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Summary

Alfvén/ion-cyclotron waves are important normal modes in a plasma. Their existence
can explain several observed features in space plasmas such as temperature anisotropies
and preferred heating of certain ion species in the solar corona and the solar wind. The
properties of this wave mode and different aspects of the spectral transfer of wave energy
in wavenumber space are analyzed.

Every plasma wave is a complex interplay between the electromagnetic fields and
the plasma particles. The way Alfvén/ion-cyclotron waves shape a particle distribu-
tion function is treated with kinetic methods in an analytical model, and an additional
observational effect in particle measurements is found. The nature of the important
Alfvén/ion-cyclotron mode is discussed in a multi-fluid analysis. Therefore, a system
of coupled differential equations is achieved, which describes the linear and nonlinear
properties of Alfvén/ion-cyclotron waves in parallel propagation with an arbitrary finite
amplitude. This derived system of differential equations is then used to analyze the dis-
persion properties of weakly-compressive high-frequency waves, which are superposed
on a low-frequency Alfvén/ion-cyclotron wave. In a certain parameter range, a wave in-
stability is found, which can be interpreted as a linear spectral transfer process due to the
non-uniform background of the low-frequency wave. A particular example for a nonlin-
ear spectral transfer process is the parametric decay of a monochromatic plasma wave.
It is treated in a two-dimensional numerical study using a hybrid code. The same code
is then used to analyze the spectral transfer from an initially broad turbulent spectrum
on low-wavenumber MHD scales into the dispersive kinetic regime, where dissipation of
certain wave modes is found. Also here compressive fluctuations grow during the cascade
and make a significant contribution to the turbulent spectrum on small scales.

The thesis is completed with a general introduction to waves and turbulence in space
plasmas and with a basic presentation of the applied mathematical methods.
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Preface

Plasma turbulence is a field with a long and successful history. Yet, many questions
remain open, and modern space probes reveal new unsolved problems and so far unknown
structures beyond the well established theories. Therefore, it cannot be the focus of a PhD
thesis to find something like the concluding answer to wave structures or a conclusive
picture of turbulence in space plasmas. It might only contribute to various particular
aspects of the field, trying to bring some building blocks into the general picture. This
restriction is true for every thesis but maybe even more for a contribution to this special
field.

Hence, this work rather tries to approach the problem from various directions than
pointing out one single aspect. Analytical kinetic plasma theory is used in the first part
to analyze the nature of plasma waves and their influence on measurements of particle
velocities. The second part attends to the multi-fluid nature of plasma waves and how
their properties are affected by non-uniform plasma conditions. In the third part, hybrid
simulations are applied to analyze nonlinear wave–wave interactions and spectral transfer
numerically.

This structure of the thesis leads to the fact that individual chapters or groups of two
chapters could stand alone and can in parts be read more or less independently from each
other. However, they all contribute from different sides to the general common scientific
questions regarding the nature of space plasma fluctuations and their generation. A gen-
eral introduction is given at the beginning. Each chapter has its own short introduction
addressing aspects that are important only for the particular chapter. To avoid the neces-
sity of inconvenient thumbing through this thesis, some important relations are repeated
if this improves the reading fluency. The results are discussed separately in each chapter.
The last chapter draws conclusions from the previous units and provides an outlook.

Throughout this thesis, Gauß’ version of the cgs-system of units will be used. The
equations take a more symmetric form (electric and magnetic field have the same unit,
speed of light occurs in Maxwell’s equations etc.), and indeed most of the literature in
plasma physics is formulated using this system.

Katlenburg-Lindau and Braunschweig, October 2011

Daniel Verscharen
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I Introduction

I.1 Solar corona and solar wind as paradigms for space
plasmas

A plasma is a gas of free electrically charged particles, which has the following charac-
teristic properties:

• Quasi-neutrality: The amount of positive and negative electric charges is equal so
that the plasma appears electrically neutral on sufficiently large scales. This does
not contradict the existence of local space charge densities.

• The macroscopic dimension of the plasma is large compared to the scale on which
neighboring charges shield their Coulomb potentials mutually. This length scale is
called the Debye length. Otherwise, this collective shielding would not occur and
the condition of quasi-neutrality would be violated.

• The number of particles in a sphere with the radius of the Debye length is large.
This requirement guarantees that the direct influence of neighboring particles on
each other is negligible compared to collective effects. The kinetic/thermal mean
energy of a particle is, therefore, higher than its potential energy in the Coulomb
potential of its neighbors.

These properties characterize a plasma at first glance (Baumjohann and Treumann, 1996).
More than 99% of the visible matter in the universe is in the plasma state. Also, most mass
of the solar system is in this state because the Sun, as the dominating mass, is a plasma ball
in itself. Its outer atmosphere above the photospheric surface is called the solar corona. It
can be seen with the naked eye during a solar eclipse as an extended and structured glow
around the occulted Sun. Since the 1940s, it has been already known from spectroscopic
analyses (see the review by Kohl et al., 2006) that the temperature of the corona exceeds
several million degrees Kelvin, whereas the solar photosphere, the main source of the
solar light emission, has a temperature of only 5700 K. The reason for this increase in
the plasma temperature with height, coinciding with a strong decrease in density, is still
an open question and is known as the coronal heating problem. There are many further
complications to this problem, which will be discussed later.

The corona expands out further and passes into the so-called solar wind. It is a plasma
outflow into the heliosphere and carries the interplanetary magnetic field. Due to the radial
motion of the solar wind flow and the rotation of the surface of the Sun as the source of
the magnetic field lines, the interplanetary magnetic field has a spiral structure, especially
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I Introduction

in the ecliptic (Parker, 1958). Close to the corona, its direction is rather radial, while the
angle between outflow direction and interplanetary magnetic field increases with distance
from Sun. The first ideas about a more or less steady corpuscular outflow from the Sun
were confirmed based on observations of the shape of cometary tails (Biermann, 1951).
In the meantime, the standard picture consists of three different kinds of solar wind. The
first kind is the hot and dilute fast solar wind, which originates in the polar coronal holes
and dominates during the solar minimum, coming from solar latitudes down to the border
of the heliospheric current sheet. It has quite a constant outflow speed of about 800 km/s.
The fast wind shows a broad variety of different wave signatures and is, hence, the main
focus of this work. The second type is the dense and cold slow solar wind, which is
mainly observed in times of high solar activity. It is believed that its source is connected
to the highly-structured coronal magnetic field around magnetic loops. The outflow speed
is about 400 km/s and varies more than in the fast wind. The third category of solar wind
types are transient events such as coronal mass ejections (CMEs), which are eruptive
structures propagating through the background solar wind with speeds in a wide range
between 20 to 2000 km/s (see review by Srivastava and Schwenn, 2000).

There are some peculiar plasma properties that are of special interest in space physics.
A plasma is called collisionless if typical collective effects such as oscillations or waves
occur on much shorter time scales than binary Coulomb collisions between the plasma
particles. The collisionality can be characterized by the collision frequency νc compared
to the characteristic plasma frequencies, or by the mean free path λmfp compared to the
other scales, respectively. The electrical conductivity of a plasma describes the mobility
of electrons and ions (the possible carriers of electric currents), which is determined by
the rate of collisions that these particles undergo. In a collisionless plasma, therefore,
the conductivity is very high and can be assumed as infinite. Most space plasmas can be
considered collisionless. A plasma is called magnetized if a large-scale (compared to the
natural length scales) magnetic field brakes significantly the isotropy in some effects due
to deflections of charged particles according to the Lorentz force. Most space plasmas
are magnetized because of the ubiquitous magnetic fields in space. One of the various
complications in the treatment of a magnetized plasma is the natural anisotropy given by
the direction of the magnetic field. In this case, also the conductivity is anisotropic. In
the most general case, the conductivity has to be treated as a tensor in the generalized
Ohm’s law, taking effects such as Pedersen currents, Hall conductivity, and field-parallel
conductivities into account (Baumjohann and Treumann, 1996).

Another important parameter for a plasma characterization is the so-called plasma
beta, which is defined as the ratio of the thermal energy density to the magnetic energy
density:

β ≡
8πnkBT

B2 (I-1.1)

with the particle number density n, Boltzmann’s constant kB, temperature T , and mag-
netic field strength B. It can be defined for single species with the corresponding number
density and temperature of this species or as an effective beta with the total number den-
sity and the summed up temperature. The border between high and low beta is defined
as the limit β = 1. For lower beta-values, the thermal speed of the particles is smaller
than the Alfvén speed; for higher betas, it is larger. This ratio has a significant meaning
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I.2 The heating problem in solar corona and solar wind

Figure I-1: Plasma beta depending on the height in the solar atmosphere. Adopted from
Gary (2001) with kind permission from Springer Science+Business Media: Fig. 3 on
page 80 in the original publication.

for damping and resonance processes. Both low- and high-beta plasmas are found in the
solar atmosphere as one can see in Fig. I-1. The solar corona is an example for a low-beta
plasma, whereas the solar wind can reach the configuration of a high-beta plasma.

Typical parameters for the solar wind at 1 AU are listed in Table I.1. These values
show a huge variability in the solar wind. Therefore, the table should be understood
as information about the characteristic order of magnitude for these parameters. The
complete definition of the parameters is given at the place, where they are used for the
first time.

I.2 The heating problem in solar corona and solar wind
In order to describe the heating problem fully, it is not sufficient to reduce it to the fact that
the coronal temperature is high. Different particle species show different temperatures,
and even the same species can have temperature anisotropies in certain directions with
respect to the background magnetic field (Kohl et al., 2006). Some of these features are
shown in Fig. I-2.

13



I Introduction

Table I.1: Typical parameters in the solar wind at 1 AU (SW) and in the corona. The
values for the density, temperature, and magnetic field are taken from literature (e.g.,
Aschwanden, 2005; Borovsky and Gary, 2011), the others are calculated from these. The
collision frequency and the mean free path are calculated as described in the NRL Plasma
Formulary (2009). All values can scatter a lot around these given estimates.

Symbol SW (upper) corona Definition
np ∼ ne 5 cm−3 106 cm−3 proton and electron number density
Tp ∼ Te 105 K 106 K proton and electron temperature
B0 10−4 G 1 G magnetic field strength
vth,p 40 km/s 130 km/s proton thermal speed
vth,e 1700 km/s 5000 km/s electron thermal speed
vA 100 km/s 2000 km/s proton Alfvén speed
Ωp 1 s−1 104 s−1 proton gyration frequency
Ωe 1836 s−1 2 × 107 s−1 electron gyration frequency
ωp 3000 s−1 106 s−1 proton plasma frequency
ωe 105 s−1 6 × 107 s−1 electron plasma frequency
νc 4 × 10−7 s−1 0.5 s−1 proton collision frequency
`p 100 km 300 m proton inertial length
`e 3 km 5 m electron inertial length
λp ∼ λe 10 m 7 cm proton and electron Debye length
rp 40 km 13 m proton gyration radius
re 1 km 25 cm electron gyration radius
λmfp,p 108 km 250 km proton collisional mean free path
βp ∼ βe 0.2 0.003 proton and electron beta

Minor ions have higher temperatures and usually higher temperature anisotropies than
protons. Ions are observed to have both higher temperature anisotropies parallel and per-
pendicular to the magnetic field from time to time. In most cases, however, the perpendic-
ular temperature anisotropy dominates (Bourouaine et al., 2010). Observations show that
most of the ion species have more or less the same thermal velocity (von Steiger, 2008).
Due to the definition of the thermal speed vth j ≡

√
2kBT j/m j of species j, the temperature

ratio of different ion species should be more or less the mass ratio of the species in this
case.

Solar wind particle temperatures observed by spacecraft show a non-adiabatic depen-
dence on the distance from Sun, which indicates that an ongoing heating mechanism has
to act on the particles during their passage through the heliosphere (Richardson et al.,
1995; Totten et al., 1995; Cranmer et al., 2009). Direct in-situ measurements of the pro-
ton and electron temperatures are shown in Fig. I-3. It is possible to define an “effective”
polytropic index pretending to have an adiabatic behavior for the protons. Observations
show that it drops from about 1.5 at 0.3 AU to about 1.3 at 5 AU. In the outer heliosphere,
pick-up ions contribute significantly to the total pressure of the solar wind and deliver an
important energy input, which can explain the non-adiabatic temperature behavior in this
region (Fahr and Chashei, 2002; Smith et al., 2006). In the inner heliosphere, this effect
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I.2 The heating problem in solar corona and solar wind

Figure I-2: Different temperatures of coronal and solar wind particle species. The data
above a distance of 0.3 AU is taken by in-situ detectors (Helios), the data closer to the
Sun by remote-sensing techniques (UV spectro-polarimetry). From Kohl et al. (2006)
with kind permission from Springer Science+Business Media: Fig. 39 on page 94 in the
original publication.

is not dominating and the heating mechanism is unclear.
A correct explanation for coronal heating, solar wind acceleration, and non-adiabatic

expansion has to explain all the microphysical properties, which are explicitly observed.
The “fine structure” of the heating problem shows already one reason, why a single-fluid
description like (magneto)hydrodynamics is insufficient to describe the physical processes
appropriately, a point which will be discussed in more detail later.

It is widely accepted that classical Joule heating due to collisions between the plasma
particles, which carry electric currents, cannot explain the heating, especially not the
structural deviations from thermal equilibrium. In the solar corona, the expected colli-
sional heating rate is too low to explain the observed high temperatures (Cranmer and van
Ballegooijen, 2003; Gary et al., 2005a). Yet in the chromosphere, Ohmic dissipation can-
not compensate for radiative losses, and therefore another process such as shock heating
is assumed to maintain the temperature at lower heights in the solar atmosphere (Ulm-
schneider and Kalkofen, 2003). The temperature rises even higher in the transition region
up to coronal temperatures of more than 106 K, whereas the probability for collisions be-
comes lower and lower due to the decrease in density. Some authors solve this problem
in their numerical fluid codes by increasing the resistivity or the viscosity, respectively,
to unrealistic values (so-called anomalous resistivity/viscosity) and include the micro-
physics in this way effectively (Silin et al., 2005; Wu et al., 2010; Bingert et al., 2010).
However, the aim of this thesis is to shed light on the microphysics of the heating mech-
anism, while macroscopic and global effects are disregarded. Macroscopic effects due to
the stratification of the solar atmosphere or structures in the magnetic field like coronal
loops are, therefore, not taken into account in the following. The treated plasma volumes
are in most cases very small compared to any of these large-scale inhomogeneities.
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I Introduction

Figure I-3: Measurements of proton and electron temperatures in the fast solar wind (U &
600 km/s) by Helios (inner heliosphere, diamonds) and Ulysses (outer heliosphere, small
points). The lines show fit results and indicate the non-adiabatic temperature evolution.
From Cranmer et al. (2009), reproduced by permission of the AAS.

