-
sults in figures 2.3, /2.4 and 2.5 suggest.

In incompressible models with constant gravity background, the dimensionless num-
bers do not change across the shell. In the presence of density stratification, the
diffusivities of the system may be radially dependent and therefore, the dimension-
less numbers may eventually have a different value depending on the radius chosen
to define them. This complicates the comparison between different cases and in
particular with the Boussinesq models. However, when the kinematic viscosity o
and the thermal diffusivity % are constant (Case A) all the dimensionless numbers
do not change throughout the shell. This particular case not only allows a more di-
rect comparison between compressible and incompressible results but also, provides
an appropriate model to describe compressible fluids from a physical point of view.
From statistical physics considerations for an ideal gas (see e.g. Reif, 1967), kine-
matic viscosity and thermal diffusivity are proportional. Therefore, if they change
with density, they do it in the same fashion.

The convective instability takes place near the inner boundary in the Boussinesq
models as well as in the stratified cases with constant thermal conductivity (Cases
B and D). For the models with constant thermal diffusivity (Cases A and C), a
transition in the convection onset from near the inner boundary at low Co to near
the outer boundary at large C'o is accompanied by a sharp increase in the critical
wave number m,.. The profiles of static conductive temperature Ty (figure [2.11)
show this transition as well and therefore, they can be used to predict where the
convection will set in. For all the anelastic models, an increasingly confinement of
the convection flow to narrower regions, either adjacent to the inner boundary or
to the outer boundary, is observed with growing C'o followed by an increase of the
wave numbers.
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3 3D structure close to onset

3.1 Reformulating the Taylor-Proudman theorem

In §2.2.1 we considered the Navier-Stokes equation (1.37) in the Boussinesq limit
of constant density (i.e. p = 1) and under the assumptions of steady and infini-
tesimal motions, and inviscid and highly rotating fluid, the equation reduced to the
geostrophic balance (2.3) which led to the Taylor-Proudman theorem (2.4) after
taking the curl.

Let us follow the same steps under the same assumptions for a fluid with an arbitrary
reference density p(r). The geostrophic balance is given by

22 xu=—-VP (3.1)

where P is the reduced pressure given in . Taking the curl of we obtain

V><(zxu):zV-u—uV0~z+(u~V)z—(z«V)u:(), (3.2)
= e

where the term with V - u that vanishes in the incompressible case, remains in the
compressible case. The anelastic condition V - (pu) = 0 results in

1

and therefore, the Taylor-Proudman theorem reformulated for the compressible case
when p = p(r) is

ou  u,

e~ 3.4
where H, is the density scale height given in (1.21). Written in cylindrical compo-
nents, (3.4) is given by

0z 0z 0z _Hp'

Oug 0 % B Ou, Uy

(3.5)

Thus, (3.5) expresses that the flow perpendicular to the rotation axis is z-
independent, while the flow parallel to it is not. The traditional Taylor-Proudman
theorem that holds for the incompressible case is recovered when H, — oo, corres-
ponding to a constant density background.
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3 3D structure close to onset

As we have already discussed in for an incompressible fluid in fast rotation in
a sphere or spherical shell, the non-penetration condition imposes a z-dependence
to u, and wuy (or to us and wu, in cylindrical coordinates) leaving the azimuthal flow
as the only truly geostrophic motion when convection develops. This also holds if
the fluid is compressible since u,, is z-independent according to (3.5).

3.2 Is the mass flux geostrophic?

To answer this question, let us follow the same steps under the same assumptions
as previously done in section §3.1/ but now for the mass flux pu. The geostrophic
balance is then given by

22 x (pu) = —pVP. (3.6)

Taking the curl of (3.6) and using the anelastic condition V - (pu) = 0 results in

dpu) 1.

which written in cylindrical components gives

o(pu) 1 9poP  pu,) 1 <8,68P a,aap) d(pu.) 1 0poP

0z 250z 0p 0z 2\0z0s 0s 0z 9z  2s0s 0y
(3.8)
where 9 . 95 .
w__ L2 agd L L (3.9)

0z Hy\/s?+ 22 0s  H,\/s?+ 22
As (3.8) expresses, the three components of the mass flux cannot be z-independent
simultaneously unless P is constant, or VP | Vp, which implies that P varies
only with radius. In principle, there are no physical grounds to assume one of the
previous conditions to force the mass flux to be z-independent.
Let us express in terms of velocity components and their z-derivatives:
Ipus) @u I(puy) @ d(puz) _ Op

0z 0z ° 0z _8zu¢ 0z :£uz+p

Uy
— 3.10
H, (3.10)
where the components of %—T; were replaced by (3.5). Only at the equatorial plane

(i.e. z =0) gg = 0 however, depending on how large is H,, there can be a region

~

around the equatorial plane characterised by 2z ~ 0 where gg ~ 0 and therefore,
some degree of z-independence is recovered. In the incompressible limit, H, — oo
and the mass flux, which is actually the velocity, is z-independent recovering the
Taylor-Proudman theorem as given in §2.2.1. The figure [3.1/ shows a sketch of a
spherical shell when the fluid is stratified that can better explain (3.10). A roll of

60



3.2 Is the mass flux geostrophic?

Fig. 3.1: Sketch of the spherical shell for a stratified fluid with C'o = 4. H,, is the
density scale height, s is the cylindrical radial coordinate and TC stands
for “tangent cylinder”, or the cylinder tangent to the inner boundary at
the equator.

mass flux adjacent to the TC (tangent cylinder, i.e. cylinder tangent to the inner
boundary at the equator) crosses as many density scale heights as given by the value
of Co. Around the equatorial region, a roll changes its density by around one H,,.
When Co increases, this region gets smaller and therefore, there is a strong vari-
ation of p with z. When Co decreases the effect can be resembled to moving the
convection roll outwards, crossing therefore less number of scale heights.

Similarly as for the velocity components, (pu); and (pu), cannot be geostrophic
due to the non-penetration condition together with the fact that the most unstable
convective mode is symmetric with respect to the equatorial plane. Additionally,
the condition imposes z-dependence to (pu), leaving no geostrophic mass-flux
component possible.

Evidences of geostrophy are manifested in the zonal flow obtained as the azimuthal
average of the azimuthal flow. In the Boussinesq case, the numerical simulations
at Pr =1, E = 3 x 107* — 107° performed by Christensen (2001, 2002) show a
striking degree of geostrophy in the zonal flow that persists at very strongly super-
critical regime. Zhang (1992), on the other hand, pointed out the role played by the
Prandt]l number in the generation of zonal flow in which there is an increasing loss of
geostrophy with increasing Prandtl number. At moderate-low Prandtl numbers, the
geostrophic zonal flow is generated by strong non-linear interactions of the spiralling
columnar rolls, while at high Prandtl numbers, the primary mechanism generating
zonal flow is the thermal wind, responsible for its z-dependence.
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3 3D structure close to onset

- -

Fig. 3.2: Zonal flow for the velocity (left) and the mass flux (right) for two selected
cases at Ra = 1.1Ra, and F = 3 x 107%. a) Case A with Co = 1.5. b)
Case BI with Co = 3. The colour table is saturated for the mass flux to
highlight its ageotrophic nature. Yellow: prograde, blue: retrograde.

In the compressible case, whether the zonal velocity or the zonal mass flux remains
geostrophic can be seen in figure [3.2. It shows zonal flow for the velocity (left
column) and for the mass flux (right column) for two selected cases in which weak
zonal flow is present close to onset at Ra = 1.1Ra.. The relations (3.5) and (3.8) for
the azimuthal flow are fulfilled since these results show a high level of geostrophy for
the zonal velocity and a high level of ageostrophy for the zonal mass flux especially
at higher latitudes. This behaviour of the zonal flow towards geostrophy persists at
more supercritical regimes.

3.3 Velocity vs. mass flux

Since the physically relevant limit in the giant planets’ atmospheres is £ — 0 corres-
ponding to fast rotation and low viscosity, the atmospheric interior is believed to be
inviscid for energetic considerations. Thus, as Guillot et al. (2004) argued, convec-
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3.3 Velocity vs. mass flux

tive velocities should be larger near the surface of the planet where the density is
smaller since low density material requires higher velocities to transport the same
energy. On the other hand, it has been often argued in the stellar physics field that
motion will conserve the mass flux pu and therefore produce large velocities near
the surface. However, as Gough et al. (1976) pointed out, large damping at low
density may result in smaller superficial speeds than those at greater depths.
Figures 3.3, 3.4 and 3.5/ show equatorial velocity and mass flux at Ra = 1.1Ra, for
the models A, BI and C respectively. The advantage of looking at the equatorial
plane is that the flow has no component perpendicular to that plane, i.e. u, = 0.
The size of the arrows emphasises flow structure and therefore, the flow strength
cannot be compared between single pictures.

Figure(3.3 shows at £ = 1072 and Co = 1.5 that convection is global taking place in
the entire shell. There is as well, some evidence of larger equatorial velocities close
to the outer boundary where the density is smaller. The corresponding Boussinesq
case shows a similar increase of velocity close to the outer boundary, however it is
not that large compared to the interior as it is when C'o = 1.5. The mass flux field,
on the other hand, seems to be more uniform in the region where convection takes
place. At higher values of C'o, convection onset is adjacent to the outer boundary
and the velocity is damped inwards consistent with the fact that in principle there
is no fluid motion in the interior. The mass flux field shows at higher C'o also a
much more global character with uniform behaviour compared to the velocity. At
higher Ekman numbers the region where convection takes place actively is more
confined and makes more difficult to discern the behaviour of the fields. However,
at C'o = 1.5 the flow close to the outer boundary seems to be more damped for the
mass flux relative to the flow close to the inner boundary, while this seems not to
be the case for the velocity. For larger values of Co, it can be recognised that the
velocity field decays inwards much more rapidly than the mass flux field.

Figure (3.4 shows equatorial velocity and mass flux for the cases BI and BO. Con-
vection sets adjacent to the inner boundary and the high degree of confinement of
the convection makes nearly impossible in the case BO, as well as in the cases DI
and DO (not shown), to distinguish any significant difference between velocity and
mass flux patterns. For the case BI, the equatorial velocity reveals an azimuthal
prograde flow at the outer region which is not evident for the mass flux. This flow
is a consequence of the small local Prandtl number (Pr < 1) closer to the outer
boundary. Therefore, the inertia force is larger compared to the interior and as a
consequence, the Reynolds stresses (Zhang, 1992b), which are responsible for the
generation of axisymmetric azimuthal flow due to non-linear interactions between
tilted rolls, are larger as well.