It has been known for a long time that resonant absorption of electrostatic or elec-
tromagnetic wave energy can lead to very efficient heating, even in a collisionless plasma
(see the review by Marsch, 2006) as will be discussed later. Fusion and other experimental
plasma devices make use of exactly this effect to heat the plasma to the desired tempera-
tures. Currents for Ohmic heating would be too strong to keep the plasma in a stable con-
finement (e.g., O’Brien and Robinson, 1993). The difference to space plasmas, however,
is that in laboratory plasma physics the wave generators are known (i.e., the microwave
antennae or gyrotrons around the confined plasma), whereas the origin of the space plasma
waves is still unclear. Possible generation mechanisms are all kinds of micro-instabilities
(Gary, 1993), converting free energy from the particle distribution function to wave en-
ergy at the corresponding wavenumbers and frequencies. A broad turbulent spectrum
with an active turbulent cascade might also deliver waves with the matching properties
(Cranmer and van Ballegooijen, 2003), and even waves with non-matching wavenumbers
and frequencies can decay to appropriate, dissipating fluctuations. The acceleration of
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I.3 The nature of space plasma turbulence

the solar wind is also believed to be driven by wave activity. There are several different
other models such as ambipolar static acceleration, shock acceleration, micro-flare ener-
gization, reconnection (in the corona or the chromosphere), and exospheric models (see
reviews by Aschwanden, 2005; Marsch, 2006). Nevertheless, these approaches fail to ex-
plain the fine structure of the observed temperatures in detail, and some of them would
require very atypical and unobserved conditions. The resonant dissipation of wave energy
is, therefore, still a widely accepted scenario for both the heating of the corona and the
acceleration of the solar wind. Before the dissipation of wave energy can be treated, the
origin and properties of the ubiquitous space plasma fluctuations have to be discussed.
These questions are the central objectives of this work.

It is important to state that all of the treated structures are convected with the back-
ground plasma flow. In the case of the corona, the bulk flow of the plasma is more or less
at rest with respect to the Sun or the observer at Earth (neglecting the Earth’s orbital mo-
tion of course). In the solar wind, however, all wave structures propagate in the reference
frame moving with the solar wind bulk outflow velocity, which typically exceeds both the
Alfvén speed and the sound speed in the solar rest frame. They are, therefore, convected
structures and usually treated in the bulk rest frame if not stated differently.

I.3 The nature of space plasma turbulence

Besides their origin, also the nature of the observed fluctuations in the interplanetary
magnetic field (IMF) are under debate (Bruno and Carbone, 2005). They are observed all
over the heliosphere, and it is accepted that they originate mainly from the main energy
source in the solar system, namely the Sun. However, also local mechanisms and drivers
play a role in the evolution of the plasma.

It is noteworthy that magnetic field fluctuations in a plasma always come along with
fluctuations in the particle motions, reflected by fluctuations in the particle distribution
function. The solar wind plasma is the carrier of all these fluctuations in the heliosphere.
In this sense, the solar wind can be used as a messenger of the coronal conditions. Mea-
surements of solar wind particles, however, have to be treated with care. The coherent
motion of particles in electromagnetic wave fields can lead to an apparent temperature
after the averaging during the particle measurement process. This effect and its impacts
will be discussed in Chapt. III.

In the past, IMF fluctuations were first interpreted as independently propagating and
non-interacting MHD waves, which originate in the corona and change their properties
only due to gradients in the background parameters such as the background magnetic
field or the plasma density. This interpretation has been widely discussed by Belcher and
Davis (1971). They showed that fluctuations in the magnetic field are highly correlated
(or anti-correlated) with fluctuations in the velocity as shown in Fig. I-4. This is a unique
feature of Alfvén waves, which led to the interpretation of the observed fluctuations as
superposed waves. There have been mainly two fundamental concepts to explain the
solar wind turbulence in the framework of this wave picture. The so-called slab model
assumes the fluctuations in the solar wind to be a superposition of Alfvén waves, which
propagate parallel to the background magnetic field. The other branch of models are the
isotropic models, which assume that the power spectral density is distributed isotropically
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Figure I-4: Measurements from a Mariner spacecraft. A time series of magnetic field and
velocity components is shown. The high correlation between magnetic field fluctuations
and velocity fluctuations is a clear indication for the presence of Alfvén waves. From
Belcher and Davis (1971).

into all directions.
The observed waves show mainly a propagation outward from the Sun, which would

contradict a local generation mechanism during their passage through the heliosphere.
The measure that indicates the dominating propagation direction is the magnetic cross-
helicity, which can be obtained from measurements of the magnetic field and the bulk
motion of the particles (Schwenn and Marsch, 1991). On its transit from the Sun into
the heliosphere, the solar wind passes a point, where its outflow velocity becomes super-
Alfvénic. This point is called the Alfvén-critical distance. If a wave with the Alfvén
speed as its phase speed is convected beyond this point, it cannot propagate back to the
Sun because it had to be faster than the Alfvén speed in this case. This is the reason, why
the preference of outward propagation is an indication for a generation mechanism inside
the Alfvén-critical distance (Tu and Marsch, 1995).

Observations indicate in many cases, however, that the fluctuations show character-
istics of turbulence such as a broad power-law spectrum with the typical breaks in the
spectral slope (e.g., Horbury et al., 2005, and references therein). Turbulence is usually
characterized as a combination of highly random fluctuations on many different scales.
The spectral analysis of an isotropic and homogeneous turbulent fluid leads to three dif-
ferent ranges in the power spectrum. The driving range at low frequencies/wavenumbers
is the part of the spectrum, into which energy is deposited due to macroscopic effects.
The energy is then transported to higher frequencies, corresponding to small-scale fluc-
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I.3 The nature of space plasma turbulence

Figure I-5: Schematic understanding of the power spectrum of typical isotropic, homoge-
neous fluid turbulence. The energy is introduced to the system in the driving range. From
these large scales, it is transported through the inertial range down to dissipative scales,
where it is dissipated and transformed to heat.

tuations, through nonlinear interactions between eddies of different scales. This happens
over the so-called inertial range. Eventually the energy is dissipated on small scales in
the so-called dissipation range (Leslie, 1973). The transfer of energy from one wavenum-
ber/frequency to another is called spectral transfer. A schematic spectrum of isotropic
fluid turbulence is shown in Fig. I-5. The occurrence of these different ranges—especially
the inertial range and a break to the dissipation range—is an indication for an active turbu-
lent cascade with high-order couplings and a nonlinear transport of energy in wavenumber
space until the onset of dissipation as it has been suggested by Coleman (1968) for the
solar wind. In this interpretation, fluctuations with higher frequencies are generated dur-
ing the propagation through the heliosphere due to self-organization and the coupling of
waves with other waves. These are inherently nonlinear effects. Regarding plasma tur-
bulence, their principles have been described since the early beginnings of plasma fusion
research (e.g., Kadomtsev, 1965; Vedenov, 1968; Davidson, 1972). Turbulence might be
also generated locally by wave–particle processes such as the already mentioned pick-up
process in the outer heliosphere or micro-instabilities in the solar wind (Gary, 1993).

In the classic paper by Matthaeus et al. (1990), the authors suggest a new model for
the fluctuations in the solar wind. They analyze the two-point correlation function defined
as R(r) ≡ 〈B(x) · B(x + r)〉 for spacecraft measurements of magnetic field fluctuations un-
der the Taylor assumption (explained later), where the brackets indicate averaging. They
obtain the famous Maltese cross diagram, which is shown in Fig. I-6. In this diagram, fluc-
tuations with high wavenumbers occur at small values for the separation r. Fluctuations
that propagate parallel to the background magnetic field have a high correlation in the
perpendicular separation and vice versa. A simple slab wave superposition would, there-
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Figure I-6: Contour plot of the two-point correlation function R(r) for solar wind fluctu-
ations depending on the separation (r⊥, r‖) with respect to the background magnetic field.
The distances are given in units of 1010 cm. The measurements were taken for the first
quadrant only and then mirrored to complete this view. From Matthaeus et al. (1990).

fore, lead to a correlation only along the axis r‖ = 0. An isotropic spectrum would lead to
circles in this diagram. Both is obviously not the case in the observed spectral range. This
finding led Matthaeus, Goldstein, and Roberts to the idea of a composite model for solar
wind fluctuations. In this picture, the main contributors are two components, a parallel
slab one and a perpendicular 2D component. After this discovery, the picture evolved and
led to the interpretation that solar wind fluctuations consist of a population of Alfvénic
fluctuations (slab component), which do not interact with each other much, and which
originate from the solar corona. A second population can be understood as fully devel-
oped turbulence (2D component), which rises from the nonlinear evolution of solar wind
fluctuations on the way through the heliosphere (Horbury et al., 2005; Alexandrova et al.,
2008a). All of these interpretations and models only hold for the inertial range, where the
MHD approximation is valid. For the dissipative scales, beginning at about the ion iner-
tial length, these models are not applicable because effects due to the gyromotion of the
particles have to be taken into account. He et al. (2011b) calculate two-dimensional cor-
relation functions for transversal and longitudinal magnetic field fluctuations and density
fluctuations down to scales of about five ion gyroradii based on Cluster measurements.
They also find two components in the correlation function (parallel and perpendicular
to the background magnetic field), where the field-perpendicular energy cascade seems
to dominate. In another analysis, He et al. (2011a) find evidence for the coexistence of
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left- and right-handed normal mode waves in solar wind turbulence. The interpretation is
that the left-handed waves correspond to a superposition of Alfvén/ion-cyclotron (A/IC)
waves, whereas the right-handed (and mainly obliquely propagating waves) are a super-
position of fast/whistler (F/W) waves or kinetic Alfvén waves (KAWs). The right-handed
waves are believed to survive the cyclotron resonance of the ions since the left-handed
gyration of the ions cannot pick up the right-handed rotation of the electric field. There-
fore, normal mode turbulence is believed to consist of right-handed waves at frequencies
higher than the proton gyration frequency, which is in good agreement with previous ob-
servations (Goldstein et al., 1994). Effects on these scales are discussed in this work in
detail later.

Sophisticated numerical and theoretical treatments of plasma turbulence have recently
been applied to space plasmas. Gyrokinetic approaches (Schekochihin et al., 2008; Howes,
2008) allow one to describe small-scale fluctuations in the direction perpendicular to the
background magnetic field. Therefore, they are in favor of kinetic Alfvén waves, which
obey the anisotropy relation k⊥ � k‖ (Goldreich and Sridhar, 1995). KAWs are linear
compressive plasma waves with different possible polarizations. The right-handed po-
larization is favored for the most common geometries (Hollweg, 1999). Effects of the
cyclotron resonance are suppressed in the gyrokinetic approaches. Therefore, kinetic dis-
sipation can occur only due to the Landau resonance, and thus only parallel heating by the
electric wave field can be explained (Bian and Kontar, 2010), which is in conflict with the
observations of a preferentially perpendicular heating of both the solar wind and coronal
ions (Marsch et al., 2004; Kohl et al., 2006; Bourouaine et al., 2010).

A/IC waves are observed directly in the solar wind (Jian et al., 2009). Effects from
the cyclotron resonance of these waves on the plasma particles are also observed (Gary
et al., 2005b; Kasper et al., 2008). These and other considerations (e.g., Podesta et al.,
2010) challenge the importance and validity of the gyrokinetic approaches and the mean-
ing of kinetic Alfvén waves in space plasma turbulence. One direct consequence of the
presence of Alfvén/ion-cyclotron waves is a particular shaping of the velocity distribution
function (Heuer and Marsch, 2007). The resonant quasilinear diffusion operator leads to
time-asymptotic solutions for the distribution function on circles around the wave phase
speed in the solar wind rest frame (Isenberg and Lee, 1996). After a sufficiently long
interaction of waves with the distribution function, it should form so-called plateaus, i.e.,
circular shapes around the position of the wave phase speed in a velocity space coordi-
nate system, which is more or less the Alfvén speed in this case (Marsch and Tu, 2001).
These structures are indeed observed as shown in Fig. I-7, where the circular contours of
the distribution function can be seen. Another observational evidence for the existence of
A/IC waves is the surfing effect of alpha particles (Marsch et al., 1981). Drifting Helium
particles can fulfill the condition ω/k = u‖ with the drift velocity u‖ along the magnetic
field, the wave frequency ω, and the wavenumber k. The polarization relation for A/IC
waves, which will be used extensively in this work, requires that particles fulfilling this
relation have no transversal bulk velocity. Marsch et al. (1981) found that alpha particles
flow out radially in the solar wind, unaffected by the wave electric field in some cases.
These measurements are shown in Fig. I-8.

Most of the above mentioned models for solar wind fluctuations assume the solar
wind to be an incompressible fluid. However, the solar wind is clearly not an incompress-
ible medium (e.g., Roberts et al., 1987b; Grappin et al., 1991; Tu and Marsch, 1995). It
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Figure I-7: Measured distribution functions from Helios 2 (bold). The circular arcs indi-
cate diffusion plateaus (dotted). The centers of the arcs are indicated by dots and numbers.
a) at 0.3 AU, b) at 0.4 AU. From Marsch and Tu (2001).

Figure I-8: Azimuthal angle (left) and elevation angle (right) for the bulk velocities of
protons and alpha particles depending on time. The lowest line shows the angles for the
magnetic field. The alpha particles do not participate in the wave motion and surf on the
wave. These results are based on Helios 2 observations from May 1981. From Marsch
et al. (1981).

shows compressive and electrostatic fluctuations on many scales (Bavassano et al., 1996;
Bruno and Carbone, 2005; Kellogg and Horbury, 2005; Yao et al., 2011). The compres-
sive fluctuation power is usually less than the power in the transversal, incompressible
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component (Spangler and Spitler, 2004). The little compressibility itself, however, might
lead to additional effects that should be investigated in more detail. In the recent past, the
improved models take compressive effects more and more into account and investigate
their influence. The modern non-MHD codes (hybrid, particle-in-cell, gyrokinetic) allow
intrinsically for compressibility. Furthermore, compressible MHD codes have become
more and more popular in recent years (Bhattacharjee et al., 1999; Shaikh and Zank,
2010).

I.4 Parametric instability of large-amplitude waves

A complete analytic description of the detailed behavior of fully developed fluid turbu-
lence is impossible because of its complicated nonlinear interactions. Most descriptions
rely on phenomenological models for the spectral transfer of energy between different
wavenumbers (Zhou and Matthaeus, 1990) as well as on scaling relations like the very
successful theories by Kolmogorov or Iroshnikov/Kraichnan (see Chapt. II). Another ap-
proach to the evolution of turbulence is the fully nonlinear numerical calculation in the
frame of different plasma models (hydrodynamic, magnetohydrodynamic, hybrid, fully
kinetic, and some modifications of these). There is, however, another spectral transfer
process, the details of which can be understood more easily. It is the so-called paramet-
ric instability of plasma waves. Under certain conditions, a monochromatic plasma wave
is unstable and decays into daughter waves with different wavenumbers and frequen-
cies than the mother (retaining the common nomenclature for the participating waves).
The first description of such a process was provided by Galeev and Oraevskii (1963),
who studied a linearly polarized MHD Alfvén wave and found that this wave decays into
daughter waves with different frequencies, and that the mother cannot propagate infinitely
as a stable wave. They discovered the decay instability. The authors already discussed the
role of compressibility in the plasma. The decay products correspond to a forward prop-
agating magnetosonic wave, a backward propagating Alfvén wave, and another forward
propagating magnetic wave (Cohen, 1975; Hollweg et al., 1993).