The effect of very low local Prandtl number is also observed in figure (3.5, this time
at the inner boundary. The velocity field decays inwards, however in the inner region
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3.3 Velocity vs. mass flux

Fig. 3.4: Snapshots at the equatorial plane at Ra = 1.1Ra., £ = 3 x 107, and
Co = 1.5, Co= 3 and Co = 5 for the cases BI and BO. Velocity field is
plotted in the upper row and mass flux in the lower one.

there is retrograde azimuthal flow as the mass flux field shows.

The equatorial flow patterns for the different cases suggest that damped velocities
in the interior do not always mean absence of momentum there. If the fluid is not
stagnant close to the inner boundary, weak velocities can lead to moderate momen-
tum due to the presence of large ambient density. Or vice-versa, regions of weak
momentum close to the outer boundary do not necessarily imply low velocities.
Figures 3.6 and 3.7 show the azimuthal average of vu2 and +/(pu)? plotted in the
meridional plane, where u = |u|. The contribution of the zonal flow, i.e. p-average

Fig. 3.5: Snapshots at the equatorial plane at Ra = 1.1Ra., £, = 3 x 10~* and
Co = 5 for the case C. Velocity field is plotted on the left and mass flux
on the right.
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3 3D structure close to onset

of the p-component of the flow, was removed. The contour steps were chosen to
highlight differences in flow pattern instead of strength. The increase of velocity
towards the outer boundary, observed at F = 3 x 10~ in figure [3.6/ cannot be attri-
buted directly to lower ambient density since the same behaviour is also observed in
the Boussinesq case. In all the cases the mass flux shows a tendency to geostrophy
around the equatorial plane and increasing ageostrophy at higher latitudes as (3.10)
predicted.

3.4 Column bending

A simple model to describe Jovian atmospheres dynamics was proposed by Busse
(1976), in which convection columns are organised in concentric layers outside the
tangent cylinder. The mechanism producing the zonal flow, or “zones” and “belts”
as he said, was related to the non-linear advection of momentum by columnar con-
vection assuming that every layer of convection columns corresponds to a “zone”
or a “belt”. Therefore, according to his model, the maximum latitude at which
banded appearance is found gives a rough estimate of where is located the molecu-
lar /metallic hydrogen boundary.

At onset of convection Glatzmaier and Gilman (1981a) reported that convective
columns bend towards the poles with increasing compressibility. The idea that the
convective rolls might be curved somehow parallel to the planet’s meridian is already
present as a brief discussion in Busse (1976). They are usually called “banana cells”,
however, the meaning given to this expression sometimes differ in the literature. For
example, Busse and Carrigan (1976) called “banana-shaped convection cells” to the
pattern obtain experimentally in a very thin shell of 1/16 width and therefore, this
bending towards the poles is more likely to be a geometrical response of convection
due to limited space in the shell.

Under the assumption that the simple model of Busse (1976) does give an approxi-
mated picture of convection in the Jovian atmospheres, the existence of some degree
of bending towards the poles leads to a molecular/metallic hydrogen transition lo-
cated closer to the exterior than expected.

The bending of the rolls is shown in Glatzmaier and Gilman (1981a) as a plot of
axis of helices for different compressibilities included the incompressible case. At
T =10? (= E =2 x 107!), the axes of the rolls are parallel to the spherical surface
for the incompressible and compressible cases. At T'= 105 (= £ = 6.3 x 1073) and
small stratifications the convective columns are parallel to the rotation axis while at
larger stratifications the axes of the columns bend toward the poles at mid-latitudes.
The results of Glatzmaier and Gilman (1981a) suggest that large enough compressi-
bilities can overcome the constraint imposed by rotation restoring partially the sphe-
rical geometry. We seek for evidence of columns bending towards the poles in our
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Fig. 3.6: Azimuthal average of vu? (upper row) and +/(pu)? (lower row) for the
case Aat E=10"2and E=3x10"% and Co=0, Co= 1.5, Co= 3 and
Co = 5. The contour steps were chosen to highlight differences in flow
pattern instead of strength.
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Fig. 3.7: Azimuthal average of vu? (upper row) and /(pu)? (lower row) for the
cases BO, C and DO at £ = 3 x 10~ (E, for the cases C and DO) for
Co = 1.5. The contour steps were chosen following the same criterion as

in figure 3.6.

results at low rotation rates trying to emulate what Glatzmaier and Gilman (1981a)
did. Therefore, we considered ~ and © constant, Pr = 1 and low rotation rates as
they did.

Figure [3.8 shows meridional slices of azimuthal velocity u, (upper row), and z-
vorticity (lower row, left) and temperature (lower row, right) at the equatorial plane
at Ra = 1.1Ra., Pr = 1, for E = 107! and £/ = 1072, in the Boussinesq case and
compressible case A. The Boussinesq case is ageostrophic at £ = 107! although the
convection pattern remains quite symmetric with respect to the equatorial plane as
a consequence of the rotation, even if it is slow. The presence of columns bending
towards the poles is not manifested in every slice. The usual concept of convective
“column” from rotating convection is not easily identified in a system that develops
m = 2 azimuthal symmetry with global convection taking place in the entire shell.
At E = 1072 the meridional slices in the Boussinesq case exhibit a striking degree
of geostrophy characteristic of a fast rotation regime and the equatorial z-vorticity
already shows the spiral shape characteristic at higher rotation rates for moderate
Prandtl number.
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3.4 Column bending

Co=0 Co=3 Co=5

E=1x10"

Fig. 3.8: Meridional slices of u, (upper row), and z-vorticity (lower row, left) and
temperature (lower row, right) at the equatorial plane at £ = 107! and
E = 1072 for the cases Co = 0, Co = 3 and Co = 5, at Ra = 1.1Ra,
and Pr = 1 for the case A. Red: prograde, anticlockwise and hot, blue:
retrograde, clockwise and cold, for u,, z-vorticity and temperature, res-
pectively.

The compressible results at £ = 107! seem to show convection with higher degree
of bending towards the poles compared to the Boussinesq case. However, whether
there is bending or not at £ = 1072 is not clear from the slices. The influence of
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Co=15 Co=3 Co=5

Case Bl

Fig. 3.9: Meridional slices of u, (upper row), and z-vorticity (lower row, left) and
temperature (lower row, right) at the equatorial plane at £ = 1072, Co =
1.5, Co =3 and Co = 5, at Ra = 1.1Ra, for the cases BI and BO. Red:
prograde, anticlockwise and hot, blue: retrograde, clockwise and cold, for
Uy, 2-vorticity and temperature, respectively.

compressibility to bend the convection pattern towards the poles seems to be present
at very low rotation rates, however, the high degree of column bending observed by
Glatzmaier and Gilman (1981a) is not evident in our results. In addition, the fact
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3.5 Summary and conclusions

that the convection pattern sets closer to the outer boundary at higher compressi-
bilities may impose a bending in the convection pattern as a result of the curved
outer boundary when the constraint of rotation is not that strong.

To reduce the effects on the convection pattern that may appear in the case A at
moderate-large compressibilities due to convection onset closer to the outer boun-
dary, we studied the cases BO and BI. The Ekman number was chosen as 10~2 since
rotation is still low and the pattern of convection is more columnar-like. The results
in figure 3.9 shows the influence of the Prandtl number in the convection. For the
case BI, despite of the low level of azimuthal symmetry (m = 2) the pattern ex-
hibits a high degree of geostrophy while for the case BO, the slices show ageostrophy
with eventually bending towards the poles and apparent bending towards the outer
boundary. This last case points out that the view of a convection column in some
cases may be highly idealised and therefore, local changes in the structure of a single
“column” could be misinterpreted as a global bending effect.

Glatzmaier and Gilman (1981a) explained the mid-latitude bending of the columns
as a consequence of additional terms becoming important in the vorticity equation.
Since H, drops off near the outer boundary, and ¢-gradients are large due to the
small longitudinal dimension (i.e. large m), the Taylor-Proudman condition does
not apply for high rotation rates and large stratifications as they argued. Following
these arguments, it is, however, not clear which is the mechanism producing the
bending at lower 7" where m is much smaller.

The little evidence of column bending in our results could be related to the fact
that the density scale height H, is constant in our model, and radially decreasing
in Glatzmaier and Gilman (1981a)’s model. A few simulations were performed with
g = r/r, since the density scale height decreases linearly with radiu&. With a de-
gree of stratification C'og;,, with the same density ratio p;/p, as for Co = 5 when
the background density is constant, the results at £ = 1072 for the cases A, BI and
BO (not shown) do not show a much different behaviour than the respective results
with constant reference gravity. This suggests that outside from local differences
and flow strength, radially dependent scale height does not influence much the flow
pattern.

3.5 Summary and conclusions

The Taylor-Proudman theorem for an incompressible fluid reveals the tendency of
convective motions to be nearly z-independent. The non-penetration condition to-

"When § = r/r, the reference density is p = exp [2%;7‘3 (r2 - 7“2)} which gives a radial density
o

scale height (Hp)gzm = %TT_O - COLW'
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3 3D structure close to onset

gether with the fact that the most unstable convective solution is symmetric with
respect to the equatorial plane leaves the azimuthal flow as the only motion com-
ponent that can be geotrophic in a spherical system. For a compressible fluid with
radial density background, the original Taylor-Proudman theorem modifies accor-
ding to (3.5), but the azimuthal velocity remains z-independent. For the mass flux,
on the other hand, there is no possible geostrophic component as reveals the modified
Taylor-Proudman theorem (3.10) obtained with the mass flux as motion variable.
The ageostrophy in the mass flux can be seen in the zonal flow (figure [3.2) as well
as in the azimuthal average of the total flow (figures and . However, the
equatorial mass flux patterns (figures 3.4 and exhibit a tendency to be
more uniform compared to their velocity counterparts.

The bending of the columns towards the poles by Glatzmaier and Gilman (1981a)
suggests that the constraint imposed by rotation can be overcomed when the com-
pressibility is large enough. Although this is an interesting feature, our results show
no significant column bending. The global character of the convection as well as
the very low azimuthal symmetry result in a loss of the usual concept of column.
In the cases where a columnar convection structure is observed, local distortions of
the flow may be misinterpreted as bending. In the cases where convection sets in
closer to the outer boundary, a bending towards the poles may be the response to
the curved outer boundary at low rotation rates.

The number of density scale heights in the molecular hydrogen envelope of the giant
planets is uncertain. However, there are some estimates from mixing length theory of
the pressure scale height Hp in Jupiter. In the uppermost atmosphere Hp ~ 20km
while in the deeper molecular region Hp ~ 3000km (Guillot et al., 2004). Thus, Hp
is very much smaller close to the outer boundary.

A very rough estimate of how many density scale heights there are in Jupiter’s mo-
lecular envelope can be performed using that H, = vHp for an ideal gas. Taking
Hp ~ 3000km and v = 7/5, value for a diatomic gas, it results H, ~ 4200km.
Assuming that H, is constant in the outer 20% of the planet (which is ~ 14000km
of ~ 70000km of planetary radius) the number of density scale heights is around
4. Since H, is much smaller close to the outer boundary, this estimate gives only a
rough idea of the minimum number of density scale heights.

The Ekman number is very low, ~ 107!° for Jupiter (Guillot et al., 2004). Under
the assumption that column bending is a response of large compressibilities over
rotation (Glatzmaier and Gilman, 1981a), it could be speculated whether it mani-
fests in the giant planets if it would be possible to estimate more accurately how H,
changes with radius and in consequence the number of density scale heights.
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4 Finite amplitude convection

In previous chapters it was investigated the onset of compressible convection for
different fluid properties. In the non-linear regime, the Rayleigh number adds an
additional degree of freedom to the parameter space, therefore, only cases at constant
local Ekman number were studied to limit the number of calculations.

4.1 General features of incompressible convection

Thermal convection in rotating spherical systems has been widely explored in the
non-linear regime in the Boussinesq approximation (Zhang, 1992b; Sun et al., 1993;
Zhang, 1994; Tilgner and Busse, 1997; Ardes et al., 1997; Grote and Busse, 2001;
Christensen, 2001; Christensen, 2002; Simitev and Busse, 2003). Increasing the
Rayleigh number, various scenarios occur depending on the choice of the other para-
meters. Three main groups can be distinguished depending on the Prandtl number
(see §2.2.2).

(I) At Pr <1, the different non-linear regimes in the spiralling-columnar convection
are the following:

e drifting columns, characteristic close to onset;

e vacillating convection in amplitude, where eventually, some transitions in
the vacillating regime are identified increasing Ra;

e chaotic convection, characteristic at moderate Ra, where the symmetry
about the equatorial plane is still retained to a good degree;

e intermittency in time, where bursts of convection fill the entire volume out-
side the tangent cylinder; and

e chaotic convection in the strongly supercritical regime, which fills the entire
volume, although, some degree of symmetry about the equatorial plane is still
present.

Close to onset, convection forms outside the tangent cylinder where the Taylor-
Proudman condition is less restricting: the gravity vector is perpendicular to the
rotation axis at the equatorial plane. In the polar regions, on the other hand,
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4 Finite amplitude convection

i.e. inside the tangent cylinder, vertical motions are inhibited due to the constraint
of rotation. Therefore, polar regions are nearly stagnant until the Rayleigh number
is several times supercritical. The required Ra for onset of convection inside the
tangent cylinder depends on F and Pr (Sun et al., 1993; Tilgner and Busse, 1997;
Ardes et al., 1997; Grote and Busse, 2001; Christensen, 2001).

(II) At Pr > 1 the scenario for the rotating non-linear convection is by far not as
detailed as at Pr < 1. The Prandtl number is believed to be moderate to small in
many geophysical systems, with the exception of planetary mantles since Pr is very
large due to very high viscosity. However,

e drifting columns and

e vacillating convection have been identified in the weakly non-linear regime
(Zhang, 1992a; Tilgner and Busse, 1997), as well as

e chaotic convection up to moderate Ra (Tilgner and Busse, 1997).

(III) The transition between thermal inertial waves and spiralling-columnar convec-
tion was studied by Ardes et al. (1997). Thermal inertial waves are preferred at
onset when F > FE,. and spiralling-columnar modes for £ < E,, where E, ~ P2,
Thus, thermal inertial waves are more likely at small Pr since E is generally small
for the problems considered here. In the non-linear regime, some aspects of the ther-
mal inertial waves have been studied by Simitev and Busse (2003) for Pr = 0.025
and Ekman numbers of order 1075, where

e drifting convection,
e vacillations and
e chaotic convection have been identified as well as a tendency to

e intermittency in time.

4.2 Supercritical compressible convection

4.2.1 Global measures of the solution
Kinetic energy density
The total kinetic energy density Ej is given by

1 2
ou-dV
2 / -

1
— [ pav
v. )"

E, (4.1)
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4.2 Supercritical compressible convection

where V; is the volume of the spherical shell. The kinetic energy density is the sum
of the poloidal and the toroidal kinetic energy densities, £,, and Ej,., as given in
§C.2l E,, is a measure of the vigour of the convection since the radial component
of the flow enters only in the poloidal scalar potential. The axisymmetric part of
the toroidal kinetic energy density, given by the terms with m = 0, describes the
kinetic energy in the zonal flow.

Nusselt number

The Nusselt number Nu is a dimensionless number that measures the efficiency of
the convection as mechanism to transport heat. It is defined as

N spherically averaged total heat flux
u =

4.2
conductive heat flux ’ (4.2)
where the conductive heat flux is —I%VTS with Ty = T,(r). At the boundaries, the
total heat flux is transported only through conduction and therefore, the Nusselt
number at the boundaries can be written as

Q

_4aT
O |(rir,)

Nio = —grr (4.3)

~Mdr

N3

(T’i,T‘O)

where 0T'/Or is the average over a spherical surface. When convection takes place
Nu is larger than 1, while Nu = 1 indicates that the heat is transported only
through conduction.

For the Boussinesq case or the anelastic case with &k = 1,

oT 10T
Nu; = —n— d Nuo=—-7| 44
u 77 87, . an u ?7 8T To ( )
For the anelastic case with k = exp <CO(T%ZT>)’
2
n? exp(Co) 0T 1 or
N = d N 0= A7+ o ) 4.5
A=z ok M T A@ 2o b )

where the constant A is given in (2.13) in §2.3.3.

4.2.2 Starting conditions and numerical resolution

At Ra = 1.1Ra. the calculations were started imposing a temperature perturbation
with (¢, m) = (m., m.) and maximum at mid-depths. However, in a few cases with
onset of convection close to the outer boundary, the maximum perturbation was set
close to the outer boundary. For some higher supercritical calculations, a previous
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4 Finite amplitude convection

calculation obtained at lower Ra was taken as initial state. In all the simulations,
no assumed azimuthal symmetry was imposed, and the calculations were integrated
in time until the stationary or chaotic equilibrated state was reached.

A proper resolution test is difficult to perform because all the different aspects of the
solution have to be compared. However, Christensen et al. (1999) and Glatzmaier
(1988) suggested that the spectral power of kinetic energy spectra is a good proxy
for the convergence of the solution. For the Boussinesq case, Christensen et al.
(1999) established that the calculations can be assumed reasonably resolved when
the spectral power of kinetic energy drops by more than 2 orders of magnitude.
To check whether this criterion also applies in our case, we performed a resolution
study comparing the quantitative behaviour of time-averaged properties of the so-
lution with different resolutions in a similar way as Christensen et al. (1999) did.
Table [4.1 shows time-averaged global properties for the case A at Ra = 2.2Ra,., for
different resolutions at C'o = 1.5 and Co = 5. The time series exhibit a chaotic
behaviour in both cases (see figures and [4.6), and the essential difference be-
tween C'o = 1.5 and Co = 5 is that convection sets in close to the inner or outer
boundary respectively (see §2.3.1). In both cases, the differences in energy densities
drop to less than 1% for the highest two resolutions. Figure [4.1 shows the time-
averaged spectrum of kinetic energy density for Co = 5 with resolution given by
(nr, g, bnaz) = (49,160, 53), where n, is the number of radial grid points, n; is the
number of grid points in 0 and /,,,,, is the maximum harmonic degree ¢. A decay in
the spectral power of the kinetic energy of at least 4 orders of magnitude is required
to resolve the calculations adequately.

At low to moderate Rayleigh numbers this criterion is fulfilled in nearly all the
calculations. In extreme cases where the time step had to be very small, with the
consequent increase of calculation time, the choice of a less finer grid made the calcu-
lation possible in a reasonable computing time. In some other cases where the small

Test (Mry 1y U ) E, (Ef=0/Ex) x 100 | (Epo/Ex) x 100
Ra = 22Ra,, | (33,96,32) | 8.85 x 10° 72.73 12.60 1.269
Co=15 | (41,12842) |3.33 x 10° 67.68 12.42 1.119
(49,160,53) | 3.35 x 10° 67.72 12.39 1.119
Ra = 2.2Ra,, (49,160,53) | 1.35 x 102 67.15 18.27 1.141
Co = 5.0 (65,192,64) | 1.39 x 102 67.90 17.84 1.145
(65,240,80) | 1.40 x 102 68.19 17.67 1.145

Table 4.1: Resolution test for the compressible case at Ra = 2.2Ra., Co = 1.5 and
Co =5, for the case A. The resolution is given by (n,,n;, {;,.,;) where n,
is the number of radial grid points, n; is the number of grid points in ¢
and /., is the maximum harmonic degree /.
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4.3 Flow structure in compressible convection
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Fig. 4.1: Time-averaged spectrum of kinetic energy density at Ra = 2.2Ra., Co =5
for the case A with resolution given by (n,,n;, {pe.) = (49,160,53). The
spectrum is normalised with the total energy.

scale of the convection requires very high truncations, the criterion was somewhat
relaxed to save computing time.

4.2.3 Numerical simulations

The time-averaged properties of the numerical solutions are listed at the end of the
chapter in table [4.2| for the incompressible case, and in tables 4.3 and 4.4 for the
compressible cases A and BI respectively. The radius ratio is n = 0.35 as explained
in §2.3/ and the Ekman number is £ = 3 x 10~*. The Prandtl number is Pr = 1
for the Boussinesq case and case A, and in the case Bl it is fixed to Pr; = 1 at the
inner boundary and decreases with radius.