Later, other authors discussed further scenarios. Lashmore-Davies and Stenflo (1979)
describe another instability that can also occur under conditions, when the decay insta-
bility is forbidden. A linear MHD Alfvén wave is shown to be unstable in a resistive
MHD fluid to purely growing density perturbations and side-band waves if its amplitude
exceeds a certain threshold. This instability is directly related to dispersive effects and is
called the modulational instability. Since the solar wind plasma has a significantly higher
beta than assumed in the previous treatments, Goldstein (1978) and Derby (1978) discuss
a high-β plasma wave. In their models, they consider circularly-polarized Alfvén waves
as exact solutions of the fluid equations and show that these waves are also unstable to two
magnetic waves (forward and backward propagating with respect to the mother wave) and
one forward propagating density wave. An additional result of parametric instabilities is
the beat mode (Longtin and Sonnerup, 1986; Wong and Goldstein, 1986). It occurs as
the interaction product of the forward and backward propagating side-band waves from
the modulational instability. It is a compressive mode with frequencies and wavenumbers
around those of the pump wave. It is mainly important for high-beta plasmas (Hollweg,
1994). The possible parametric instabilities depend on several factors: thresholds for the
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amplitude, polarization, handedness of the pump wave and, in particular, the plasma beta.
It is important to note that, in many cases, the daughter-wave products do not correspond
to normal modes of the plasma. In the case of the “cold” decay instability, two products
correspond to the ion-acoustic and Alfvén waves. But this is not the case for all para-
metric instabilities. Analytical treatments yield (exponential) growth rates over certain
wavenumber ranges. Of course, the daughter waves cannot grow infinitely and will, thus,
result in a saturated nonlinear state, which might look similar to a turbulent plasma, even
though the spectral transfer did not begin in form of the classical turbulent cascading.
The mother wave delivers free energy, from which the daughter waves are fed. Therefore,
the amplitude of the pump wave has to decrease with growing daughter-wave amplitudes.
Especially if the fully nonlinear evolution of daughter products is of interest, numerical
simulations become necessary. Also in these treatments, different parametric instabilities
are found (e.g., Viñas and Goldstein, 1991a,b; Araneda, 1998). The influence of daughter
waves on the plasma particles is for example discussed by Araneda et al. (2007, 2008).

All these considerations show already that the pure existence of a wave can lead to the
excitation of other waves with different frequencies and wavenumbers. The parametric
instability is, hence, a spectral transfer process that is believed to play an important role in
the generation and evolution of space plasma turbulence. It also shows that a collisionless
plasma cannot maintain monochromatic waves under all possible solar wind conditions
for an infinite amount of time and evolves towards a kind of turbulent state.

I.5 Dissipation of plasma fluctuations

The interaction of waves with particles in a collisionless plasma has been discussed for
a long time. The electric field plays a key role in these interactions. There are mainly
two dissipative processes, which will be discussed from the mathematical point of view
in Chapt. II. It is important to remember the two fundamental types of wave polarization
here. The term transversal refers to a situation, when the vector of the fluctuating observ-
able is perpendicular to the direction of propagation. At the longitudinal polarization, the
vector of the fluctuating quantity is parallel to the direction of propagation. A fluctuating
longitudinal electric field can lead to dissipation of wave energy in the direction of prop-
agation because the particles can couple to this field resonantly and be accelerated. This
effect is called Landau-resonant wave–particle interaction. In the case of a magnetized
plasma, the direction of propagation of longitudinal waves is the same as the direction
of the background magnetic field. Transversal fluctuations can fulfill the condition of
cyclotron-resonance. In this case, the gyromotion of the particles is in the same plane as
the rotating transversal electric field if the wave propagates along the constant magnetic
field. The particles’ motion can couple to the wave electric field, which then can accel-
erate particles. This leads to a heating mainly perpendicular to the background magnetic
field, which is also observed. The waves with wavevector k and frequency ω have to
hold some peculiar properties to undergo these two kinds of resonances. For the Landau
resonance, the phase speed of the waves has to be comparable to the thermal speed of
the particles. For a particle with speed u, the resonance condition is k · u ≈ ω. Only if
vth ≈ ω/k, a significant part of the distribution function can participate in the resonant
interaction. The cyclotron-resonance (with the condition k‖v‖ − ω ± nΩ j = 0 with gy-
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rofrequency Ω j for species j and an integer n with n = 1 for parallel propagation, the
index ‖ indicates the components parallel to the background field) requires waves with
frequencies comparable to the gyration frequency of the particles that fall victim to the
wave–particle interaction. This leads to a refinement of the central question that shall
be addressed by this work: How can waves with the matching properties for these reso-
nances be generated? Waves with a low wavenumber and a low frequency (like Alfvén
waves) are easily generated by foot-point motions of flux tubes in the solar atmosphere
and be convected into the solar wind. However, this does not explain the observationally
confirmed existence of waves in the cyclotron-resonant spectral range. It is important
to understand the different generation mechanisms for fluctuating electric fields. While
some wave types exhibit a longitudinal or transversal electric field by nature, other more
indirect or hidden mechanisms can provide them. Possible candidates are obliquity in
the propagation, ponderomotive effects, and ubiquitous decay products for example. The
search for mechanisms that generate longitudinal or transversal electric fields is another
formulation of the objective of this thesis.

The onset of dissipation on small scales leads to the observed breaks in turbulence
spectra (Alexandrova et al., 2008a,b). These breaks are directly related to the natural
scales of the participating particle species. The inertial range reaches down to the first
typical ion scale, the proton inertial length `p, where the first break in the spectrum is
usually observed. Then an electron inertial range is expected down to the typical electron
scales, where the next break occurs (Alexandrova et al., 2009). The exact position of
the breaks, however, is still under debate. It is not completely clear if the observations
support a break at the inverse gyroradius, the inverse inertial length scale, or another
typical length scale (Perri et al., 2010). A typical spectrum of space plasma turbulence
from satellite observations is shown in Fig. I-9.

The theory of the sometimes favored KAWs predicts a spectral slope for the magnetic
field fluctuations of the form ∼ k−7/3

⊥ below the MHD scales (Schekochihin et al., 2008),
and in fact observations indicate a spectral index of about −2.8 (Alexandrova et al., 2009),
which might be inside the error bars up to the electron scales. The complete interpretation
of this part of the spectrum is, however, not yet clear.

I.6 Key questions
From the different problems and open questions that have been stated in the Introduction
so far, the central issues treated in this thesis on the nature and generation of waves and
turbulence in the solar wind are:

• How can coherent motions due to waves be described, and how can they influence
particle measurements from space probes?

• What is the nature of fluctuations below the ion scales?

• How are these waves associated with electric fields that can accelerate/thermalize
particles?

• What is the role of compressive effects in solar wind turbulence?
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Figure I-9: Measurements of the magnetic power spectrum by Cluster in the free solar
wind. The typical frequencies are indicated as the gyrofrequency ( fc), the frequencies
associated with the thermal gyroradius ( f%) and the inertial length ( fλ) for protons and
electrons. The breaks in the spectra are clearly visible. At frequencies above 10 Hz, the
spectrum follows rather an exponential function than a power-law. This might be due
to strong dissipation. Reprinted figure with permission from Alexandrova et al. (2009).
Copyright 2009 by the American Physical Society.

• Are the solar wind fluctuations (at least partly) a non-interacting superposition of
waves?

• How does the (anisotropic) spectral transfer work?

These questions, or at least some aspects thereof, shall be addressed in this work in
the form of different approaches.
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II Basic mathematics for describing
plasma waves and wave–particle
interactions

II.1 Fundamentals of kinetic plasma theory
Kinetic theory is based on the description of a particle ensemble by the behavior of the
particle distribution function f . This function is defined as the differential phase-space
density at a given time t, and it is usually normalized to the number of particles in the
treated volume. Thus, the total number N of particles in the described ensemble is given
by

N =

"
f (x, p, t) d3x d3p, (II-1.1)

where the spatial coordinate is denoted by x and the momentum by p. An equation that
describes the evolution of the distribution function is called kinetic equation. These equa-
tions follow from the general consideration of continuity in phase-space, and in this sense
kinetic physics is a fluid description, not in 3D position-space but in 6D phase-space.
From very fundamental considerations about the conservation of particles, the continuity
equation

∂ f
∂t

+
∂

∂x
·

(
dx
dt

f
)

+
∂

∂p
·

(
dp
dt

f
)

= 0 (II-1.2)

is found if particles are not abruptly ejected to other phase-space elements by collisions
(e.g., Landau and Lifshitz, 1980). If the motion of each particle can be described by the
HamiltonianH , the trajectories of the particles follow Hamilton’s equations of motion in
phase-space:

dx
dt

=
∂H

∂p
,

dp
dt

= −
∂H

∂x
. (II-1.3)

With these relations, Eq. (II-1.2) can be rewritten as

∂ f
∂t

+
dx
dt
·
∂ f
∂x

+
dp
dt
·
∂ f
∂p

=
d f
dt

= 0, (II-1.4)

which means that the total derivative of the phase-space density is zero along the trajec-
tories of the particles that are described by the Hamiltonian H and the related equations
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of motion. This conservation of the particle distribution function is one of the key state-
ments of statistical mechanics and also known as Liouville’s theorem. As mentioned
before, Eq. (II-1.2) can be interpreted as a continuity equation of a phase-space fluid. The
transition to Eq. (II-1.4) is analogous to the assumption of incompressibility in classical
fluid theory. Therefore, it is appropriate to state that the phase-space fluid is incompress-
ible for a Hamiltonian system, which is an equivalent formulation of Liouville’s theorem.
Boltzmann generalized Liouville’s theorem to the so-called Boltzmann equation for the
case, when binary particle collisions are taken into account.

In the cases relevant for this work, several particle species are treated with different
distribution functions, which are labeled by the index j. Since relativistic processes are
not of interest, one can change from the momentum-dependent distribution function to a
velocity distribution function f j(x, u, t) to describe particles of species j with velocity u.

A plasma consists of different charged particle species, which are influenced by elec-
tric fields E and magnetic fields B. These fields are generated by electric currents j and
electric charge densities %c, and therefore the feedback of the particles on themselves must
be taken into account in a self-consistent way. The kinetic equation describing particles
under the influence of electric and magnetic fields is the Vlasov equation, in which the
Lorentz force term is used for the temporal momentum change. This equation can be
written as

∂ f j

∂t
+ u ·

∂ f j

∂x
+

q j

m j

(
E +

1
c
u × B

)
·
∂ f j

∂u
= 0. (II-1.5)

It is valid for all charged species j in a plasma such as ions or electrons with electric charge
q j and mass m j, respectively. The speed of light is denoted by c. The characteristics of
the Vlasov equation are given by

du
dt

=
q j

m j

(
E +

1
c
u × B

)
, (II-1.6)

dx
dt

= u (II-1.7)

and correspond to the equations of motion for a single particle under the influence of the
fields E and B. The particles themselves generate a space charge density

%c =
∑

j

q j

∫
f j(x, u, t) d3v (II-1.8)

and a current density

j =
∑

j

q j

∫
u f j(x, u, t) d3v, (II-1.9)

derived from the zeroth and first velocity moments of the distribution function, which will
be discussed in more detail later. With these relations, Maxwell’s equations can be written
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as

div E = 4π
∑

j

q j

∫
f j(x, u, t) d3v, (II-1.10)

curl E = −
1
c
∂B
∂t
, (II-1.11)

div B = 0, (II-1.12)

curl B =
4π
c

∑
j

q j

∫
u f j(x, u, t) d3v +

1
c
∂E
∂t
. (II-1.13)

The influence of charged matter on the fields becomes obvious in this formulation, which
is sometimes also called the Vlasov-Maxwell equations. Since Maxwell’s equations are
differential equations, a ‘constant offset’ in the fields can generally be added, which is
then called the background field.

All the above remarks show that the Vlasov equation is a profoundly nonlinear equa-
tion. The set of Maxwell’s equations and the Vlasov equation form a coupled nonlinear
system of integro-differential equations. For this reason, a direct analytical solution is in
most cases impossible and simplifications become necessary.

II.1.1 Unmagnetized plasma

Linear Vlasov theory for unmagnetized plasmas is discussed in many textbooks (e.g.,
Akhiezer et al., 1975). The general idea of linear theory is that the distribution function f j

consists of a background function f j0 and an added small perturbation δ f j. The ensemble
average (which is for ergodic processes the same as the temporal average) is denoted by
angle brackets. The background and the perturbation fulfill the relations

〈 f j〉 = f j0, 〈δ f j〉 = 0. (II-1.14)

The Vlasov equation is linearized, which is a good assumption for small perturbations.
It yields

∂δ f j

∂t
+ u ·

∂δ f j

∂x
+

q j

m j

(
δE +

1
c
u × δB

)
·
∂ f j0

∂u
= 0. (II-1.15)

The disturbances in the distribution function δ f j and in the fields δE and δB are as-
sumed to be decomposable in Fourier components for each quantity δA(x, t) according to

δA(x, t) =

"
δA(k, ω)ei(k·x−ωt) d3k dω (II-1.16)

with wavevector k and frequency ω. The argument (k, ω) of the Fourier amplitude is
omitted in the following. Space- and time-dependent quantities should be all understood
as the corresponding Fourier components if not stated in a different way. Under this
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assumption, Maxwell’s equations for the perturbation fields become

k · δE = −4πi
∑

j

q j

∫
δ f j d3v, (II-1.17)

k × δE =
ω

c
δB, (II-1.18)

k · δB = 0, (II-1.19)

k × δB = −
4πi
c

∑
j

q j

∫
uδ f j d3v −

ω

c
δE (II-1.20)

under the assumption that the background distribution function f j0 does not generate time-
or space-dependent fields. The linearized Vlasov equation becomes

i (k · u − ω) δ f j +
q j

m j

[
δE

(
1 −

k · u
ω

)
+

k(u · δE)
ω

]
·
∂ f j0

∂u
= 0, (II-1.21)

where Faraday’s law was used to express the magnetic field perturbation in terms of the
electric field perturbation. This expression allows one to achieve an algebraic solution
for the perturbation δ f j in Fourier space. Based on this concept, many different problems
of plasma physics can be treated such as the determination of the dielectric tensor and
its consequences, the occurrence and conditions for micro-instabilities, or the finding of
various dispersion relations for plasma waves (e.g., Stix, 1992; Gary, 1993; Melrose and
McPhedran, 2005).

As an example of the applicability, the quasilinear theory of Landau damping will be
shown, which is a very important and solely kinetic effect. For the sake of simplicity, the
quasilinear diffusion is derived for an isotropic plasma. In this case, the scalar product of
u × δB with ∂ f j0/∂u vanishes because f j0 only depends on the modulus of the velocity.
The perturbation can then be written as

δ f j = i
q j

m j

δE
k · u − ω

·
∂ f j0

∂u
. (II-1.22)

Now the perturbed quantities in terms of Fourier integrals are taken and used in the Vlasov
equation again. Then the equation has to be ensemble averaged, and thus the oscillating
terms vanish. For the ensemble averaging of the quadratic electric field terms, the relation

〈δEi(k, ω)δE∗` (k′, ω′)〉 =
(
δE2

) kik`
k2 δ(k − k′)δ(ω − ω′) (II-1.23)

is needed, where the asterisk indicates the complex conjugated quantity and δ Dirac’s
delta distribution (Lifshitz and Pitaevskii, 1981). Only quadratic terms remain, leading to

∂ f j0

∂t
=

∂

∂vi

(
Di,`

∂ f j0

∂v`

)
(II-1.24)

with

Di,` =
q2

j

m2
j

"
kik`
k2

i(δE2)
k · u − ω

d3k dω. (II-1.25)
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The interaction of waves with particles leads to a diffusion in velocity space with the
non-trivial diffusion coefficient Di,`. This behavior is known as quasilinear diffusion. For
k · u = ω, the interaction becomes resonant, and the so-called Landau-damping occurs.
The damping rate can be calculated by taking Gauß’ law and using the expression for the
perturbation δ f j (Vedenov, 1963).

II.1.2 Magnetized plasma
The effects of a (strong) constant background magnetic field have not been taken into
account until now. Most of space and laboratory plasmas, however, are permeated by a
magnetic field. For instance, the background magnetic field of the solar corona is respon-
sible for the visible coronal loops. The solar wind is infused by the Parker spiral in first
order, and also the confining magnetic field used in certain fusion experiments is a con-
stant background field of this type. The most important difference to the unmagnetized
case is the situation that the motion of particles behaves differently depending on their
velocity’s orientation with respect to the field in the magnetized case. Since the plasma
particles are charged ions and electrons, their motion perpendicular to the magnetic field
is diverted onto a circular path (i.e., gyration), which is superimposed on the parallel tra-
jectory. The anisotropy due to the background field leads to many additional effects in the
collective behavior of the plasma.