4.3 Flow structure in compressible convection

4.3.1 Weak compressibility

The comparison between the incompressible and compressible cases is difficult for
the models where the dimensionless numbers change with radius since it is hard to
decide whether a certain feature is consequence of locally different parameters or
other compressible effects. However, the compressible case A, where © and & are
constant is an exception since the dimensionless numbers remain also constant.
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4 Finite amplitude convection

Time series of kinetic energy density and Nusselt number are plotted for Co = 0
and Co = 1.5 at Ra = 2.2Ra,, 2.8Ra. and 4Ra, in figure 4.2, They show remar-
kable differences between incompressible and compressible cases. The bifurcation
scenario is shortened in the Ra space where the solution becomes chaotic, and ul-
timately, intermittent in time at much lower Ra than the Boussinesq case. While
at Ra = 1.5Ra, the solution is still drifting, chaotic behaviour is already present
at Ra = 2.2Ra, for C'o = 1.5. Vacillating convection was not observed, although it
may exist in a very small region of the Ra space. At Ra = 2.8Ra., an additional
slow variation is present that dominates time variation at Ra = 4Ra.. In the Boussi-
nesq case, on the other hand, solutions drift at Ra = 2.2Ra. but vacillate with a
well defined frequency at Ra = 2.8 Ra. and Ra = 4Ra.. The slow variation can be
found at larger Ra (Grote and Busse, 2001; Christensen, 2001; Christensen, 2002)
and corresponds to the intermittent behaviour identified by Grote et al. (2001) and
Christensen (2001).

Convection intermittent in time is characterised by a periodic exchange of energy
between the convection columns and the zonal flow (Grote and Busse, 2001;
Christensen, 2001). The vigour of the convection changes between periods of qui-
escence interrupted by short and intense bursts. When the convective flow is in-
significant, the zonal flow decays since there are no Reynolds stresses to sustain it.
When it has become very weak, convection columns grow in amplitude very quickly
replenishing the energy in the zonal flow and the cycle repeats. At Co = 1.5, this
type of behaviour is observed at Ra = 4Ra. (see figure[4.2), with peaks in E,, and
Nu where E"7Y is lowest.

The figure 4.3 shows time variation of equatorial z-vorticity for Co = 0 and Co = 1.5
at Ra = 2.8Ra, and Ra = 4Ra.. The regularly spaced pattern in the Boussinesq
cases, dominated by one or two wave numbers, is opposed by a much more complex
pattern in the compressible cases, where more small-scale structures are present.
Convection, close to the inner boundary at onset, tries to invade the shell at larger
Ra at intermittent times, which becomes very concentrated in localised regions at
Ra = 4Ra.. Large regions don’t take part in the radial convective flow even when
the convection bursts take place. In the Boussinesq case, motionless regions (except
for the zonal flow) were observed by Grote et al. (2001) at larger Ra. However,
when the intermittent behaviour dominated, they were no longer present. In the
compressible case, they although persist.

Selected meridional slices are shown in figure [4.4 for the azimuthal convective flow,
given by u, — <u¢)f. The degree of ageostrophy is remarkably higher in the com-
pressible case, characterised by concentrated flow close to the outer boundary. Look-
ing at the flow in the equatorial plane can now be misleading. Even when the flow

Yuy),: azimuthal average of u,.
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4.3 Flow structure in compressible convection
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Fig. 4.2: Time series of kinetic energy density and Nusselt number for Co = 0

(left) and Co = 1.5 for the case A (right), at Ra = 2.2Ra., 2.8 Ra. and
4Ra, from top to bottom. Plots above in each panel: the thick black line
corresponds to E}, the thin black line to £, and the gray thin line to
Ep

gray line Nu;. 79
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4 Finite amplitude convection

Fig. 4.3: Equatorial z-vorticity at Ra = 2.8Ra. (top) and Ra = 4Ra. (bottom)
for the Boussinesq case (left) and the compressible case A with Co = 1.5
(right). M (m): maximum (minimum) E,,. Red: positive, blue: negative.
Contour step: Co = 0: ~ 72 at Ra = 2.8Ra,., ~ 108 at Ra = 4Ra,;
Co=1.5: ~290 at Ra = 2.8Ra,., ~ 1080 at Ra = 4Ra..
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4.3 Flow structure in compressible convection

Co=0 Co=15

(GECE

Fig. 4.4: Meridional slices of azimuthal convective velocity u, — (u.), (above), and
zonal flow (u,), (below) for Co = 0 and Co = 1.5 at Ra = 4Ra.. The
slices correspond to the equatorial cut 1 for Co = 0 and 4 for Co = 1.5
given in figure 4.3. Red: prograde, blue: retrograde. Contour step: ~ 3.2
for Co = 0; ~ 16 for Co = 1.5.

is weak in the equatorial plane (see figure [4.3) may be much stronger at higher la-
titudes (see figure 4.4).

The onset of convection inside the tangent cylinder begins at much lower Ra than
the Boussinesq case. At £ = 3 x 107, incompressible convection remains insignifi-
cant inside the tangent cylinder for Rayleigh numbers as large as Ra = 10Ra, (see
also Grote et al., 2001). In the compressible case, polar convection is already present
for Ra = 4Ra, (see figure :

4.3.2 Intermediate to strong compressibility

Here, we compare cases with Co = 3 and Co = 5 for the compressible model A.
Convection sets in adjacent to the outer boundary in these cases, although in the
non-linear regime convection may become more global.
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4 Finite amplitude convection
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Fig. 4.5: North-polar views of radial velocity w, at mid-depth at Ra = 4Ra. for
Co = 0 and Co = 1.5 for the case A. Red: outwards, blue: inwards.
Contour step: ~ 3.2 for Co = 0; ~ 16 for Co = 1.5.

Figure 4.6 shows time series of kinetic energy density and Nusselt number for these
cases at Ra = 2.2Ra. and Ra = 2.8Ra.. The intermittent type of convection is
reached at even lower Rayleigh numbers for Co = 3 than for Co = 1.5. For Co =5
the behaviour is chaotic at Ra = 2.2Ra,., with some degree of intermittent behaviour
at Ra = 2.8 Ra. although not as clear as for C'o = 3.

Time variation of equatorial z-vorticity is shown in figure Convection becomes
more small-scale with increasing compressibility although it is not much more space
filling. The similarities between Co = 3 and Co = 5 at onset, governed by the
convective instability at the outer boundary, have disappeared in the non-linear
regime. For C'o = 3, the patterns resemble somehow the ones at C'o = 1.5, with
convection filling only a fraction of the shell. Instead, at C'o = 5 the flow is still
concentrated adjacent to the outer boundary but has lost part of its azimuthal
regularity. A characteristic azimuthal symmetry is still recognised with a wave
number that has decreased from m,. = 31 at onset to ~ 20. The density and
thermal conductivity is 148 times larger at the inner than at the outer boundary.
The Rayleigh number, then is not high enough to achieve convection in the region
where the thermal conductivity is very large.

Some selected meridional slices are shown in figure [4.8 for the azimuthal convective
velocity. The degree of ageostrophy is also high for Co = 3 and C'o = 5, with flow
concentrated close to the outer boundary at higher latitudes. This can also be seen
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4.3 Flow structure in compressible convection
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Fig. 4.6: Time series of kinetic energy density and Nusselt number plotted for the

case A with Co = 3 (left) and Co = 5 (right), for Ra = 2.2Ra, (top) and
Ra = 2.8Ra. (bottom). Plots above in each panel: the thick black line
corresponds to E}, the thin black line to £, and the gray thin line to
E,,. Plots below in each panel: the thin black line is Nu, and the thin

gray line Nu;.
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4 Finite amplitude convection
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Fig. 4.7: Equatorial z-vorticity at Ra = 2.2Ra. (top) and Ra = 2.8Ra. (bottom)
for the case A with Co = 3 (left) and Co = 5 (right). Red: positive, blue:
negative. Contour step: Co = 3: ~ 950; Co = 5: ~ 610 at Ra = 2.2Ra,,
~ 830 at Ra = 2.8Ra..
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4.4 Effects of depth dependent thermal diffusivity

Co=3 Co=5

Fig. 4.8: Meridional slices of azimuthal convective velocity u, — (u.),, (above), and
zonal flow (u,), (below) for Co = 3 and Co = 5 at Ra = 2.8Ra.. The
slices correspond to the equatorial cuts labelled as 1 in figure [4.7. Red:
prograde, blue: retrograde. Contour step: ~ 37.

in the north-polar views where the strength of the convection inside the tangent
cylinder is larger at a quarter-depth than at mid-depth (see figure [4.9).

4.4 Effects of depth dependent thermal diffusivity

Depth dependent thermal diffusivity with constant kinematic viscosity gives a model
where the local Prandtl and Rayleigh numbers change with depth. The interpreta-
tion is difficult since the effects of depth dependent dimensionless numbers cannot
be separated from other compressibility effects. In particular, the model BI was
explored, where some novel features were found.

Time series of kinetic energy density and Nusselt number are shown in figure [4.10
for Ra = 2.2Ra. and Ra = 4Ra., at Co = 1.5 and C'o = 3. While chaotic behaviour
dominated the case A at Ra = 2.2Ra. (see figures 4.2 and [4.6), the convection
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4 Finite amplitude convection
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Fig. 4.9: North-polar views of radial velocity w, at mid-depth (a) and a quarter-
depth (b) at Ra = 2.8Ra, for the case A at Co = 3 (left) and Co = 5
(right). Red: outwards, blue: inwards. Contour step: ~ 37 for Co = 3;
~ 27 for Co = 5.

pattern is vacillating at Co = 1.5 and drifting at Co = 3 for the case BI. At
Ra = 4Ra. the pattern is already chaotic, while for the model A the time behaviour
is intermittent at C'o = 1.5 (figure[4.2)). The bifurcation scenario is not as shortened
in the Ra space as it is in the model A. A convincing reason for this is not easy to
identify since the two models cannot be directly compared.

Time sequences of equatorial z-vorticity are shown in figure [4.11 at Ra = 2.2Ra.
and Ra = 4Ra., for Co = 1.5 and Co = 3. At Ra = 4Ra. a still visible spatial
regularity is observed for both compressibilities despite the chaotic time behaviour.
In particular, for C'o = 3, the convection is more global with flow organised in ap-
parently two layers. Meridional slices of azimuthal convective velocity in figure [4.12
seem to agree with this view. The inner layer is more time-dependent than the outer
one and a relative drift is not evident in this time sequence.