This section mainly follows the very clear derivation by Akhiezer et al. (1975). These
authors provide a clear and general derivation of linear theory, also taking oblique propa-
gation of perturbations into account. Nevertheless, the literature provides a broad variety
of calculations for the linear theory in magnetized plasmas (e.g., Davidson, 1972; Lifshitz
and Pitaevskii, 1981; Gary, 1993; Gurnett and Bhattacharjee, 2005).

The perturbation of the distribution function is derived in a similar way as in the
unmagnetized case. However, now the Lorentz force due to the constant background
magnetic field B0 has to be added. It is given in the form

q j

m jc
[u × B0] ·

∂ f j

∂u
= −Ω j

∂ f j

∂ϕ
, (II-1.26)

where the reasonable coordinate system is used in which the z-axis is parallel to B0. The
gyration frequency of the species j is defined as

Ω j ≡
q jB0

m jc
. (II-1.27)

The azimuthal angle ϕ between the x-axis and the field-perpendicular velocity component
v⊥ is defined by cosϕ ≡ vx/v⊥. The velocity component v‖ is the component parallel to B0.
In this cylindrical coordinate system, the velocity vector is determined by the components
(v⊥, v‖, ϕ). This coordinate system is depicted in Fig. II-1. The zeroth-order distribution
function f j0 is supposed to be independent of the azimuthal angle ϕ in velocity space,
which is the symmetry that makes this coordinate system appropriate.

The perturbations are again Fourier decomposed in plane waves, and hence the lin-
earized Vlasov equation reads

i (k · u − ω) δ f j −Ω j
∂δ f j

∂ϕ
= −

q j

m j

[
δE

(
1 −

k · u
ω

)
+

k(u · δE)
ω

]
·
∂ f j0

∂u
, (II-1.28)
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Figure II-1: Geometry of the cylindrical coordinate system for the velocity components.
The cylindrical symmetry axis is given by the background magnetic field B0.

where Faraday’s law in Fourier space was again used to express δB in terms of δE.
This differential equation in ϕ can be solved with the method of variation of parame-

ters. The solution can be very generally found as

δ f j =
q j

m jΩ j
exp

 i
Ω j

ϕ∫
0

(k · u − ω) dϕ′




ϕ∫
0

exp

−
ϕ′∫

0

i
Ω j

(k · u − ω) dϕ′′


×

[
δE

(
1 −

k · u
ω

)
+

k(u · δE)
ω

]
·
∂ f j0

∂u
dϕ′ + C

}
. (II-1.29)

The constant of the integration in the first exponential cancels with itself in the second
exponential (with the opposite sign). The remaining constant C is independent of ϕ and
has to satisfy the 2π-periodicity of δ f j, i.e., δ f j(ϕ + 2π) = δ f j(ϕ). This means that

C = exp

 i
Ω j

2π∫
0

(k · u − ω) dϕ




2π∫
0

exp

−
ϕ∫

0

i
Ω j

(k · u − ω) dϕ′


×

[
δE

(
1 −

k · u
ω

)
+

k(u · δE)
ω

]
·
∂ f j0

∂u
dϕ

}
. (II-1.30)

The coordinate system is turned around the z-axis in such a way that the y-component
of the wavevector is zero, i.e., k = (k⊥, 0, k‖). This choice permits to simplify the above
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integration with the relation

ϕ∫
0

(k · u − ω) dϕ′ =
(
k‖v‖ − ω

)
ϕ + k⊥v⊥ sinϕ. (II-1.31)

The occurring exponential of sinϕ can be expressed as

e−iλ j sinϕ =

+∞∑
`=−∞

J`(λ j)e−i`ϕ (II-1.32)

with the Bessel functions J`(λ j) with λ j = k⊥v⊥/Ω j and integer `, which follows from the
general series expansion

e
1
2 z(t− 1

t ) =

+∞∑
`=−∞

t`J`(z), (t , 0) (II-1.33)

(e.g., Abramowitz and Stegun, 1972). All trigonometric functions of ϕ in the Lorentz
force term are written in terms of exp(±iϕ). Since one sums over all `, the index can be
shifted appropriately. One finds for the integral in the curly brackets of Eqs. (II-1.29) and
(II-1.30)

{
. . .

}
=

ϕ,2π∫
0

+∞∑
`=−∞

g j · δE exp
[
−

i
Ω j

(
k‖v‖ − ω + `Ω j

)
ϕ

]
dϕ (II-1.34)

(n.b., the upper limit at the integral sign has to be chosen correspondingly to the equation)
with the vector

g j1 =
1
2

[(
1 −

k‖v‖
ω

)
∂ f j0

∂v⊥
+

k‖v⊥
ω

∂ f j0

∂v‖

] [
J`+1(λ j) + J`−1(λ j)

]
,

g j2 =
1
2i

[(
1 −

k‖v‖
ω

)
∂ f j0

∂v⊥
+

k‖v⊥
ω

∂ f j0

∂v‖

] [
J`+1(λ j) − J`−1(λ j)

]
, (II-1.35)

g j3 =
∂ f j0

∂v‖
J`(λ j) +

1
2

[
k⊥v‖
ω

∂ f j0

∂v⊥
−

k⊥v⊥
ω

∂ f j0

∂v‖

] [
J`+1(λ j) + J`−1(λ j)

]
.

The Bessel function identities

J`+1(λ j) + J`−1(λ j) =
2`
λ j

J`(λ j), J`+1(λ j) − J`−1(λ j) = −2J′`(λ j) (II-1.36)

are used to find

g j1 =

[(
1 −

k‖v‖
ω

)
∂ f j0

∂v⊥
+

k‖v⊥
ω

∂ f j0

∂v‖

]
`

λ j
J`(λ j),

g j2 =

[(
1 −

k‖v‖
ω

)
∂ f j0

∂v⊥
+

k‖v⊥
ω

∂ f j0

∂v‖

]
iJ′`(λ j), (II-1.37)

g j3 =
∂ f j0

∂v‖
J`(λ j) +

[
k⊥v‖
ω

∂ f j0

∂v⊥
−

k⊥v⊥
ω

∂ f j0

∂v‖

]
`

λ j
J`(λ j).
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The integration can now be carried out and yields

δ f j =
iq j

m j
eiλ j sinϕ

+∞∑
`=−∞

g j · δE
k‖v‖ − ω + `Ω j

e−i`ϕ (II-1.38)

for the perturbation in a magnetized plasma.
The resonance condition has changed from k · u − ω = 0 in the unmagnetized case to

k‖v‖ − ω + `Ω j = 0, ` = 0,±1,±2, . . . , (II-1.39)

and hence a full band of new resonances occurs. Such a resonance is called cyclotron
resonance, whereas the usual Landau resonance for ` = 0 is just a special case. For
the purely field-parallel case (i.e., λ j = k⊥ = 0), the divergent part in g j1 and g j2 has to
be expressed again by use of Eq. (II-1.36). Then the x-component of the electric field
provides a contribution very symmetric to the y-component, and no further resonances
occur than ` = 0 and ` = ±1.

The quasilinear diffusion in the general magnetized case leads to the so-called pitch-
angle diffusion. The complete derivation is not shown here, but the result shall be dis-
cussed to understand the principal physics of inelastic pitch-angle scattering. The fol-
lowing equations are taken from Marsch (2006) and references therein. The distribution
function of species j is modified due to the resonant quasilinear pitch-angle diffusion
according to

δ f j

δt
=

∫
1

(2π)3

∑
M

B̂M(k)
1
v⊥

∂

∂α

(
v⊥ν j,M(k, u)

∂ f j0

∂α

)
d3k, (II-1.40)

where the sum is taken over all (linear) wave modes M. The pitch-angle gradient in the
wave reference frame is given by

∂

∂α
= v⊥

∂

∂v‖
−

(
v‖ −

ω

k‖

)
∂

∂v⊥
, (II-1.41)

and the normalized magnetic field fluctuation spectrum is defined as

B̂M(k) =
|BM(k)|2

VB2
0

(
k‖
k

)2 1

1 −
∣∣∣ k̂ · eM(k)

∣∣∣2 (II-1.42)

with the Fourier amplitude BM(k) of the magnetic field fluctuations and an arbitrarily
large integration volume V . The wave polarization vector is denoted by eM(k) with length
unity. The circular components are defined as

e±M = eMx ± ieMy. (II-1.43)

In Eq. (II-1.40), the ion–wave relaxation rate ν j,M has been introduced. It can be repre-
sented by

ν j,M(k, u) = π
Ω2

j∣∣∣k‖∣∣∣
+∞∑
`=−∞

δ
(
vR` − v‖

) ∣∣∣∣∣12 (
J`−1(λ j)e+

M + J`+1(λ j)e−M
)

+
v‖

v⊥
J`(λ j)eMz

∣∣∣∣∣2 . (II-1.44)
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The resonance speed is defined as

vR` ≡
ω − `Ω j

k‖
. (II-1.45)

The pitch-angle diffusion is not discussed quantitatively in this work because of the
huge variety of possible effects. However, a qualitative discussion of some aspects seems
to be helpful for understanding particular features of wave–particle interactions. The dif-
fusion equation in Eq. (II-1.40) describes a change of the distribution function over time.
It leads to an isotropization of the particle motion around the reference frame centered
on the parallel wave phase speed ω/k‖ if the diffusion operator (esp., the scattering rate
ν j,M) is non-zero. There are several restrictions to this condition. The first trivial require-
ment is the non-vanishing amplitude BM(k) at the corresponding wavenumber. Second,
the delta function in Eq. (II-1.44) has to contribute. This means that the parallel particle
velocity v‖ has to fit the resonance speed vR`, which is an important constraint on the width
of the distribution function and the dispersion of the considered wave mode. The Bessel
functions on the right-hand side of Eq. (II-1.44) only contribute if either k⊥ , 0 or the
evaluated order of the Bessel function is zero because J`(0) = δ`,0. This shows directly
that only the two cyclotron resonances with ` = ±1 and the Landau resonance with ` = 0
occur for parallel propagation, which means that oblique propagation is indispensable for
higher harmonic resonances. Multiplication with the polarization vectors shows that the
cyclotron resonance only occurs for wave modes with a circularly polarized component,
while the Landau resonance only occurs for wave modes with a longitudinally polarized
component.

II.2 Multi-fluid description

II.2.1 Momenta and bulk description

In many cases, the full kinetic or even the simplified quasilinear description is not rea-
sonable. The degree of complexity of the description can be drastically reduced by taking
the moments of the distribution function or the Vlasov equation, respectively (e.g., Chen,
1985; Schindler, 2006). The infinite set of moments describes the distribution function
completely. However, in most cases the development of the moment equations can be
broken at a certain degree, and the set of equations can be closed by external conditions
without loss of accuracy. The n-th moment of the velocity distribution function f j(x, u, t)
is defined as

M(n)
j (x, t) ≡

∫
un f j(x, u, t) d3v. (II-2.46)
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The first momenta are frequently used and therefore particularly named. These are

n j(x, t) =

∫
f j(x, u, t) d3v, (II-2.47)

U j(x, t) =
1
n j

∫
u f j(x, u, t) d3v, (II-2.48)

P j(x, t) = m j

∫
(u − U j)(u − U j) f j(x, u, t) d3v, (II-2.49)

Q j(x, t) =
1
2

∫
(u − U j)2(u − U j) f j(x, u, t) d3v, (II-2.50)

called the number density, the bulk velocity, the pressure tensor (using the dyadic prod-
uct), and the heat flux vector of the particle species j. The thermal pressure p j is related
to the pressure tensor by

p j = nkBT =
1
3

TrP j (II-2.51)

with the kinetic temperature T (Marsch, 2006). In the following, pressure anisotropies
are neglected and only the scalar thermal pressure is used. These parameters describe the
typical properties of a fluid for each particle species. Therefore, this approach is denoted
as the multi-fluid description of a plasma.

It is also possible to take the momenta of the full collisionless Vlasov equation (II-
1.5) for the particle species j by applying the integral operation in Eq. (II-2.46) to the full
equation instead of the function f j and using then the definition of the momenta above.
The 0-th moment of the Vlasov equation is the so-called continuity equation

∂n j

∂t
+ div (n jU j) = 0, (II-2.52)

which describes the conservation of particles of species j. The first moment describes the
evolution of the bulk velocity and contains the conservation of momentum:

m jn j
∂U j

∂t
+ m jn j

(
U j · ∇

)
U j = −grad p j + n jq j

[
E +

1
c

U j × B
]
. (II-2.53)

Furthermore, also the energy equation can be found as the next moment. All these opera-
tions are extensively described by Marsch (2006).

With the relations from Eqs. (II-1.8) through (II-1.13), Maxwell’s equations are given
by

div E = 4π
∑

j

n jq j, (II-2.54)

curl E = −
1
c
∂B
∂t
, (II-2.55)

div B = 0, (II-2.56)

curl B =
4π
c

∑
j

n jq jU j +
1
c
∂E
∂t

=
1
c
∂D
∂t
, (II-2.57)
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where D denotes the electric displacement field, which is connected to the electric field
through the dielectric tensor ε according to D = εE.

A disadvantage of the multi-fluid description is that kinetic resonances, such as the
Landau or the cyclotron resonance, cannot be described self-consistently. Furthermore, all
non-equilibrium effects are not treatable because the structure of non-trivial distribution
functions cannot be represented by the first few moments. The equation for M(n)

j always
contains already the moment M(n+1)

j . Therefore, an infinite number of moment equations
is needed to describe the evolution completely. A finite set of moment equations can
be closed by relations that connect a higher moment with an already known one. For
example, pressure and density can be related by the adiabatic law p j ∝ nγ j

j with the
adiabatic index γ j to finish the moment development after the first moment equation.
An early closure of the equations means that a few moments are sufficient to describe
the distribution function properly, which in turn means that the distribution is close to a
Maxwellian equilibrium distribution. Thus, collisions are implicitly taken into account to
maintain the Maxwellian distribution if a closure relation is applied. This is an important
disadvantage for all fluid descriptions (of course not if an infinite set of equations for all
fluid moments was taken into account). The more moments are accessible, however, the
higher is the accuracy of the structural description of the plasma. On the other hand, all
natural length scales and frequencies are available in the multi-fluid description, which
will be used later in Chapts. IV and V. This makes the multi-fluid approach in many
cases—especially in dilute space plasmas—by far more appropriate than the one-fluid
picture of magnetohydrodynamics (MHD). Classical MHD does not contain any scale of
the plasma and is, therefore, limited to very low frequencies and very large length scales
compared to all plasma scales. An improvement of MHD can be obtained by the inclusion
of the first-order ion motion in form of an additional Hall term. This leads to the Hall-
MHD description (Krauss-Varban et al., 1994; Vocks et al., 1999). These equations are
not completely scale-free. The ion gyrofrequency is a natural scale of this system, and
effects due to the finite gyration frequency of the ions can be taken into account. The Hall-
MHD approach will be used and described later in this work since the hybrid equations,
which are used in the numerical analyses in Chapts. VI and VII, reduce to Hall-MHD at
the limit of very low temperatures.

II.2.2 Cold plasma dispersion relation

The most simple description of waves in a plasma, which takes the multi-species nature
into account, is based on the considerations by Appleton (1932) together with contribu-
tions by Douglas Hartree. For a cold and homogeneous plasma, they describe the disper-
sion relation, which is the relation between wavevector k and frequency ω for different
wave modes. Because of their discoverers, a particular form of it is also sometimes called
the Appleton-Hartree dispersion relation. The following considerations are based on the
textbooks by Stix (1992) and Swanson (2003).