If the compressibility is further increased to C'o = 5 the separation in two different
layers is even more pronounced, as figure [4.13| clearly demonstrates at Ra = 2.2Ra...
Close to onset, convection can only be found close to the inner boundary (see figure
2.8). At Ra = 2.2Ra, the inner convective layer persists but an additional layer has
formed close to the outer boundary. This outer convective layer forms at a much
lower effective Prandtl number than the inner layer. At Co = 5, Pr varies from
Pr = 1 at the inner to Pr = 6.76 x 102 at the outer boundary. It thus seems
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Fig. 4.10: Time series of kinetic energy density and Nusselt number plotted for the
case BI with Co = 1.5 (left) and Co = 3 (right), for Ra = 2.2Ra, (top)
and Ra = 4Ra. (bottom). Plots above in each panel: the thick black line
corresponds to Ej, the thin black line to £, and the gray thin line to

E
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4 Finite amplitude convection

Fig. 4.11: Equatorial z-vorticity at Ra = 2.2Ra,. (top) and Ra = 4Ra,. (bottom) for
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the case BI with C'o = 1.5 (left) and C'o = 3 (right). Red: positive, blue:
negative. Contour step: Co = 1.5: ~ 140 at 2.2Ra., ~ 550 at 4Ra.;
Co=3: ~260 at Ra = 2.2Ra., ~ 740 at Ra = 4Ra..



4.4 Effects of depth dependent thermal diffusivity

Co=3

Fig. 4.12: Meridional slices of azimuthal convective velocity u,— (u,), (above), and
zonal flow (uy),, (below) for Co = 1.5 and Co = 3 at Ra = 4Ra,. The
slices correspond to the equatorial cuts labelled as 1 in figure4.11. Red:
prograde, blue: retrograde. Contour step: ~ 18 for Co = 1.5; ~ 23 for
Co=3.

likely that convection in the outer layer is a thermal inertial wave, typical for small
Prandt]l numbers (Zhang, 1994; Zhang, 1995).
Characteristic features of thermal inertial waves (Zhang, 1993; Zhang, 1994;

Zhang, 1995) are given in §2.2.2/and can be summarised here in the following way:

convective motions are trapped in the equatorial region, receiving thus the

name of “wall-attached convection”,

they propagate faster than the convective modes, i.e. characteristic convective

time scale is shorter than for the columnar convection,

they are symmetric with respect the equatorial plane,

the scale of the convection is large compared to the columns.

The outer convective layer is symmetric about the equatorial plane (see figure[4.16),
and the scale of the convection is larger than in the inner columnar convective layer.
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4 Finite amplitude convection

Fig. 4.13: Equatorial z-vorticity at Ra = 2.2Ra. for the case Bl with C'o = 5. Red:
positive, blue: negative. Contour step: ~ 338.

Moreover, the corresponding wave number m = 11 is much lower than the values
~ 30 associated to columnar convection adjacent to the outer boundary, indicating
also a larger scale of convection.

The faster propagation of the outer convective flow with respect to the inner colum-
nar convection is clearly seen in figure 4.13. The outer pattern has propagated in
the prograde direction such that the last plot is identical to the first one. There
is in consequence a periodic behaviour in the whole pattern that results from the
interaction between the two convective layers which manifests in small amplitude
oscillations in the corresponding times series of kinetic energy density (figure 4.14).

The characteristic time scale of the inner columnar convection can be estimated as
T — 2mm
)
a first approach to w is given by its critical value (table[2.4). For the outer convective
layer, the characteristic time scale can be roughly estimated as 7, ~ T' x m, where

. Since the pattern drifts and the wave number m is the same as at onset,

T is the oscillation period in the time series. Thus, it results 7; ~ 5 T,,.

Convection in the outer layer describes the features that characterise thermal iner-
tial waves and in consequence it is very likely that this is the type of convection.
The two different convective regimes, i.e. columnar convection and thermal inertial
waves, can be present in the shell in the model BI because the local Prandtl number
changes with radius, decreasing from 1 at the inner boundary to much smaller values
at the outer boundary. For the model A, although convection adjacent to the outer
boundary has been identified, no thermal inertial waves are possible since Pr = 1,
constant throughout the shell.
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4.4 Effects of depth dependent thermal diffusivity

At larger Rayleigh numbers, much of the regularly spaced pattern is lost for the wall-
attached convection (see figure 4.15). Selected meridional slices of azimuthal con-
vective velocity also show less organised convection compared to Ra = 2.2Ra, (see
figure [4.16). In incompressible convection, the azimuthal symmetry of the thermal
inertial waves is well preserved up to Ra ~ 13Ra, for Pr = 0.025 and £ =1 x 107°
(Simitev and Busse, 2003). At even higher Ra, the pattern is more irregular with
equatorially attached convection spreading into the interior and eventually detaching
from the equator (Simitev and Busse, 2003). In the compressible case, there is not
much resemblance to non-linear wall-attached convection as in Simitev and Busse
(2003)’s studies. The time step required for this kind of simulations is very small
and therefore, the time series given in figure 4.14 may be not long enough to reach
the equilibrated state. Before concluding that the loss of symmetry is an effect of
the compressibility, the corresponding time series have to be extended.

Convection inside the tangent cylinder (figures and is promoted at larger
values of Ra with respect to the model A.
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Fig. 4.14: Time series of kinetic energy density and Nusselt number plotted for the
case BI for Co =5 at Ra = 2.2Ra, (left) and Ra = 4Ra, (right). Upper
plots: the thick black line corresponds to Ej, the thin black line to E*=°,

and the gray thin line to F,,. Lower plots: the thin black line is Nu,
and the thin gray line Nu,.
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4 Finite amplitude convection

Fig. 4.15: Equatorial z-vorticity at Ra = 4Ra. for the case BI with C'o = 5. Red:
positive, blue: negative. Contour step: ~ 1430.

Ra=2.2Ra. Ra=4Ra,
Fig. 4.16: Meridional slices of azimuthal convective velocity u, — ., for the case

BI for Co = 5 at Ra = 2.2Ra. and Ra = 4Ra.. The zonal flow (uy),
at Ra = 4Ra,. is plotted on the right. The slices correspond to the
equatorial cuts labelled as 1 in figures [4.13 and [4.15. Contour steps:
~ 13 at Ra = 2.2Ra., ~ 57 at Ra = 4Ra..
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Fig. 4.17: North-polar views of radial velocity u, at mid-depth at Ra = 4Ra. for
the case BI at Co = 1.5 (left) and C'o = 3 (right). Red: outwards, blue:
inwards. Contour step: ~ 18 for Co = 1.5; ~ 23 for Co = 3.

Fig. 4.18: North-polar views of radial velocity u, at mid-depth for the case BI at
Co =5 and Ra = 4Ra.. Red: outwards, blue: inwards. Contour step:
~ 57.
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4 Finite amplitude convection

4.5 Global properties of compressible convection

4.5.1 Constant dimensionless numbers, case A

Time-averaged global properties for the compressible model A (table [4.3) were
plotted vs. Ra/Ra. and Co together with the properties for the Boussinesq cases
(table [4.2).

Figure 4.19 shows E;"=°/E), and E,, /FE}, plotted vs. Ra/Ra.. The gradual increase
of energy in the zonal flow up to moderate Rayleigh numbers is a known feature in
the incompressible convection (see e.g. Christensen, 2001; Christensen, 2002). The
non-linear term (u - V)wu in the Navier-Stokes equation generates Reynolds stresses
(see e.g. Tritton, 1988) due to the correlation between u, and u, that results from
the curvature of the outer boundary (Busse, 1983; Busse, 1994). Thus, this mecha-
nism transfers kinetic energy from the small-scale convective flow into the large-scale
zonal flow.

For the compressible cases, the same behaviour at C'o = 0 is observed at Co = 1.5
and C'o = 3, with energies in the zonal flow that increased in some cases by more
than 20% with respect to the Boussinesq cases. At C'o = 5 the zonal energy is larger
than at C'o = 0 although it is smaller than at C'o = 3. This may be connected with
the fact that in the non-linear regime up to Ra = 2.8 Ra. convection is not global
being still concentrated closer to the outer boundary (see figure . There is an
initial increase of zonal flow energy followed by a decrease at Ra = 2.8 Ra.. This
trend has to be confirmed with simulations at larger Ra.

Reynolds stresses may also be responsible for the energy input in the zonal flow
when the ambient density is not constant. It is however not clear why the energy
in the zonal flow increases with compressibility (up to Co = 3) despite the loss of
geostrophy of the convective flow (see figures 4.4 and [4.12). For C'o = 5, Reynolds
stresses may have lost part of the efficiency to generate zonal flow since convection is
still very much localised close to the outer boundary. A detailed study of Reynolds
stresses is required to analyse the role of radially varying ambient density.
Figure(4.20 shows E"="/ ). and E,, / E), plotted vs. Co. At Ra = 1.1Ra, the energy
in the zonal flow does not exceed 20%. At larger Ra, it has increased to more than
50% and the increase of E["=Y/E) with Co is evident up to Co = 3. At Co =5 the
zonal energies have decreased with respect to Co = 1.5 and Co = 3.

The effect of compressibility in the zonal flow can also be seen in figures 4.4 and [4.8],
where <u¥,>¢ was plotted at Ra = 4Ra. and Ra = 2.8Ra,. respectively. Increasing
Co, the strength of the retrograde zonal flow decreases with respect to the prograde
flow. Geostrophy is preserved, and at Co = 5 only a equatorial prograde flow is
present.

Time averaged Nu plotted vs. Ra/Ra, is shown in The sudden change in slope
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Fig. 4.19: Time-averaged % axisymmetric toroidal kinetic energy density Em="/E}
(filled symbols) and % poloidal kinetic energy density E,,/E) (open sym-
bols) plotted vs. Ra/Ra. for the case A. (x): Co = 0; (gray OJ): Co = 1.5;

(red V): Co = 3; (blue O): Co = 5.
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Fig. 4.20: Time-averaged % axisymmetric toroidal kinetic energy density E"="/E}
(filled symbols) and % poloidal kinetic energy density E,,/E) (open sym-
bols) plotted vs. Co for the case A. (black A): Ra = 1.1Ra,; (blue O):

Ra = 2.2Ra.; (red o): Ra = 2.8Ra,.
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8 9 10
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Ra/RaC

Fig. 4.21: Time-averaged Nusselt number Nu plotted vs. Ra/Ra,. for the case A.
(x): Co=0; (gray O): Co = 1.5; (red V): Co = 3; (blue ¢): Co = 5.