A plasma is considered to be cold if the pressure is zero, or at least negligible. This
means that the momentum equation for the plasma takes the same form as the equation of
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motion for a single particle. From Eq. (II-2.53), this assumption leads to

dU j

dt
=

q j

m j

[
E +

1
c

U j × B
]
. (II-2.58)

After linearization and Fourier decomposition, the differential equation becomes an alge-
braic equation for the velocity and the fields:

−iωU j =
q j

m j

[
E +

1
c

U j × B0

]
(II-2.59)

with the constant background magnetic field B0. Combining Faraday’s law and Ampère’s
law in Fourier space allows one to write the general wave equation

k × k × E = −
4πiω

c2 j −
ω2

c2 E, (II-2.60)

or with the definition of the dielectric tensor:

k × k × E +
ω2

c2 εE = 0. (II-2.61)

The dielectric tensor itself can be found by combining the definition of the current density
in the multi-fluid description with the relation

D = εE = E +
4πi
ω

j (II-2.62)

in Fourier space. This leads to the following form of the dielectric tensor:

ε =

 S −iD 0
iD S 0
0 0 P

 (II-2.63)

with

S ≡
1
2

(R + L), D ≡
1
2

(R − L), (II-2.64)

R ≡ 1 −
∑

j

ω2
j

ω(ω + Ω j)
, L ≡ 1 −

∑
j

ω2
j

ω(ω −Ω j)
, (II-2.65)

P ≡ 1 −
∑

j

ω2
j

ω2 , (II-2.66)

following the usual nomenclature in plasma physics. The plasma frequency of species j
is denoted by

ω j ≡

√
4πn jq2

j

m j
. (II-2.67)
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The wave equation (II-2.61) together with these definitions leads to the dispersion relation
of a cold plasma in the general form:

ω2

c2 S − k2 −iω
2

c2 D 0
iω

2

c2 D ω2

c2 S − k2 cos2 ϑ k2 cosϑ sinϑ
0 k2 cosϑ sinϑ ω2

c2 P − k2 sin2 ϑ


Ex

Ey

Ez

 = 0, (II-2.68)

where the coordinate system is set in such a way that the wavevector lays in the y−z-plane.
The angle ϑ is the angle between k and B0 = B0êz. The non-trivial dispersion relation
now requires that the determinant of the matrix in Eq. (II-2.68) is zero. The solutions of
this requirement are:

Ak4 − Bk2 + C = 0 (II-2.69)

with

A = S sin2 ϑ + P cos2 ϑ, (II-2.70)

B =
ω2

c2

[
S P

(
1 + cos2 ϑ

)
+ RL sin2 ϑ

]
, (II-2.71)

C =
ω4

c4 RLP. (II-2.72)

The two important extreme cases are the parallel (ϑ = 0◦) and perpendicular (ϑ = 90◦)
propagation. The solutions are then simply given by

ϑ = 0◦ : P = 0, k2 =
ω2

c2 R, k2 =
ω2

c2 L. (II-2.73)

ϑ = 90◦ : k2 =
ω2

c2 P, k2 =
ω2

c2

RL
S
. (II-2.74)

These waves represent from the upper left to the lower right the following normal modes:
the free plasma oscillation (also called Langmuir wave), the R-mode (also called fast wave
at lower frequencies or whistler wave at higher frequencies), the L-mode (also called ion-
cyclotron wave), the ordinary wave (also called O-mode corresponding to an electromag-
netic light wave in the plasma), and the extraordinary wave (also called X-mode) together
with the upper and lower hybrid oscillations.

The L-mode is of special interest for this work for reasons that will become clear
later. Therefore, its dispersion is discussed in more detail. The L-mode is also called ion-
cyclotron wave, or—due to its behavior at low frequencies, where it becomes the usual
MHD Alfvén mode—it is also called Alfvén/ion-cyclotron (A/IC) mode. The dispersion
relation k2c2 = ω2L can be expressed in two ways. The direct way is

k2 =
ω2

c2 −
∑

j

ω2
j

c2

ω

ω −Ω j
(II-2.75)

for the exact parallel propagation. The first term on the left-hand side arises from Max-
well’s displacement current and is, hence, often neglected for all processes that are slow
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compared to the propagation of light in vacuo. In the low-frequency limit, the ordering
ω � Ωp � Ωe can be applied, and Taylor expansion in (ω/Ωp)2 yields

k2 =
ω2

p

Ω2
pc2ω

2 ⇒
ω

k
= ±vAp (II-2.76)

with the proton Alfvén speed

vAp ≡
B0√

4πnpmp
. (II-2.77)

This constant phase-speed of the wave reflects the well known linear dispersion relation
for the classical MHD Alfvén wave that will be discussed in Sect. II.2.3.2 in more detail.

A good approximation for the A/IC wave at smaller frequencies compared to the elec-
tron gyration frequency and for moderate values of ϑ can be obtained from Eq. (II-2.69)
with the assumptions ω � Ωe and me � mp. This means that the contribution to P comes
mainly from the electrons, while contributions to R and L come from the protons. The
polynomial coefficients are then given by

A ' −
ω2

e

ω2 cos2 ϑ, B ' −
ω2

e

2c2 (R + L)(1 + cos2 ϑ), C ' −
ω2

eω
2

c4 RL, (II-2.78)

R '
c2

v2
Ap

Ωp

Ωp + ω
, L '

c2

v2
Ap

Ωp

Ωp − ω
. (II-2.79)

Therewith, Eq. (II-2.69) becomes

(`pk)4 cos2 ϑ −
ω2

Ω2
p − ω

2

(
1 + cos2 ϑ

)
(`pk)2 +

1
Ω2

p

ω4

Ω2
p − ω

2 = 0, (II-2.80)

where the proton inertial length

`p ≡
c
ωp
, (II-2.81)

which is also called skin depth, is introduced. One root of Eq. (II-2.80) is given by(
ω

Ωp

)2

=
1
2

[(
1 + cos2 ϑ

)
(`pk)2 + cos2 ϑ(`pk)4

−(`pk)2
√(

1 − cos2 ϑ
)2

+ 2
(
cos2 ϑ + cos4 ϑ

)
(`pk)2 + cos4 ϑ(`pk)4

]
, (II-2.82)

which is another useful representation for the A/IC dispersion relation that will be used
later.

The R-mode wave is also called the fast/whistler (F/W) wave. Its dispersion for
low frequencies compared to the electron gyrofrequency can be approximated with the
expansion of the electron contribution in terms of ω/Ωe � 1 and using the relation
`pΩp = −`eΩe for an electron-proton plasma. The number one on the right-hand side
of the definition of R is again rooted in Maxwell’s displacement current. Therefore, it can
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be disregarded in the case considered here. The parallel dispersion relation k2c2 = ω2R
can then be written as

ω

Ωp
=

k2`2
p

2

1 +

√
1 +

4
k2`2

p

 . (II-2.83)

This relation will be also used in the following chapters several times. At higher frequen-
cies, the ion contribution in the square-root term of Eq. (II-2.83) becomes negligible, and
the dispersion then reads

ω

Ωp
≈ k2`2

p, (II-2.84)

which is the classical cold electron whistler wave dispersion relation (Baumjohann and
Treumann, 1996).

So far, the treated wave modes are only normal modes for a cold plasma. Including
effects of variable pressure leads to further wave modes, which belong then to the large
family of compressive wave modes. Only some cases are discussed in this work, for
example in Chapt. V. For a description of finite temperature effects, either the fluid or
the Vlasov picture is an appropriate formulation. They are described extensively in the
literature (e.g., Gary, 1993; Stix, 1992; Swanson, 2003). An example for the complexity
of the dispersion of plasma waves in a warm plasma is shown in Fig. II-2. In this diagram,
the ion-acoustic speed occurs, which is defined by

cs ≡

√
γekBTe + γpkBTp

me + mp
, (II-2.85)

where T j is the temperature of species j and kB the Boltzmann constant. The different
wave branches are defined as follows, starting the description of the diagram at the low-
frequency side. The fast MHD mode branch begins at O1 and reaches with its linear
dispersion until A, where it turns into the R-mode and later to the characteristic whistler
dispersion (ω ∝ k2). It shows the electron cyclotron-resonance at C. The MHD torsional
Alfvén wave is the low, linear part from O2 to F. Then it approaches as the ion-cyclotron
wave the cyclotron resonance of the protons at G. For the chosen parameters, it continues
on the other side of the resonance and couples with the ion-acoustic wave at I. The slow
MHD mode begins at O3. Its phase speed is the ion sound speed with a factor for the
obliquity in propagation. It turns into a resonance with the protons at P. The detailed
mode couplings at high wavenumbers and frequencies around the points D and K are
discussed in the textbook by Swanson (2003).

The solutions of the corresponding dispersion relation alone do not describe all details
of a plasma wave. Further characteristic informations about the wave properties are given
by the polarization relation, which describes how the electromagnetic field vectors and
the velocity vectors of the wave are oriented and related with respect to each other. To-
gether with the dispersion relation, the polarization relation allows one to describe the full
space- and time-dependent behavior of all oscillating quantities (electric field, magnetic
field, and velocities of the plasma particles) for the particular wave type. The polarization
relations are usually determined from the equations of motion together with Maxwell’s

41



II Mathematical basis

Figure II-2: Dispersion relation for a warm and overdense (ωe > Ωe) electron-proton
plasma for a propagation angle of ϑ = 45◦. The full lines come from a fluid dispersion
approximation at low frequencies, while the dash-dotted lines represent a warm dispersion
approximation that neglects the ion-momentum. The different branches are described in
the text. Reproduced with permission of Taylor and Francis Group LLC-Books from
Swanson (2003); permission conveyed through Copyright Clearance Center, Inc.

equations, once the dispersion is known. There is no general, concise form of it. There-
fore, the polarization relation is stated in the following work explicitly only at the places,
where a certain wave mode polarization is of interest.

II.2.3 MHD approximation

II.2.3.1 The single-species magnetofluid

In some special cases, a plasma can be described as a highly conducting single-species
fluid. This approximation is called the ideal magnetohydrodynamic (MHD) description
(e.g., Akhiezer et al., 1975). This approximation is only valid if all time-dependent ef-
fects are slow compared to the gyration period or other characteristic time scales of all
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plasma species. Like in other low-moment fluid theories, also MHD assumes a distribu-
tion function close to Maxwellian equilibrium implicitly. In viscous MHD, the expression
for the viscous stress (and therefore dissipative effects) is also based on the assumption
of Maxwellian background distribution functions with small deviations from equilibrium.
To explain the observed dissipation in space plasmas, the viscous dissipation often re-
quires a higher collisionality than typically found in the solar corona and the solar wind.
This is a central problem of the applicability of MHD in space physics. Kinetic and scale-
dependent effects, which are not accessible by MHD, appear to play a more important
role than viscous dissipation due to collisions. Electrostatic effects on small scales are
completely neglected by MHD. In the following, viscous effects shall be neglected in first
order. The MHD fluid is described by a continuity equation and a momentum equation
similar to the multi-fluid equations:

∂%

∂t
+ div (%U) = 0, (II-2.86)

%
∂U
∂t

+ %(U · ∇)U = −grad p +
1
c

j × B, (II-2.87)

where the mass density of the magnetofluid is denoted by %. The species index can be
omitted because the plasma is assumed to consist of one species only. Additionally Ohm’s
law is given with the (isotropic for low magnetic fields) conductivity σ as

j = σ

(
E +

1
c

U × B
)
. (II-2.88)

It contains the conductive current, which stems from the Lorentz transformation into the
reference frame that is fixed to the moving plasma element. It can be assumed in many
cases that the conductivity of the MHD fluid tends to infinity so that the electric field has
to fulfill the condition

E = −
1
c

U × B. (II-2.89)

With this expression for the electric field, the magnetic field follows the induction equa-
tion in the form

∂B
∂t

= curl [U × B] . (II-2.90)

Ampère’s law does not contain the displacement current and permits a direct representa-
tion of the current density in terms of the curl of the magnetic field. The system of MHD
equations permits three kinds of waves to propagate (at low frequencies), which shall be
discussed in the following section.

II.2.3.2 MHD waves

An adiabatic relation is assumed for the pressure with p ∝ %γ. The set of MHD equations
can now be linearized and written in its Fourier components. Combining the adiabatic
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pressure gradient with the continuity equation allows one to write the momentum equation
and the induction equation as

−ωU + v2
s k

k · U
ω

=
1

4π%0
(k × B) × B0, (II-2.91)

−ωB = k × (U × B0), (II-2.92)

where the definition of the fluid sound speed

vs ≡

√
γp0

%0
(II-2.93)

was used. The two equations can be combined to find the dispersion relation for MHD
waves. The angle ϑ between the vectors k and B0 can again be used to simplify the vector
identities. Then the vector relationk

2v2
A cos2 ϑ − ω2 0 0

0 k2(v2
A + v2

s sin2 ϑ) − ω2 k2v2
s cosϑ sinϑ

0 k2v2
s cosϑ sinϑ k2v2

s cos2 ϑ − ω2

 U = 0 (II-2.94)

is found with the MHD Alfvén speed vA ≡ B0/
√

4π%. The determinant of the matrix
has to vanish for non-trivial solutions. This leads to three possible solutions for the wave
phase speed, being able to propagate in different directions with respect to the background
magnetic field:

ω

k
= ±vA cosϑ, (II-2.95)

ω

k
= ±

1
√

2

√
v2

A + v2
s ±

√(
v2

A + v2
s

)2
− 4v2

Av
2
s cos2 ϑ, (II-2.96)

which are the classical (shear) Alfvén wave and the two magnetosonic waves. These two
are characterized according to their phase speed as the slow and the fast mode.

The polarization of Alfvén waves is an important property that can be used for identi-
fying fluctuations as Alfvénic or not (Belcher and Davis, 1971). It can be obtained from
the induction equation, assuming the simple dispersion relation ω = ±kvA cosϑ. This
yields

∓
B
B0

=
U
vA
−

k · U
kvA cosϑ

êz. (II-2.97)

In the incompressible case (div U = 0) as well as in the parallel case (due to div B = 0),
this relation becomes

∓
B
B0

=
U
vA
. (II-2.98)

Effects of compressibility due to nonlinear effects will be discussed later in Chapt. V. This
polarization relation means that the magnetic field and the velocity are either parallel or
anti-parallel for the classical shear Alfvén wave.
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II.2.3.3 Spectral transfer in (magneto)hydrodynamics

Homogeneous, isotropic fluid turbulence shows an ubiquitous spectral power-law depen-
dence of the power spectral density Pk of the fluctuations on the wavenumber k follow-
ing Pk ∼ k−5/3. This famous hydrodynamic scaling relation was found by Kolmogorov
(1941). However, its applicability to MHD turbulence is under debate (e.g., Podesta,
2011). Hydrodynamic turbulence is a nonlinear effect rising from the advection term in
the momentum equation. Fourier transformation of nonlinearities leads to expressions
that contain convolution terms in wavenumber and frequency according to the convolu-
tion theorem (Leslie, 1973). It was Kolmogorov (1941) who developed a simple scaling
law for the behavior of eddies on different scales, which appears to be applicable for many
cases in fluid turbulence and is confirmed in many experiments, too (McComb, 1990).

His considerations are based on the assumption that the transfer of energy in Fourier
space is a local process, and the transfer over a large range in wavenumber is negligible.
He divided the turbulence spectrum into three ranges: the driving range at large scales,
the dissipation range at small scales, and the inertial range in between these two, in which
the energy is shifted to higher wavenumbers without significant dissipation or production.
The famous Kolmogorov turbulence scaling law is valid for the inertial range only. The
turbulence is, furthermore, assumed to be homogeneous and isotropic. For a stationary
turbulent situation, the production rate of turbulent energy is equal to the dissipation rate ε.
The spectrum Pk is defined in a way that Pk dk corresponds to the energy that is contained
in the modes between the scalar wavenumbers k and k + dk. Now this spectrum Pk has to
be related to the dissipation rate ε, which has been done in form of a dimensional analysis
by Kolmogorov. The energy transfer can be written as ε ∼ v2/t with the typical turbulent
eddy velocity v and the so-called eddy-turnover time t, which is approximately given by
1/kv. The spectrum has the dimension of energy per wavenumber and can be written as
Pk ∼ v

2/k. Expressing the velocity in terms of ε and t allows one to write

Pk ∼ ε
2/3k−5/3, (II-2.99)

which is the famous Kolmogorov spectral scaling for the inertial range.
For MHD turbulence, Iroshnikov (1963) and Kraichnan (1965) found independently

a different scaling law, which leads to a power-law behavior of Pk ∼ k−3/2. The observed
solar wind turbulence spectra, however, show in many cases a steeper power index, which
would be in favor of the classical hydrodynamic Kolmogorov picture (see e.g., Horbury
et al., 2005). The spectra indicate an even higher power index for the field-parallel prop-
agation, whereas it seems to be Kolmogorov-like in the perpendicular direction (Wicks
et al., 2010). The reason for this behavior is still unclear.
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III Apparent temperature anisotropies
due to wave activity

The following chapter has been published in wide parts before submission of this thesis.
The publication can be found under the following reference:

Daniel Verscharen and Eckart Marsch: Apparent temperature anisotropies due to
wave activity in the solar wind, Ann. Geophys. 29, 909-917, 2011, doi:10.5194/angeo-
29-909-2011.

III.1 Temperature anisotropies and non-resonant wave–
particle interactions

As mentioned before, the fast solar wind plasma is permeated by plasma fluctuations on
many scales. Of course, any plasma wave has to fulfill the Vlasov-Maxwell equations
presented in Chapt. II and can, therefore, be understood as the space- and time-dependent
self-consistent interplay between the periodic variations of the electromagnetic field and
related motions of the particles, being represented by their velocity distribution function
(VDF).

In the recent literature, the shaping of distribution functions due to wave activity has
been widely discussed (Wang et al., 2006; Wu and Yoon, 2007; Wu et al., 2009; Wang
and Wu, 2009). Obviously the presence of wave forces (or their spectra) will lead to a
deformation of the distribution function with respect to a Maxwellian shape and cause a
velocity spreading after appropriate averaging over the wave effects. The plasma-physics
definition of temperature is based on a statistical particle ensemble and usually defined
in terms of the random kinetic energy (via the mean square of the particle velocity) in
the particles’ mean-velocity frame. This definition of temperature is not necessarily equal
to the thermodynamic temperature, which may be called the intrinsic temperature of the
particle ensemble. The fluctuation of the mean square velocity owing to wave activity
is able to cause an effective broadening of the distribution function similar to real heat-
ing and thus may mimic genuine heating. Therefore, some authors have referred to this
process as “apparent heating” (Wang et al., 2006), others as “non-resonant wave–particle
interactions”. The common ground of these wave effects is that they are reversible and
therefore not dissipative and do not represent real heating. Collisions, however, might
be able to dissipate coherent wave motion efficiently and thus will lead to a real heating
and an increase in the intrinsic temperature (Schekochihin et al., 2008; Howes, 2008). In
the following, collisions are still excluded from the treatment of the VDFs, in order to
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demonstrate the collisionless effects of waves and reveal the apparent heating due to wave
activity.

As mentioned in the Introduction, substantial ion temperature anisotropies have been
observed in the solar wind and discussed by different authors (Marsch et al., 1981, 2004;
Bale et al., 2009; Bourouaine et al., 2010). Typically the proton temperature is higher per-
pendicular to the magnetic field than parallel to it. These anisotropies have mostly been
discussed as being the result of the cyclotron-resonant interaction with circularly polar-
ized waves, a process which can be quantified by means of quasilinear theory. On the
other hand, such anisotropic distribution functions can become unstable if the anisotropy
exceeds a certain threshold that depends on the plasma beta (Gary et al., 2000, 2001).
For a typical solar wind beta of about 1, the beta dependence is not severe and the distri-
bution function becomes unstable for T⊥/T‖ & 2. This instability can in turn excite and
radiate ion-cyclotron waves. In this way, wave excitation can reduce the ion temperature
anisotropy efficiently and yield moderate and stable values (Gary, 1993; Bale et al., 2009).

The general theory of this wave–particle interaction is well established, and in fact
many traits of it were confirmed by observations (Marsch, 2006). However, the apparent
heating effects are not well understood and have not yet been discussed in the context of
ion–wave interactions below and near the ion inertial scale. Yet, they should be included
in an appropriate description of space plasmas that are subjected to strong Alfvén/ion-
cyclotron (A/IC) wave activity such as it is typical for the solar wind in the inner helio-
sphere. To study possible physical causes of apparent wave heating is the aim of this
chapter. Firstly, the effect of a strong plasma wave on an intrinsically Maxwellian dis-
tribution function is discussed. Secondly, a concise form of the resulting model VDF is
constructed, and then it is discussed how such a distribution function would look like in a
real plasma measurement made on a space probe.

III.2 Model distribution functions

III.2.1 Wave effects on the distribution function
To study the effects that waves have on the shape of a velocity distribution function,
the constants of individual particle motion in a given wave field have to be determined,
and then the fact can be exploited that any function of these constants of motion is a
solution of the Vlasov equation (Davidson, 1983; Stix, 1992). Here the influence of a
single monochromatic wave is discussed only. It is supposed here to be transversal and
left-hand circularly polarized and its magnetic field can be assumed to have the form

B =

b cos(kz − ωt)
b sin(kz − ωt)

B0

 (III-2.1)

with the constant field component B0 along the z-axis and a constant wave amplitude b.
The wave frequency is ω and the parallel wavenumber k. Its magnetic field is associated
with an electric field, which according to Faraday’s law is given by

curl E = −
1
c
∂B
∂t
. (III-2.2)
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The equation of motion for a single particle with charge q j and mass m j in this electro-
magnetic field is determined by the Lorentz force:

du
dt

=
q j

m j

(
E +

1
c
u × B

)
. (III-2.3)

It is useful and transparent to write this equation in the components of the cylindrical
coordinate system, which has been introduced in Chapt. II, as follows:

dv⊥
dt

= Ω j

(
ω

k
− v‖

) b
B0

sin (φ − ϕ) , (III-2.4)

dv‖
dt

= Ω jv⊥
b
B0

sin (φ − ϕ) , (III-2.5)

dϕ
dt

= −Ω j

[
1 +

(
ω

k
− v‖

) 1
v⊥

b
B0

cos (φ − ϕ)
]
, v⊥ , 0, (III-2.6)

where the abbreviation φ ≡ kz−ωt is used for the wave phase. The gyrofrequency is again
denoted by Ω j. A similar set of equations has already been used in a test-particle descrip-
tion to describe the nonlinear behavior of particles that are trapped in the wave fields
(Matsumoto, 1979). Also non-resonant heating effects have been treated with similar
equations under the assumption of low plasma betas both in the monochromatic parallel
case and for a spectrum of oblique MHD waves (Hamza et al., 2006; Lu and Li, 2007; Li
et al., 2007; Lu and Chen, 2009). However, the initial conditions in these cases break the
condition of the coherent particle motion, which is necessary to maintain the wave in a
self-consistent way. Neglecting the coherence and violating the self-consistency may be
an appropriate description for a minor particle species in the sense of a test-particle ap-
proach. But the description is insufficient for the dominating main species that carry the
currents and charges maintaining the wave itself. Li et al. (2007) also consider consistent
initial conditions that do reflect the coherent wave motion and find that these particles
do not experience the non-resonant heating because they are not picked-up by the wave
fields. A model for the coherent particle motion of the dominating species in a wave field
at high plasma betas should be based on a Vlasov description to take the finite thermal
width of the distribution into account. Numerical self-consistent simulations are another
approach to this problem (e.g., Li and Habbal, 2005; Araneda et al., 2008, 2009; Maneva
et al., 2010). In order to determine an adequate model distribution function, one first can
determine two constants of motion for the kinematic system from Eqs. (III-2.4) through
(III-2.6). These are the generalized momentum of the particle and its total kinetic energy
in the wave frame:

M j = v⊥ cos (φ − ϕ) +
B0

b
v‖

[
1 −

ω

Ω j
+

kv‖
2Ω j

]
, (III-2.7)

P = v2
⊥ +

(
v‖ −

ω

k

)2
. (III-2.8)

Both M j and P can be shown to be constant, simply by taking the derivatives with respect
to t and using the equations of motion in Eqs. (III-2.4) through (III-2.6). It is known
(Akhiezer et al., 1975) that any distribution function, which is a function of these con-
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stants of motion, always fulfills the Vlasov equation. Therefore, the ansatz

f j = N j exp

− P
v2

th j

 exp

2Vw jM j

v2
th j

 (III-2.9)

can be made with the normalization factor N j and constant coefficients vth j and Vw j, which
can essentially be defined as the density, thermal velocity of the VDF, and mean fluid-
velocity amplitude of the particles in association with the wave motion.

The right second term in the expression for M j compensates the frame-shift of v‖ by
ω/k in the definition of P if the condition

Vw j = −
b
B0

ω/k
1 − ω/Ω j

(III-2.10)

is fulfilled, and if one can ignore the weak effects due to a small spread in the parallel
direction (kv‖ � Ω j). Interestingly enough, this relation then corresponds to the wave po-
larization relation found by Sonnerup and Su (1967) for a circularly polarized wave with
a vanishing parallel bulk drift. In their classical solution, they showed that the transversal
velocity is determined by

V jt = −
ω/k

1 − ω/Ω j

Bt

B0
(III-2.11)

for vanishing drifts in the z-direction. The transversal magnetic field vector is defined
as Bt = (Bx, By, 0) with the first two components as obtained from Eq. (III-2.1). The
dispersion relation of the waves was given in Chapt. II. It can be written as

k2 +
∑

j

1
`2

j

ω

ω −Ω j
= 0, (III-2.12)

whereby the small displacement current in Maxwell’s equations was neglected. The in-
dex j numbers all participating species (in the case considered later only protons and
electrons).

After normalization, the non-gyrotropic model VDF of the particles in response to the
wave forces reads

fw j(v⊥, v‖, ϕ) =
n j0

π3/2v3
th j

exp

−V2
w j + ω2/k2

v2
th j

 exp

−v2
⊥ + v2

‖

v2
th j


× exp

2v⊥Vw j

v2
th j

cos (φ − ϕ)

 . (III-2.13)

The first exponential stems from the normalization, and does not change the structure of
the distribution function but depends on the particles sloshing velocity amplitude Vw j and
wave phase speed ω/k. It is interesting to note that this model distribution function is
equal to a Maxwellian distribution in cylindrical coordinates, yet which is shifted by V jt

in the transversal direction and can be written in this shifted Maxwellian form as

f j ∼ exp

− (vx − V jx)2 + (vy − V jy)2

v2
th j

 (III-2.14)
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with the cartesian speed components V jx and V jy, reflecting the rigid displacement of the
whole VDF in the wave field. This is an ansatz commonly used to initialize consistently
numerical simulations (Araneda et al., 2008) and represents the sloshing motion of par-
ticles in the wave field (e.g., Markovskii et al., 2009). A thermodynamical derivation of
an equivalent distribution function from arguments on the entropy have been published
parallel to this work by Nariyuki (2011a).

A VDF that has an additional intrinsic temperature anisotropy is supposed to be rep-
resented by a modified bi-Maxwellian distribution. The appropriate choice for a VDF in
a wave field including an intrinsic temperature anisotropy is given by

fa j ∼ exp

− V2
w j

v2
th j⊥

−
ω2/k2

v2
th j‖

 exp

− v2
⊥

v2
th j⊥

−
v2
‖

v2
th j‖

 exp

2v⊥Vw j

v2
th j⊥

cos (φ − ϕ)

 , (III-2.15)

where different thermal speeds in the perpendicular and parallel direction are chosen to
account for the intrinsic anisotropy. It is important to note, however, that this distribu-
tion function is not an exact solution of the Vlasov equation anymore. Without wave
activity, this distribution function obtains the usual bi-Maxwellian form. This modified
bi-Maxwellian VDF is not applied in the following since the considerations are focussed
on the role of apparent temperature anisotropies only.

III.2.2 Wave effects on particle measurements
The solar wind is permeated by magnetic field fluctuations and waves (Tu and Marsch,
1995) of all kind. A particle detector that is able to determine the velocity distribution
function of particles (e.g., such as flown aboard the Helios spacecraft) counts particles in
different energy and direction channels and thereby integrates the net particle fluxes into
the various single channels over the so-called sampling time T . In a first approximation,
one may interpret this time as kind of an exposure time (like in photography) and thereby
neglect time-dependent sampling effects on the instrument’s pointing direction (to differ-
ent solid looking angles) or on the accessibility of the particles to the different energy
channels during the measurement cycle. Effects of the proper motion of the detector with
respect to the solar wind flow are also neglected for the first estimation. A possibility to
handle the effects arising from this relative motion would be to treat the waves as frozen in
the solar wind and being with the fixed spatial structure convected over the space probe.
This assumption is called Taylor hypothesis and is valid only for k · VSW � ω, where
VSW denotes the solar wind flow velocity. Since the Alfvén speed is typically about a
factor of 10 less than the flow speed of the solar wind in the spacecraft reference frame,
this Doppler effect would even increase the sampling problem because waves with lower
wavenumbers appear at higher frequencies for the detector. These lower wavenumber
structures typically have a higher power than waves at higher wavenumbers. Therefore,
the relative motion of the solar wind with respect to the spacecraft amplifies the wave
effect on the measured distribution function additionally.

Such a model instrument would not be able to take snapshots of the VDF but integrate
the sloshing distribution over time T and would therefore obtain a spread in the VDF due
to the wave activity. In the following, the influence of this final integration time on the
actual measurement is determined theoretically.
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The relevant spectral range is limited to frequencies that are higher than the sampling
frequency 2π/T because slower motions would be more or less resolved. They would
merely lead to a rigid shift of the full distribution function without deformation. The
analysis software of a plasma instrument would set the origin of the reference frame to the
shifted center of the VDF so that no change would be detectable. On the upper frequency
side, the acting part of the wave spectrum should be limited by the gyrofrequency because
the waves are supposed to be strongly damped in the case of A/IC waves at this scale, and
thus beyond it the observed spectral energy goes down significantly. The slope of the
spectral energy density follows Kolmogorov’s law at lower frequencies (Tu and Marsch,
1995). Numerical simulations show that at wave numbers around k ≈ 0.8/`p the A/IC
spectral slope usually breaks because of the onset of dissipation at these scales (Ofman
et al., 2005). Here only a monochromatic wave with ω = 2π/T is assumed.