Co

Fig. 4.22: Time-averaged Nusselt number Nu plotted vs. C'o for the case A. (black
A): Ra = 1.1Rag; (blue O): Ra = 2.2Ra,; (red o): Ra = 2.8Ra,.
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4.5 Global properties of compressible convection

noticed in all the curves is connected with the onset of strong time dependence,
already observed by Tilgner and Busse (1997) in the Boussinesq case. Chaotic con-
vection becomes more efficient in transporting heat in the compressible case than
in the incompressible case, reflected by the larger values of Nu. Figure 4.22 shows
Nu as function of Co for different values of Ra. The increase of Nu with Co is
observed up to C'o = 3. At Co = 5 convection has become less efficient with respect
to Co = 3.

Time averaged total kinetic energy Ej is plotted vs. Ra/Ra. in figure [4.23, and
vs. Co in figure(4.24. The values are larger in the compressible case, increasing with
Co and Ra. In some cases, Fj is around two orders of magnitude larger than the
corresponding incompressible counterpart. At Co = 5, F}, is lower than the values
at Co = 1.5 and C'o = 3. There is therefore a decrease in all the global properties
at C'o = 5 with respect to the values at Co = 3 or even C'o = 1.5, which is likely
connected to the localised convection close to the outer boundary up to 2.8Ra..
Simulations at larger Ra are required to see whether this behaviour of the global
properties remains.

4.5.2 Depth dependent thermal diffusivity, case BI

In the same way as for the model A, time-averaged global properties were plotted
for the model BI (table(4.4) vs. Ra/Ra. and Co together with the properties for the
Boussinesq cases (table 4.2).

Figures [4.25 and [4.26 show E"~°/E} and E,,/E} plotted vs. Ra/Ra, and Co res-
pectively. There are no significant qualitative differences compared to the curves for
the case A despite the differences between the models. The zonal energy increases
with Ra and with C'o. A decrease in zonal energy with respect to C'o = 3 is ob-
served at Co = 5 for Ra = 4Ra.. Like for the model A, to explore whether this
trend persists, simulations at larger Ra are required for Co = 5. Figures and
4.16/ show zonal flow at Ra = 4Rac. The strength of the equatorial prograde flow
increases with C'o but on the contrary to the model A, the zonal flow stays more
global.

The time-averaged Nusselt number Nu also shows a sudden change in slope when
plotted vs. Ra/Ra,. in connection with the onset of chaotic time behaviour (see fi-
gure [4.27). There is as well as in model A, a loss of efficiency in transporting heat
at C'o = 5 as show the curves of Nu vs. Co in figure [4.28.

Figures [4.29 and [4.30 show total kinetic energy density Ej plotted vs. Ra/Ra,. and
Co, respectively. Compared to the model A, the curves show a different behaviour:
the decrease in energy from Co = 3 to Co = 5 in the model A is not observed
here. Instead, F), smoothly increases with Ra and Co. Apparently, the decrease of
global properties at high compressibilities is therefore, a feature not always present.
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5 6
Ra/RaC

Fig. 4.23: Time-averaged kinetic energy density Ej plotted vs. Ra/Ra, for the case
A. (%): Co=0; (gray O): Co=1.5; (red V): Co = 3; (blue {): Co = 5.

Fig. 4.24: Time-averaged kinetic energy density Ej plotted vs. Co for the case A.
(black A): Ra = 1.1Ra,; (blue O): Ra = 2.2Ra,; (red o): Ra = 2.8Ra..
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Fig. 4.25: Time-averaged % axisymmetric toroidal kinetic energy density Em="/E}
(filled symbols) and % poloidal kinetic energy density E,,/E) (open sym-
bols) plotted vs. Ra/Ra, for the case BlL. (x): Co = 0; (gray 0J): Co = 1.5;

(red V): Co = 3; (blue O): Co = 5.
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Fig. 4.26: Time-averaged % axisymmetric toroidal kinetic energy density E"="/E},
(filled symbols) and % poloidal kinetic energy density E,,/E) (open sym-
bols) plotted vs. Co for the case BI. (black A): Ra = 1.1Ra,; (blue 0):

Ra = 2.2Ra.; (green o): Ra = 4Ra,.
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Fig. 4.27: Time-averaged Nusselt number Nu plotted vs. Ra/Ra,. for the case BI.
(x): Co=0; (gray O): Co = 1.5; (red V): Co = 3; (blue ¢): Co = 5.
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Fig. 4.28: Time-averaged Nusselt number Nu plotted vs. C'o for the case BI. (black
A): Ra = 1.1Rac; (blue O): Ra = 2.2Ra,; (green o): Ra = 4Ra,.
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5 6
Ra/RaC

Fig. 4.29: Time-averaged kinetic energy density Ej, plotted vs. Ra/Ra, for the case
BI. (%): Co = 0; (gray O): Co = 1.5; (red V): Co = 3; (blue ¢): Co = 5.
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Fig. 4.30: Time-averaged kinetic energy density E) plotted vs. C'o for the case BI.
(black A): Ra = 1.1Ra,; (blue O): Ra = 2.2Ra,; (green o): Ra = 4Ra,.
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4 Finite amplitude convection

For the model A, this decrease was associated to the localised convection at the
outer boundary. For the case BI, it could be instead a response to the presence of
thermal inertial waves. Global properties of additional models have to be explored
at high compressibilities and larger Rayleigh numbers to discern whether this is a
characteristic feature of high compressibility.

4.6 Tables with results

The list of results presented in this chapter are given in table 4.2 for the Boussinesq
case, table 4.3 for the compressible model A and table [4.4 for the compressible
model BI. The Ekman number is £ = 3 x 10~* and the radius ratio is n = 0.35.
The Prandtl number is Pr = 1 in the Boussinesq case and model A, and varies from
Pr; = 1 at the inner boundary to Pr, = 0.22, Pr, = 0.05 or Pr, = 6.76 x 10~2 for
Co=1.5, Co= 3 and Co = 5 respectively.

Ra/Ra, E, (Er=/F) x 100 | (Epo/Ex) x 100 |  Nu
1.10 5.82 x 10° 8.22 25.07 1.021
1.50 2.90 x 10’ 34.31 17.19 1.060
2.20 6.74 x 10! 49.50 12.58 1.096
2.80 1.16 x 10? 56.81 10.43 1.122
3.23 1.64 x 102 60.97 9.31 1.140
4.00 3.14 x 102 65.48 7.52 1.173
5.00 5.08 x 102 64.68 10.38 1.306
6.50 1.16 x 10° 70.01 9.16 1.435
7.50 1.73 x 10° 74.09 7.67 1.483
8.50 2.40 x 103 78.33 6.66 1.545
10.0 3.66 x 103 80.89 6.28 1.682

Table 4.2: Time-averaged properties in the supercritical regime for the Boussinesq
case at Pr=1and E =3 x 1074,
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Co | Ra/Ra, E}, (El=°/Ey) x 100 | (Epu/Ex) x 100 Nu
1.0 1.10 8.57 x 10° 12.90 29.23 1.014
1.5 1.10 9.02 x 10° 15.37 32.62 1.011
1.50 5.04 x 10! 43.00 21.48 1.042

2.20 3.35 x 102 67.72 12.39 1.119

2.80 1.29 x 103 75.83 8.94 1.260

3.23 2.38 x 10° 79.20 7.86 1.369

4.00 5.20 x 10° 83.09 6.68 1.591

5.00 1.08 x 104 83.56 6.67 2.011

\ 2.0 1.10 1.09 x 10! 20.39 33.38 1.010
3.0 1.10 6.61 x 10° 13.06 45.32 1.010
1.50 1.94 x 102 63.60 16.95 1.070

2.20 2.12 x 10° 80.75 8.80 1.312

2.80 5.73 x 103 81.41 8.13 1.701

3.23 9.40 x 103 81.60 8.12 2.022

\ 4.0 1.10 5.16 x 10° 8.17 52.01 1.016
5.0 1.10 3.58 x 10° 4.81 59.11 1.025
2.20 1.39 x 102 67.90 17.84 1.145

2.80 7.28 x 102 63.20 16.72 1.556

Table 4.3: Time-averaged properties in the supercritical regime for the case A at
Pr=1and £ =3 x 1074

Co | Ra/Ra. E}, (El=°/Ey) x 100 | (Epu/Ex) x 100 Nu
1.5 1.10 1.51 x 10* 18.92 32.29 1.013
1.50 9.40 x 10* 52.17 17.15 1.045
2.20 2.80 x 102 65.31 10.98 1.085
4.00 3.15 x 103 78.45 8.69 1.324
5.00 5.63 x 103 82.57 7.43 1.426
6.50 1.50 x 10* 84.22 6.64 1.723
3.0 1.10 2.84 x 10* 26.76 38.76 1.011
2.20 7.39 x 102 72.73 12.08 1.082
4.00 7.31 x 103 79.36 9.94 1.259
5.0 1.10 5.44 x 10 35.04 40.26 1.007
2.20 1.57 x 103 72.78 16.04 1.060
4.00 1.61 x 10* 67.99 14.63 1.253

Table 4.4: Time-averaged properties in the supercritical regime for the case BI at
E=3x10""%
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4.7 Summary and conclusions

The qualitative aspects of the dynamics in the compressible models show a prefe-
rence of the flow to concentrate in certain regions. This can be a fraction of the shell
viewed in an equatorial cut or the region close to the outer boundary at higher la-
titudes in a meridional view. The bifurcation scenario is shortened in the Ra space
and therefore, chaotic convection is achieved at lower Ra than in the Boussinesq
case. Convection was never space-filling, however, the Rayleigh numbers were not
that large. Convection inside the tangent cylinder is always present at lower Ra in
the chaotic regime, while in the Boussinesq case it is not present up to Ra = 10Ra,,
even in the chaotic regime (see also Grote et al., 2001).