Given all these assumptions, the time-averaging process of the VDF under the influ-
ence of waves may be expressed mathematically as

f̄ j =
1
T

T∫
0

fw jdt. (III-2.16)

One can now insert the model function of Eq. (III-2.13), in which the last exponential
factor can be expanded (Abramowitz and Stegun, 1972) and represented by a sum over
modified Bessel functions Im according to the relation:

ea cos b = I0(a) + 2
∞∑

m=1

Im(a) cos(mb). (III-2.17)

The time dependence of the averaged distribution function f̄ j is hidden in the wave phase
φ(t). The coordinates of the distribution function (i.e., z, v⊥, and v‖) have no time de-
pendence in this context. The expression for fw j in Eq. (III-2.13) delivers a value of the
VDF at each position in phase space and at each time. Without any restriction, the spatial
position can be taken z = 0. Then the time-averaged distribution function can be written
as

f̄ j = N j exp

−v2
⊥ + v2

‖

v2
th j

 I0

2v⊥Vw j

v2
th j


+

2
T

∞∑
m=1

Im

2v⊥Vw j

v2
th j

 sin(mωT + mϕ) − sin(mϕ)
mω

 . (III-2.18)

The sum is always zero for all possible positions in ϕ if ω = 2π/T . So the above formula
can be simplified and written as

f̄1 j = N j exp

−v2
⊥ + v2

‖

v2
th j

 I0

2v⊥Vw j

v2
th j

 . (III-2.19)

Thus, the intrinsically non-gyrotropic distribution function appears to become gyrotropic
again after this kind of averaging process. Still, a wider spectrum of waves could lead to a

52



III.2 Model distribution functions

deformation of the distribution function in the coordinate ϕ, but as stated above the higher
frequencies on shorter time scales than the sampling time T are not expected to change
the result much.

Next, an A/IC wave is assumed. This wave has to fulfill a dispersion relation, which
can be taken from the cold plasma limit in Eq. (II-2.82), yielding the parallel dispersion
relation as(

ω

Ωp

)2

= (k`p)2 +
1
2

(k`p)4 −
1
2

(k`p)3
√

(k`p)2 + 4. (III-2.20)

For high values of k, the dispersion shows the asymptotic behavior ω→ Ωp, which can be
seen by expanding the function

√
1 + x with x = 4/(k`p)2 to second order. Typical solar

wind parameters are used for a distance between spacecraft and Sun of about 0.5 AU,
which is where strongly non-Maxwellian distributions and high wave activity were usu-
ally observed in fast solar wind by the Helios spacecraft. The wave activity is observed
to be higher at smaller distances to the Sun, which is demonstrated in Fig. III-1. The
plasma beta is set to 0.1 and the sampling time to 10 s, which is the real sampling time
of the Helios spacecraft. The constant background magnetic field B0 is assumed to be
5 × 10−4 G and the proton density to be n = 10 cm−3. The relative wave amplitude is
set to b/B0 = 0.25. The distribution function at ϕ = π is plotted at negative values for
v⊥, in order to make plots that can more easily be compared with the observations. The
calculated distribution function is shown in Fig. III-2.

Heavy ions with mass mi, which are also present in the solar wind (von Steiger, 2008),
react on the wave field in a slightly different way. The dependence of Vw j on the charge-
to-mass ratio in Eq. (III-2.10) is small for lower frequencies. The thermal speed, however,
is significantly lower than the proton thermal speed by a factor of

√
mp/mi. Therefore, the

distribution function of heavy ions is more narrow than the proton distribution function
but shifted by the same amount due to the wave motion as can be seen in Eq. (III-2.13).
This can lead to a more severe deformation of the distribution function after the averaging
process, which might also lead to ring-like apparent VDFs for heavy ions in strong wave
fields.

The apparent temperature anisotropy can now be calculated by taking the second mo-
ment of the distribution function according to the formula

A ≡
T⊥
T‖

=

+∞∫
−∞

+∞∫
0

f̄1 jv
3
⊥dv⊥dv‖

2
+∞∫
−∞

+∞∫
0

f̄1 jv
2
‖
v⊥dv⊥dv‖

. (III-2.21)

The integration over ϕ leads to the factor 2 in the denominator. The above distribution
function of Fig. III-2 has an apparent temperature anisotropy of A = 1.64.

By varying the wave parameters and the particle thermal speed, correspondingly vary-
ing forms of the distribution function can be created. The dependence of the resulting
apparent temperature anisotropy on the plasma beta and the wave amplitude b is shown
in Fig. III-3.

The obtained distribution function looks from the first point of view very similar to a
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Figure III-1: Dependence of fluctuation power, temperature anisotropy, and distance from
the Sun on each other. The lines show polynomial fits to the data. a) triangles: thresholds
for ion-cyclotron instability, crosses: thresholds for firehose instability. From Bourouaine
et al. (2010).

classical bi-Maxwellian distribution function of the form

fbm j ∼ exp

− v2
⊥

v2
th j⊥

−
v2
‖

v2
th j‖

 . (III-2.22)

In Fig. III-4, a bi-Maxwellian VDF is shown for an (intrinsic) anisotropy of v2
th⊥/v

2
th‖ = 2.

The general form of the VDF in Fig. III-2 can also be approximated by this mathemat-
ical representation, which underlines the difficulties arising from the correct definition
of the observed temperature. Interpreting the wave-broadened distribution function f̄ j as
a bi-Maxwellian leads to an apparent difference in the two thermal velocities of the bi-
Maxwellian VDF. Therefore, the wave-broadening can also be expressed in terms of a cor-

54



III.2 Model distribution functions

Figure III-2: Distribution function in the presence of a large-amplitude wave. The solid
line represents the background magnetic field direction. Velocities are given in units of
the thermal speed. The broadening in the perpendicular direction is clearly visible.

responding apparent thermal velocity anisotropy. Applying the second moment relation
from Eq. (III-2.21) to a bi-Maxwellian distribution function yields the ratio A = v2

th j⊥/v
2
th j‖.

This means that the anisotropy in the apparent thermal speeds is given directly by
√

A.
Considering waves with higher frequencies, one must admit that the approximation

kv‖ � Ω j is not valid anymore. Then further modifications of the VDF have to be accepted
in the wave field, and a non-Maxwellian dependence also on the parallel speed coordinate
v‖ is found. Accordingly the distribution is

fh j = fw j exp

2v‖
v2

th j

[
ω

k
+

B0

b
Vw j

(
1 −

ω

Ω j
+

kv‖
2Ω j

)] . (III-2.23)

If the time-averaging process is applied to this distribution function, the results change
significantly. The additional term makes the distribution function more prolate already
at lower wave amplitude and for higher beta values. Thus it becomes even more similar
to a bi-Maxwellian distribution function as it is shown in Fig. III-4. An example for this
situation is shown in Fig. III-5, where the parameters ω = 10π/T , b = 0.1, and β = 0.5
have been assumed.
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Figure III-3: Apparent temperature anisotropy in dependence on the normalized ampli-
tude b of a wave with ω = 2π/T . The evaluation of the anisotropy according to Eq. (III-
2.21) is shown for different values of the plasma beta.

For comparison, also a typical measurement by the Helios 2 spacecraft from 1976 is
shown. The anisotropy of the observed distribution function is comparable to the calcu-
lated apparent anisotropy, whereas other effects such as the formed beam along the back-
ground field is not reproduced by the above calculations. The model distribution function
fits the observed distribution function well. This shows that the broadening effect and the
detailed shaping mainly depend on the frequency of the waves and the plasma beta. The
measured distribution function is better represented by the corrected distribution function
for higher frequencies. This distribution is not simply a shifted Maxwellian but has a
further non-Maxwellian dependence on v‖, which can represent the observations better.

III.3 Discussion
This study could show how the VDF is shaped by the presence of a large-amplitude wave.
In the case of transversal wave activity, the distribution function obtains a shift in the
direction perpendicular to the background magnetic field. If the distribution function
is averaged over time, this shift will lead to a smearing in the perpendicular velocity
component, which in turn would be interpreted as a temperature anisotropy in favor of the
perpendicular direction. Every real measured distribution function can only be determined
by sampling within a certain time period, and this implies averaging. Thus, the resulting
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Figure III-4: Bi-Maxwellian velocity distribution function for a temperature anisotropy
of 2.

temperature as the second moment of the VDF reflects this procedure.
It was possible to demonstrate, using a simplified model, how this effect can lead

to a significant change in the observed distribution functions as plasma measurements
are always done by counting particles over a certain sampling time T . This sampling
period corresponds again to time averaging. The broadening of particle distributions due
to microturbulence is a well known fact, which is exploited in spectroscopy to determine
remotely, for example, the turbulence level in the solar corona (e.g., Kohl et al., 2006)
from ultraviolet emission line broadenings. In the context of measurements of plasma
VDFs in the solar wind, however, this was not taken into account before to the author’s
knowledge.

Also compressive fluctuations can be treated in a similar way. However, then broaden-
ing would be observed mostly in the parallel direction. Consistently with the present em-
phasis on perpendicular broadening, most recent observations show a higher transversal
wave activity in almost all cases in the fast solar wind (Horbury et al., 2005; Alexandrova
et al., 2008b).

The meaning of intrinsic temperature anisotropies should be further discussed in the
future. As mentioned before, a severe limitation to T⊥/T‖ is observed in the solar wind
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III Apparent temperature anisotropies

Figure III-5: Top: Like in Fig. III-2 but including higher-order corrections. Bottom:
Typical proton distribution function measured by the Helios 2 spacecraft in 1976. The
black line indicates the direction of the background magnetic field.
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Figure III-6: Top: Number of solar wind measurements of temperature anisotropies de-
pending on the plasma beta by the Wind spacecraft at about 1 AU. The lines indicate the
thresholds for mirror mode and firehose instability. The measurements seem to be well
constrained by the theoretical thresholds. Reprinted figure with permission from Bale
et al. (2009). Copyright by the American Physical Society. Bottom: The same but from
the Helios spacecraft at about 0.3 AU. From Marsch et al. (2006).

(Marsch et al., 2006; Bale et al., 2009; Marsch et al., 2009) in relation with plasma micro-
instabilities, which reveal a sensitive beta dependence. The statistics of this effect is
shown in Fig. III-6, where the measured temperature anisotropies are shown depending
on the plasma beta. This finding gives a clear indication that the observed temperature
anisotropies are largely intrinsic. This finding even more underlines the importance of
an adequate definition and treatment of the measured plasma temperatures. The apparent
higher temperature, which has been found in the model VDFs, is not the result of resonant
heating processes such as Landau damping or cyclotron-resonant wave–particle interac-
tions. Hence, this wave-related mechanism is reversible, and for a vanishing wave field
also the apparent anisotropy would disappear.

59



III Apparent temperature anisotropies

Non-resonant wave–particle interactions have been studied in the framework of quasi-
linear theory by Bourouaine et al. (2008). They demonstrate that the non-resonant heating
is more effective for lower plasma betas since the efficiency of the quasilinear diffusion is
mainly proportional to vA − v‖. The beta dependence is confirmed, and the dependence of
the parallel particle velocity in the wave frame is also found in the above considerations as
in Eq. (III-2.8) for example. However, it was possible to show that the dispersion of A/IC
waves can compensate for the reference frame shift in the Vlasov picture. Furthermore,
Bourouaine et al. (2008) found a stronger effect of the non-resonant heating on heavy ion
species, which is also consistent with this model.

In the context of the measurement effect according to Eq. (III-2.16), the determination
of temperature is not an ergodic measurement anymore if wave fields lead to a coherent
particle motion as it is the case in the solar wind. This leads to the problem that the
assumption of Markovian statistics is violated since the particle motion is additionally
affected by the deterministically time-dependent wave motion during the averaging. Non-
ergodicity in this case means that the temperature based on time averaging is different
from the temperature based on ensemble averaging. But all real temperature measure-
ments in dilute plasmas have to be done by averaging over time leading to the apparent
deformations in the distribution function shown above. An appropriate ensemble average,
however, is not accessible on the required scales in the solar wind due to the low particle
number density. Recently Hizanidis et al. (2010) found that the applicability of classical
quasilinear diffusion is not guaranteed in a coherent electromagnetic wave field. They
developed a new kinetic theory for wave–particle interactions and find time-dependent
diffusion tensors describing the velocity evolution of the VDF. This is a manifestation of
the non-ergodicity of the measurement process. Maybe a completely different description
of the microphysical behavior should be applied to these coherent cases as it is proposed
and discussed in the textbook by Elskens and Escande (2003). The wave broadening
effect could be excluded locally if, at the position and time where the measurement is
taken, enough particles are present with the local coherent speed additional to their ther-
mal speed. In all accessible solar wind plasma cases however, the number of particles,
which can be counted under constant conditions compared to φ = kz − ωt, is practically
always too small.

A shorter sampling time would bring the observation closer to a “snapshot” of the
real distribution function. A faster measurement would help avoiding heavy smearing in
velocity space due to wave activity. The comparatively small number density of particles
in the solar wind, however, requires long sampling times or larger geometry factors, which
are not affordable. The Solar Orbiter mission should provide new insights because the
improved instruments to be flown on board this spacecraft and the higher particle densities
expected closer to the Sun will permit much shorter sampling times down to 100 ms.

In this work, a monochromatic wave is assumed that leads to smearing out of the VDF
by the time-averaging process. A more realistic assumption would be a broad spectrum
of waves, which the particles have to follow and the VDF to respond to. Nariyuki (2011b)
presented such a generalization under certain constraints. Furthermore, the particle flux
will not be steady in all directions during the sampling time T . Also, a realistic space-
craft model should be applied, including the detailed time dependence of the sampling
method as well as the relative velocity of the spacecraft with respect to the solar wind. If
such appropriate models were available, the analysis of the distribution function could in
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turn provide new information about the waves such as their polarization or propagation
direction. Up to now, only waves propagating parallel to the background magnetic field
have been dealt with in the above model. To complete the analysis, also oblique wave
propagation should be taken into account.
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IV Nonlinear Alfvén/ion-cyclotron
waves in a multi-fluid plasma
description

The following chapter has been published in wide parts before submission of the thesis.
It is mainly dedicated as the basis for Chapt. V. The discussion in Sect. IV.4.4 reveals
a new aspect, which is separated from the following chapters. The copyright holder of
the original reference is Cambridge University Press. The cited parts are reprinted with
permission. The reference for the pre-published article is:

Eckart Marsch and Daniel Verscharen: On nonlinear Alfvén-cyclotron waves in multi-
species plasma, J. Plasma. Phys. 77, 385-403, 2011, doi:10.1017/S0022377810000541.

IV.1 Nonlinear Alfvén waves and their side-effects
Not only the previously discussed turbulent low-amplitude fluctuations but also large-
amplitude Alfvén waves are ubiquitous in space plasmas and particularly prominent in
the solar wind (Tu and Marsch, 1995; Bruno and Carbone, 2005). They are an essential
component of magnetohydrodynamic (MHD) turbulence in the heliosphere and known
to originate mainly in the solar coronal holes (Cranmer, 2009). As has been shown in
the ample literature and mentioned in Chapt. I, an Alfvén mother (pump) wave is prone
to parametric instability (Stenflo, 1976; Derby, 1978; Goldstein, 1978; Longtin and Son-
nerup, 1986; Brodin and Stenflo, 1988; Hollweg, 1994; Wong and Goldstein, 1986; Viñas
and Goldstein, 1991b,a; Stenflo and Shukla, 2000; Ruderman and Simpson, 2004; Stenflo
and Shukla, 2007), by which it can generate cyclotron and acoustic daughter waves that
may undergo kinetic effects (Araneda, 1998) and collisionless Landau damping (Inhester,
1990; Araneda et al., 2007). The continuous and wide interest in these waves also comes
from their astounding properties, namely that Alfveń/ion-cyclotron (A/IC) waves, like
parallel fast/whistler (F/W) waves, are nonlinear eigenmodes (Sonnerup and Su, 1967;
Stenflo, 1976) of the MHD and multi-fluid equations as shown below for propagation
along the mean magnetic field.