One of the most striking features is indeed connected to the capability of the sys-
tem to develop thermal inertial waves and columnar convection simultaneously. A
local Prandtl number that decreases with radius allows for regions close to the inner
boundary with moderate Pr for columnar convection, and very small Pr close to
the outer boundary for wall-attached convection. The numerical studies of Simitev
and Busse (2003) for incompressible fluids have shown that thermal inertial waves
persist in the non-linear regime. Our results at larger Ra do not show much resem-
blance to the non-linear results in Simitev and Busse (2003)’s studies. Convection
is still present close to the outer boundary, although much of the regularly spaced
pattern is lost.

The kinetic energy in the zonal flow increases with C'o although the convective velo-
cities have lost part or much of their geostrophy. A rigorous study of the Reynolds
stresses will reveal the role played by the reference density in the generation and
maintenance of zonal flow.

The zonal winds in the upper atmosphere of the giant planets are characterised
by a fast equatorial prograde jet with weaker jets at higher latitudes, alterna-
ting in direction for Jupiter and mostly prograde for Saturn, as figure (0.2 shows
(Ingersoll et al., 1981). This intensity difference between equatorial to higher lati-
tudes flow is qualitatively captured by the compressible models, especially at large
Co. Further studies of the parameter space, specially in thinner shells, have to be
performed to see whether alternating zonal flow is promoted when the background
density is no longer constant. The presence of strong prograde zonal flow at Co =5
for the case A opens the door to new scenarios to explain Saturn’s surface-dynamics.
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The increase in computing power during the last years made possible to study time-
dependent, three-dimensional solutions of more complex and more realistic models in
still manageable times and with adequate resolutions. The widely assumed Boussi-
nesq approximation can now be extended to include compressibility effects for studies
of, for example, the molecular envelope of the giant planets.

The commonly employed anelastic approximation (Ogura and Phillips, 1962;
Gough, 1969) includes the effects of compressibility but filters out fast acoustic waves
which would otherwise require a much smaller numerical time step. In the limit of
vanishing Griineisen parameter, the thermal effects due to compressibility, i.e. adia-
batic and viscous heatings, do not contribute. This limit simplifies the traditional
anelastic approximation, leading to a problem with a nearly unmodified tempera-
ture equation, and the same number of non-linearities as in the Boussinesq case.
This new approach to the compressible problem was employed here. Since it hasn’t
been developed before, programming to implement the new theory and various tes-
tings were necessary. Whether it is reasonable to neglect the adiabatic and viscous
heatings for the molecular envelope of the giant planets remains to be clarified, since
the required estimate of the Dissipation number (see §1.3.2) is not yet avaliable.
The dimensionless numbers, i.e. the control parameters of the system, are constant
throughout the shell in the Boussinesq case. In the compressible case, on the other
hand, they change locally with radius according to the radial variation of the back-
ground density and other fluid properties (see §1.4.2). This complicates the inter-
pretation of the solution since it is hard to distinguish whether a certain feature
is the consequence of locally different parameters or other compressibility effects.
However, the particular choice of constant kinematic viscosity and thermal diffusi-
vity leads to a model (named A in the study) where the dimensionless parameters
are independent of depth.

An ideal gas was assumed for simplicity. This assumption is possibly not valid
in deeper regions of the molecular envelope where the fluid behaves progressively
more non-ideal due to high temperatures and pressures. According to the statistical
physics of an ideal gas, kinematic viscosity and thermal diffusivity are proportional
and therefore, they must obey the same radial dependence. The assumption that
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both are constant leads to the simplest compressible model as already discussed.
The onset of convection has been explored in previous anelastic studies
(Glatzmaier and Gilman, 1981a; Drew et al., 1995). However, some aspects of the
solution like the location of the convective instability depending on the radially
dependent fluid properties and the degree of stratification remained unclear. This
point is further investigated in our work exploring onset of convection for different
models (see §2.3.1/and §2.3.2).

The convective instability takes place near the inner boundary of the shell in the
Boussinesq case. For compressible models this is not necessarily the case. When
the thermal conductivity remained constant, we found onset of convection near the
inner boundary for every degree of stratification of the fluid. However, in models
where it depends linearly on the density background (which implies that thermal
diffusivity remained constant), the convective instability locates close to the outer
boundary at moderate to large compressibilities. In the Boussinesq case, the lo-
cation of the convective instability is intimately related to the temperature profile
before convection sets in, when the heat is transported only by thermal conduction.
This also holds for the compressible case, where the conductive temperature profile
depends on the compressibility and thermal conductivity of the fluid (see §2.3.3).
Onset close to the outer boundary is a remarkable effect of compressible convection.
However, compressibility not only affects the location of the convective instability.
The scale of the flow reduces with compressibility no matter where the convection
is located. As a consequence, a higher degree of flow confinement towards one of
the boundaries is observed with increasing stratification.

Asymptotic laws in the limit of high rotation describe convection onset in the Boussi-
nesq case (Roberts, 1968; Busse, 1970). Our results, though in the moderate rota-
tion regime (F = 1072 — 3 x 10™%), suggest that these laws may roughly hold in the
compressible case.

Beyond onset, in the non-linear regime, different time behaviours of the flow have
been identified in the Boussinesq case (see e.g. Grote and Busse, 2001; Christensen,
2002; Simitev and Busse, 2003). Drifting, vacillating, chaotic and intermittent con-
vection are successively observed when increasing the Rayleigh number to ultimately
reach strongly chaotic convection, filling the whole volume of the shell. In the com-
pressible case, drifting, chaotic and intermittent convection have been identified.
Vacillating convection may exist in a very small region of the Rayleigh number
space not covered by the calculations. Chaotic space filling convection was not ob-
served, however, the Rayleigh numbers were not too large (< Ra = 5 x Ra.). These
different transitions occur at much lower Ra than in the Boussinesq case: when the
regime is still drifting in the Boussinesq case, it is already chaotic in the compressi-

ble case (§4.3).

The flow structure shows large motionless regions (except for the zonal flow) in the
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equatorial plane which partly extend to the rest of the shell. Near the outer boun-
dary at high latitudes convection is much stronger than at the equatorial plane.
Examining the flow at the equatorial plane, a common practice in the incompressi-
ble convection, can therefore be misleading in compressible convection. The polar
regions which exhibit insignificant flow in the Boussinesq case (see also Grote et al.,
2001) are convecting in the compressible case. In addition, the scale of the convec-
tion is much smaller compared to the corresponding incompressible counterpart.
Spiralling columnar convection and thermal inertial waves are different convective
modes, which are preferred depending mainly on the Prandtl number. They have
different characteristics and do not appear together in the Boussinesq case. Com-
pressible convection allows for regions with different local Prandtl numbers, and
therefore, these two different modes can be present at the same time in the shell as
we have observed (§4.5.2)). This finding is remarkable since it is the first time that
these two types of convection are seen together in a convecting shell. Whether this
scenario is plausible for the giant planets is unclear. In particular, this result have
little physical relevance for an ideal gas since the linear relationship between thermal
diffusivity and kinematic viscosity is violated in the respective model. However, the
molecular hydrogen envelope of the giant planets do not resemble an ideal gas in
deeper regions and, therefore, the relationship between the fluid properties might
be changed.

The zonal winds in the upper atmosphere of the giant planets are characterised by
a fast equatorial prograde jet with weaker jets at higher latitudes, alternating in
direction for Jupiter and mostly prograde for Saturn (Ingersoll et al., 1981). This
intensity difference between equatorial to higher latitudes flow is qualitatively cap-
tured by the compressible models, especially at large compressibilities. Recent in-
compressible models for Jupiter were able to capture the alternating zonal flow
structure at higher latitudes (Heimpel et al., 2005), which had not been reproduced
in previous studies (Christensen, 2001; Aurnou and Olson, 2001). They assumed a
shell with a thickness of only 10% (n = 0.9) of the total planetary radius as suggested
by recent estimates (Guillot et al., 2004). A pair of stronger jets developed outside
the tangent cylinder and weaker multiple jets inside it. Different flow regimes in-
side and outside the tangent cylinder, thus, explain the difference in jet amplitude.
Although we didn’t observe alternating zonal flows, a strong decrease of the flow
with latitude is an inherent feature at large compressibility even for thicker shells.
Therefore, compressible models with parameters describing as best as possible the
current estimates for the giant planets are required to study the jet structure as well
as the wind intensity for each planet.
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A Fully compressible equations in
spherical coordinates

A.1 Continuity equation

dp 10 , 1 0 10

5 + ﬁa(r puy) + m%(81116/)7%) +

s =0 (A

A.2 Navier-Stokes equation

. (8ur+u%+@8ur U, 8ur_u_§_u_i>_
BT " or r 00  rsinf 0p r r/
0
_8_]': — pg + 2pQuy,sinf + F, (A.2)
~ Juyg Oug  ug Qug u, Oup upug udcotl
L LT ket
ot T or * r 00  rsind dp r r
10p
5 + 2pQu, cos 0 + Fy (A.3)
. (8%, " Ou, N @6’% Uy, Ouy — Uply, N Upl, COt 0) B
v ot " or r 90  rsinf dyp r r N
1
_rsineg_i — 2pQ(ugcos + u, sin6) + Fp (A.4)

where I, Fy, F, are the spherical components of the viscous force.

A.2.1 Viscous force

The components of the viscous force in spherical coordinates are obtained with

10 1 0, . 1 0r Toe T
F. = ——(r’r.,) + ———(sin 67, re 199 Tve
r28'r<r7— )+7’sin080(sm Te)+rsin0 dp r r
10 1 0, . 1 O T  cotoT
Fy = ——(r? — (sind v 0 T TTee (A
T 8T(T Tre)+rsin080(sm 7_96)+7“si110 0y r r (4.5)
10 1 0 1 o7 T, cot 07y
Fo— Y902 _ = Y sine o | Tro | COLUTHy
vooy? 8T(T Tw)JrTsinQ@Q(Sln TG@)+rsin0 0y r r
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where 7;; are the components of the deviatoric stress tensor in spherical coordinates.
For a Newtonian, isotropic fluid the relation between deviatoric stress tensor 7;; and
strain rate tensor e;; is

2

where kg is known as bulk viscosity. The bulk viscosity is a measure of the dissi-
pation under compression or expansion, which is very small for many fluids. For
that reason we will neglect kg, assumption often referred in the literature as Stokes
assumption. The dilatation V - u is equal to e, where the Einstein convention for
summation applies.

The components of the tensor written in spherical coordinates are

T = 2(€pr — %V ‘U) Trg = 2/1€9 Trp = 24€r
Tog — 2,&(699 - %V . u) Top = 2”69(9 (A?)
Too = 2p(€pp — 3V - 1)

where the components of ¢;; expressed in spherical coordinates are

_ Ou — fg<@) X 1 9u, o — fg<%) 4 1 Ou,
= oy T 9ar 'y 2r 00 " 20r 2rsinf Oy
10ug wu, sin 0 , u, 1 Oug
_ Y4 | — — A.
00 = o0 r ¢ 2r 80(51119)Jr 2rsinfd dp (A.8)
1 % Uy ug cot 0
7 rsin® Op r r
_ Ou, _r 0 ug L@ur r 0 (Up 1 Ou,
Crr = "By €T9_7?<T>+2r 00 - 28r<a7“¢)+27’sm€ Do 5
10ug | u, _sm@ 1 Uy
C0=7r79g T Cop = "o 80(51n9) t o sing 0y (A.9)
1 Up M
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When the components of the viscous force in are formally developed, one can
find the spherical components of D(V p, u,0u) in the viscous force (1.4):

ou (Ou, 1 10u /s 0 ,ug 1 0u,
D = 287“(87“_g(v.u)>+7“8€(8r(r)+;88)

1 8,u<6(¢)+ 1 aur>
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au 9 Ug 18“7’ 26M 1611,9 Uy 1
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1 Owsinfg 0 1 Oug
rsm@@gp( r 60(51119) + rsin 0 890) (A.10)
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A.3 Energy equation

_Opy 0 juy, 1 Ou, 10p (sin® 0 uy 1 Ouy
DW_E(Tg(T)ersinQ@go)jLT@Q( r 80(sin8)+rsin0 8¢>
2 Ou ( 1 Ou, u,+ugcotd 1

rsinf Oy r _§<V.u)>

rsin@%

A.3 Emnergy equation
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where D /Dt is the substantive time derivative
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A.3.1 Viscous dissipation
The viscous dissipation ¢ is given by

8’1]@

=g,
J

o (A.13)

which for a Newtonian, isotropic fluid is described by

2
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B Anelastic approximation with zero
Griineisen parameter: Detailed
scale analysis

The scale analysis shown here follows Gilman and Glatzmaier (1981) ’s derivations
for the standard anelastic case.

Each dependent variable f is expressed as the sum of the reference state fand the
perturbations resulting from convection f”:

p(r,0,¢,t) = p(r) + p'(r,0,0,t) (B.1)
p(r,0,¢,t) = p(r) +p'(r, 0, ,t)
T(r,0,0,t)=T,+T(r,0,p,1).

This scale separation is introduced into the fully compressible fluid equations. The
terms ordered € give the reference state equations and the terms up to the next
lowest order give the perturbation equations. Therefore, to perform formally the
scale analysis the order in € of all the variables, fluid properties and operators has
to be determine. These results are summarised in Table

The fluid velocity w is of order €'/? as it can be deduced from (1.26).
The same result can be found following energetic considerations (Gough, 1969;

Gilman and Glatzmaier, 1981). Since u is of order ¢!/
~1/2 O /2.

, the convective time scale is
of order ¢ causing
The convective velocity scales as /d where d is the thickness of the shell. Because
u ~ €'/2 then U ~ ¢'/2. Since i = pv then i ~ ¢'/?
and k.

The angular velocity Q is of order ¢'/? (Gilman and Glatzmaier, 1981). A simple

way to see this is taking into account that p’ scales with pQu.

. Similar arguments hold for &

Perturbations in v/ and «’ will be set to zero since the uncertainty in these fluid
properties is great (Gilman and Glatzmaier, 1981).

!See also DeRosa (2001).
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Order in € Quantities Operators
60 ﬁ: ﬁ7 § V7V'7 V%

1/2 ~ ~ 7 ~ J

€ u, [, V, k, Kk, 77

€ p/a pla TI7 gl B

Table B.1: Order in € for all thermodynamic variables, fluid properties and operators
appearing in the fully compressible formalism.

B.1 Equation of state

Introducing the scale separation (B.1) into the equation of state of an ideal gas (1.5)
we obtain

! = 5R'T, — p+pRT + g/ RT,+ o/ R*T" . B.2
=0 L pHeRT +pRT, f;;, (B.2)
~E 70 ~E €

Rearranging the first-order terms (¢') we obtain

p_p T
p P T

which can also be written as
p=p(l—al"+Xrp) =p+ /¢ (B.4)

using that for an ideal gas 1/?0 =a and 1/p = xr.

B.2 Continuity equation

The continuity equation (1.1) can be written as

op , o ~ :
a—f‘ E +V-(pu)+V-(pu):0, (B5)
:’6’ \’: el /2 B2
/
where the condition of vanishing %% is imposed to filter out acoustic waves.
/

Looking closely, %—[2 ~ /2.

This is a consequence of (1.26) and removes sound

waves from the problem since the term is of higher order. However, we explicitly
/

insist that 88—[2 must vanish because in the anelastic approximation the condition
(1.10) has to be fulfilled no matter the order in € of this term.
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B.3 Navier-Stokes equation

The Navier-Stokes equation (1.2) can be written as

ou ou
P 4 Pl Vu+p S+ p(u- V)u = —Vi+ 5g
fat“)(“’ )'u;+£) 5 TP (u )'tf p+7rg
::; »:25 \....:ijl____/
el
\—Vp’ +p'g+pg’ —20Q x u + F%+£)'g' — 20 x u+ Fi (B.6)

The viscous force F' given in (1.4) is separated in

2
3

1 ov)rl
Fo = jrVu+ S pov(V - w) + d(pv) [;V(rur) + 7«3(“)

dr or\r (v u)f], (B.7)

as given in (1.32), and
~ 1, ~
F' = pJoViu + gp’yV(V u) + D(V(p'D),u, 0u) (B.8)

with D given in (A.10). The explicit dependence of the shear viscosity ;. on density,
i.e. ;= pv where v is the kinematic viscosity, was already considered in F, and F".

B.4 Energy equation

The energy equation (1.3) can be written as

., or or’  _ ~ _
pCpE +pCru-VT'+ p'C, o a(T,+THu-Vp (B.9)
- . L R

€3/2 €5/2

_~ (o O ~
—al (L vuw vy —ar (L vu- vy ) = VEVT)) + &, +
a <8t +u p) a <6t+u D (( ))+ +\/
~~ - ~~ - E3/2 N€3/2 NE5/2
€3/2 €5/2

where the viscous heating ® given in is separated in
_ 2 ,
P, = 2pve; e + gpu(V ‘u)”, (B.10)

and 5
(I)/ = 20/776@‘]‘61‘]‘ + gp’fi(V : ’U,)Q. (Bl].)

The viscous and adiabatic heatings are negligible compared to the other terms in
the limit of I" — 0, or equally Di — 0. Describing the equation in non-dimensional
description makes this point evident. Using the shell thickness d as length scale,
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d*/v, as time scale, the temperature contrast AT between the inner and the outer
boundary as temperature scale, p,, as density scale, and pl0 as pressure scale, the

equation given in (B.9) to order €*/? is given by
oT’ . DiPr (0p'
Pr( 1) + Dip(T, + Thu, — (5 +u-vp)
P\ V) Dinle + Ty = 5 (G T Vp
A DiP
= V(VT) + 50, (B.12)
a

Therefore, since the Dissipation number scales the adiabatic and viscous heatings,
they are neglected in the limit Di — 0.
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C Derivations in spectral space

C.1 Viscous force

C.1.1 Preliminaries

The horizontal divergence is an operator defined as the divergence in the horizontal

direction (or in other words, the direction perpendicular to the radial one) as
10 1 /0 oG,
Vi G=V G- = ("G,) = (ae(sme(;g) &0).

In deriving the viscous force in the form required by the code the following three

(C.1)

rsin

identities are very handy:
Uy dp

V. u=-—-—2"L C.2
YT ar (€2)
. 10,,.
Vi (pu) = —ﬁa(r Py ), (C.3)
both arising from the divergence-free mass-flux condition, and
1 02 2
(VQG)r ~ 2 0r 2( G,) + QEQGT_;V'G (C.4)

where £? is given in . When G = pu, the last term in the right hand side of
vanishes due to the divergence-free mass-flux condition.
To simplify the notation we will rename the density gradient as

1dp
pdr
which is in fact the inverse of the density scale height (1.21) aside from a possible
difference in sign.

h (C.5)

p:

C.1.2 7 constant

The radial component of (1.39), its horizontal divergence and radial curl are written
in spectral space as

((0+1)
pr

(Fv)r: -

Fw 1 0w [4

o2 T3t T 3( hy =yt 1d2A)+W+1>}

p dr?
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(L +1) PW O*wW o 1d%p Ll +1)10W
Vi (F) = pr2 | o +hp8'r’2 [h_h—i_;ﬁjL 72 }W
21 2
— 55k + S|ae+ W] (©D)
and
e+ 0z 0Z o 1d’p L(l+1)
(VXF), === = T, ( hy—h +—Aw+ ——)z| (€3
respectively.

C.1.3 [i constant

The radial component of (1.42), its horizontal divergence and radial curl are written
in spectral space as

(e +1) PW 7. OW 14 h, ,  1d%p 0(l+1)
(Fo)r == P22 | or? ghﬁ [3(_27“ _th+ﬁdr2>+ r2 } W,
(C.9)
e+ 1) PW PW ,  1d*p 0+ 1)\ OW
Vi - (Fy) = P22 | ord + 2k, or? +(_2h’) ,0d2+ r? )W
1h, 2
+ (gﬁ - ﬁ)au W, (C.10)
and
e+ Pz o4 , L1d*p ((0+1)
(VXFU)T—— ﬁQTZ — 67‘2 +2hp5+(—2hp+5ﬁ+ 7"2 )Z (Cl].)
respectively.

C.2 Kinetic energy density

The kinetic energy density £} = ﬁ fVS pu?dV is described in spectral space as

(e+1 aw,
W.E} = Wi Ely + Ey) Z£€+1/ ﬁ[(+ L+ ’df

m 12
}dr

+Z£€+1/ Z\Zy P, (C.12)

where the star represents kinetic energy density not normalised by the total mass
1 .
vs fVS pdV
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