Nonlinearly excited (Spangler, 1989) acoustic waves appear to be common in space
plasmas as well, and density fluctuations (Tu and Marsch, 1995; Bruno and Carbone,
2005) are observed everywhere in the solar wind, although at a comparatively low fluc-
tuation level of merely a few percent. However, since compressive fluctuations can
be damped through kinetic effects like Landau damping on the thermal ions and elec-
trons, they can provide an effective dissipation mechanism for the nonlinear damping
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IV Nonlinear Alfvén/ion-cyclotron waves

(Medvedev et al., 1997) of Alfvén waves. Consequently the understanding of the cou-
pling between Alfvénic wave activity and density or charge-density fluctuations is of
paramount interest and importance in basic plasma physics but alike in its applications
to nonlinear processes in space (Stenflo and Shukla, 2007) and astrophysical plasmas.

As will be shown in this chapter, a coupled set of nonlinear second-order wave equa-
tions for the transverse magnetic field, the transverse gyromotion of any particle species
in the multicomponent plasma considered, and the related longitudinal electric field can
be derived, which together describe the wave–wave interactions and their mutual forcing.
These equations provide a physically and intuitively clear picture of the field and parti-
cle/plasma dynamics and allow one to understand the results of recent hybrid simulations
of the parametric decay of Alfvén waves and their effects on the plasma particles better.
The main aim of this chapter is to provide algebraic derivations and physical explanations.
A numerical treatment of the full equations to be derived subsequently appears promising,
yet is beyond the scope of this work.

In analytical (Araneda et al., 2007), hybrid simulation, and other numerical simulation
(Araneda et al., 2008) studies of the parametric instabilities of A/IC waves, it became ob-
vious that ion trapping (Araneda et al., 2008, 2009) in the nonlinearly driven ion-acoustic
waves and pitch-angle scattering by the transverse daughter waves were found to cause
anisotropic heating of the proton core velocity distribution and simultaneously to create
a proton beam along the mean field (Araneda et al., 2008; Valentini and Veltri, 2009).
These numerical results are in close agreement with observed kinetic features in the solar
wind and support the observation that pitch-angle scattering (Heuer and Marsch, 2007;
Marsch and Tu, 2001) is the key to understand the kinetic characteristics of thermal solar
wind protons. But only recently convincing evidence has been found for convected A/IC
waves to exist in the solar wind as discussed in the Introduction. Also simulations of
electric field spectra (Valentini et al., 2008) have shown that the short-scale termination
of solar wind turbulence is characterized by the occurrence of longitudinal electrostatic
fluctuations. The spectra thus obtained seem to be consistent with the electrostatic waves
actually measured in the solar wind (Bale et al., 2005) close to the Earth’s bow shock and,
in particular, in the ion-cyclotron range (Kellogg et al., 2006).

The present study will provide the foundation for insight into and further study of
the processes occurring at macroscopic and microscopic scales in solar wind turbulence
and thus will throw light on the related dissipation processes through kinetic cascades and
wave–particle interactions (Marsch, 2006). The nonlinear equations derived here are used
to describe an elliptically polarized Alfvén wave as a simple but non-trivial example of
their application at the end of this chapter. They form the basis for the considerations
about the dispersion relations derived in Chapt. V.

IV.2 The multi-fluid equations in conservation form

IV.2.1 Fluid equations in the wave frame

In this section, the basic multi-fluid equations (Goossens, 2003) for a plasma consisting
of electrons and various ionic species shall be recapitulated for the appropriate geometry.
The starting point are the fundamental conservation laws, and then no approximations
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with respect to the field amplitudes shall be made in order to be able to discuss and
analyze nonlinear waves and convected wave-like structures. It is advantageous to use
coordinates in the frame of reference moving with the wave, which has a normal to its
front denoted by n̂ and a propagation speed V = V n̂ in the inertial frame or center of
momentum frame that is defined below. This unit vector obeys the relation n̂2 = 1. The
coordinate in this moving frame is ξ ≡ x − Vt and all variables are assumed to depend
on space and time only through ξ. Thus, spatial and temporal derivatives in the wave
frame are reduced to derivatives with respect to ξ. Such a coordinate transformation has
been used by many authors, for example to study solitary waves in multi-ion plasmas
(Hackenberg et al., 1998) or their stability properties (McKenzie et al., 1993). Therefore,
by using co-moving coordinates, Maxwell’s partial differential equations in space and
time and similarly the fluid equations for the different species can be reduced to simpler
differential equations in terms of ξ. The continuity equation from Eq. (II-2.52), thus,
reads

∂

∂ξ
·
(
n jV j

)
= 0 (IV-2.1)

with V j being the flow velocity of species j in the moving frame V j ≡ U j − V, and n j is
its number density. With the charge denoted as q j, the total charge density is given by

%c =
∑

j

%c j =
∑

j

q jn j, (IV-2.2)

which must obey Gauß’ law:

4π%c =
∂

∂ξ
· E. (IV-2.3)

Similarly the total current density is given by

J =
∑

j

q jn jU j, (IV-2.4)

which has to obey Ampère’s law:

J =
c

4π
∂

∂ξ
× B +

1
4π

∂

∂ξ
· (VE). (IV-2.5)

The second term of Eq. (IV-2.5) is the displacement current. The conduction minus con-
vection current density may be written as

j ≡ J − %cV =
∑

j

%c jV j. (IV-2.6)

To complete the set of Maxwell’s equations, the magnetic field must be divergence free:

∂

∂ξ
· B′ = 0. (IV-2.7)
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Faraday’s induction equation requires the curl of the electric field in the wave frame to
vanish:

∂

∂ξ
× E′ = 0 (IV-2.8)

with the primed variables being defined in the wave frame. The Lorentz transformation
has been used to derive Eq. (IV-2.8) since it gives the connection between the electro-
magnetic fields in the plasma’s center of momentum frame and the moving wave frame
through the relation

E′ = E +
1
c

V × B. (IV-2.9)

Of course, the magnetic field remains invariant to lowest order in V/c, and thus B′ = B.
For later purposes, the mass density of particle kind j is defined here as % j ≡ n jm j with
the total mass density

% =
∑

j

% j. (IV-2.10)

The center of momentum velocity (for which one is free to choose U = 0) is defined as
follows:

%U =
∑

j

% jU j. (IV-2.11)

Since the individual ion and electron dynamics are of special interest, their momentum
equations are not summed up like in MHD, but instead the separate multi-fluid equations
are used. The individual momentum equation of species j from Eq. (II-2.53) can conve-
niently be quoted in conservation form in the moving frame, reading

∂

∂ξ
·
(
m jn jV jV j + p j1

)
= q jn j

(
E′ +

1
c

V j × B′
)
. (IV-2.12)

The expression V jV j means a tensor in dyadic notation and 1 the unit dyade. For the
equation of the partial pressure, one may take a simple polytropic equation of state for the
purpose of closure and thus write

p j = p j0

(
n j

n j0

)γ j

(IV-2.13)

with some constant reference density n j0 and pressure p j0. Equivalently one may consider
the (polytropic, with index γ j) entropy equation

V j ·
∂

∂ξ
ln

(
p j%

−γ j

j

)
= 0. (IV-2.14)

The set of Eqs. (IV-2.1), (IV-2.3), (IV-2.5), (IV-2.7), (IV-2.8), (IV-2.9), (IV-2.12), and
(IV-2.13) is closed and sufficient to calculate all the independent but coupled variables. In
what follows, a reduced geometry shall be assumed.
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IV.2.2 Reduced multi-fluid equations in one-dimensional geometry
A one-dimensional spatial setup, i.e., a dependence on only one spatial coordinate and
components with respect to n̂ are considered, where the unit vector may correspond to the
unit wavevector k̂ in Fourier variables. Thus, the components are generally defined as

ξ = n̂ · (x − Vt), (IV-2.15)
V j = V jn n̂ + V jt, (IV-2.16)
V jt = (1 − n̂n̂) · V j. (IV-2.17)

Transverse components are obtained by projection perpendicular to the longitudinal di-
rection. The corresponding magnetic field components are defined as Bn = n̂ · B and
Bt = (1 − n̂n̂) · B, from which it follows that n̂× Bt = n̂× B and that Bt · n̂ = 0. The fluid
equations then read as follows. For the longitudinal momentum conservation, one has

d
dξ

(
n jV jnV jn +

p j

m j

)
=

q jn j

m j

(
E′n +

1
c

(
V j × B′

)
· n̂

)
, (IV-2.18)

and for transverse momentum conservation one obtains the equation

d
dξ

(
n jV jnV jt

)
=

q jn j

m j

(
E′t +

1
c

(
V j × B′

)
t

)
. (IV-2.19)

The longitudinal magnetic field is strictly conserved and thus constant:

dB′n
dξ

= 0, (IV-2.20)

and the charge density obeys Gauß’ law

dE′n
dξ

= 4π
∑

j

q jn j. (IV-2.21)

Taking the curl of E′ after Eq. (IV-2.8) in the wave frame, one finds

n̂
d
dξ
× E′ = n̂×

dE′t
dξ

= 0 = n̂×
dEt

dξ
+ n̂×

(
1
c

V n̂×
dBt

dξ

)
, (IV-2.22)

where the last part of the equation follows from the previous Eq. (IV-2.9). In conclusion,
E′t is constant and can be set equal to zero. Using this result, the transverse electric field
is obtained through Eq. (IV-2.9), which is equivalent to writing

Et = −
1
c

V(n̂× Bt) (IV-2.23)

and makes the transverse electric field a dependent auxiliary variable being fully deter-
mined by the transverse magnetic field. For the longitudinal electric field component in
the wave frame, one has

E′n = En +
1
c

n̂ · (V n̂× B), (IV-2.24)
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which yields E′n = En, which is to be used in Gauß’ law (IV-2.21). For the one-dimensional
spatial geometry chosen here, the longitudinal current density can be written as

Jn =
c

4π
n̂ ·

(
n̂×

dB
dξ

)
+

1
4π

d
dξ

(VEn). (IV-2.25)

Since the curl of B has only transverse components, one obtains from Eq. (IV-2.25) that
the longitudinal current density in the wave frame must be strictly constant, which is given
by

jn =
∑

j

q jn jV jn =
∑

j

%c jV jn =
∑

j

q jF jn. (IV-2.26)

The individual particles fluxes F jn are conserved according to the longitudinal continuity
equation, which expresses flux conservation in the form

d
dξ

(
n jV jn

)
=

dF jn

dξ
= 0. (IV-2.27)

The transverse component of Ampère’s law including the induction current can be cast in
the form

jt =
c

4π

(
n̂×

dBt

dξ

)
+

1
4π

V
dEt

dξ
=

∑
j

q jn jV jt, (IV-2.28)

whereby V jt = U jt since V has no transverse component, but V jn = U jn − V. The right-
hand side of Eq. (IV-2.22) gives an expression for the gradient of the transverse electric
field component. It can be inserted in Ampère’s law, which thus can be written as

1
4π

V
dEt

dξ
= −

1
4πc

V2
(
n̂×

dBt

dξ

)
=

∑
j

n jq jV jt −
c

4π

(
n̂×

dBt

dξ

)
. (IV-2.29)

If (V/c)2 � 1, which will be assumed in the remainder, then the displacement current
term can be safely neglected. It is certainly needed if one wants to make the transition
to free electromagnetic waves correctly, which is not of special interest here. Therefore,
this term will not be kept anymore. The basic equation for the magnetic field, which is
Ampère’s law for the transverse component, then reads

4π
c

∑
j

n jq jV jt =
d
dξ

(n̂× Bt) . (IV-2.30)

The magnetic field is free of divergence, which means in the used geometry and variables
that Eq. (IV-2.20) is fulfilled with Bn = B′n. The last two equations together fully de-
termine the vector magnetic field, given the current density is provided. The transverse
electric field is obtained from Eq. (IV-2.23) and the longitudinal one from Gauß’ law
(IV-2.21) with En = E′n.

Quoted again, the transverse momentum equation for each species reads

d
dξ

(
n jV jnV jt

)
=

q j

m jc
n j

(
V j × B

)
t
=

q jn j

m jc

(
V jn n̂× Bt + V jt × n̂Bn

)
, (IV-2.31)
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whereby the electric field term has been written out in detail. Similarly, the longitudinal
momentum equation reads

d
dξ

(
n jV2

jn +
p j

m j

)
=

q jn j

m j

(
En +

1
c

(V j × B) · n̂
)
, (IV-2.32)

which must be supplemented, to obtain closure, by the entropy or pressure equation

d
dξ

ln
(
p j%

−γ j

j

)
= 0. (IV-2.33)

In what follows, it turns out to be convenient to use the natural spatial and temporal
scales of the multicomponent plasma, which depend on the various fluid and field param-
eters. A longitudinal gyration length for the species j is defined as

r j ≡
V jn

Ω j
=

F jn

Ω j

1
n j
, (IV-2.34)

which corresponds to the gyroradius calculated with the longitudinal velocity instead of
the perpendicular one. It is implicitly dependent on n j via the drift speed and Eq. (IV-
2.27). Another interesting length is given by the strictly constant quantity

L j ≡
Bnc

4πq jF jn
= r j

(
VA j

V jn

)2

=
1
r j

(
c
ω j

)2

. (IV-2.35)

Here the Alfvén speed V2
A j ≡ B2

n/(4πn jm j) based on the mass density % j of species j only,
the respective plasma frequency ω j, and the gyrofrequency Ω j carrying the sign of the
charge q j are introduced. Note that L j is strictly constant and its inverse sums over all
species up to zero, i.e.,

∑
j 1/L j = 0 because of the condition of zero longitudinal total

current: jn − %cV =
∑

j q jn jV jn = 0. The inverse standard Alfvén speed based on Bn is
obtained by the summation

1
V2

A

≡
∑

j

1
V2

A j

. (IV-2.36)

Concerning the compressive dynamics, it is important to note that longitudinal and trans-
verse motions are coupled through p j and r j = V jn/Ω j, i.e., through the particle number
density, when the mass continuity equation (IV-2.27) and entropy equation (IV-2.33) are
exploited.

IV.3 Wave equations
In this section, the basic equations for the fields and plasma multi-fluid parameters are
recast into the form of coupled wave equations. For that purpose, they shall not straight-
forwardly be Fourier transformed but rather rewritten by use of multiple differentiation,
in such a form that one finally obtains single “wave equations” for the electric field and
magnetic field components. Remember that in the moving frame all variables depend

69



IV Nonlinear Alfvén/ion-cyclotron waves

solely on the coordinate ξ = x · n̂ − Vt. The pressure equation is considered first again.
One may use for the species’ sound speed the standard definition

c2
j ≡

∂p j

∂% j
(IV-3.37)

and can then re-evaluate the momentum equation by use of

d
dξ

(
p j

m j

)
= c2

j
dn j

dξ
, (IV-3.38)

which together with Eq. (IV-2.27) permits to quote the longitudinal momentum equation
in the form(

c2
j − V2

jn

) dn j

dξ
=

q jn j

m j

(
En +

1
c

(V jt × Bt) · n̂
)
. (IV-3.39)

It is convenient to introduce the effective Debye length λ j of species j as follows:

1
λ2

j

≡
ω2

j

c2
j − V2

jn

, (IV-3.40)

the sum of which gives the total Debye length still including the differential drifts:

1
λ2

D

≡
∑

j

1
λ2

j

. (IV-3.41)

Both λ j and λD are not necessarily real quantities. Each species brings in its own length
scale λ j. It is also convenient to introduce the second-order wave operator (which still
parametrically depends on V via the V jn):

DE ≡
d2

dξ2 −
1
λ2

D

. (IV-3.42)

Finally, one obtains a driven wave equation for the longitudinal electric field

DEEn =
1
c

∑
j

1
λ2

j

(V jt × Bt) · n̂, (IV-3.43)

in which the transverse particle motions and electromagnetic fields show up through a
nonlinear electromotive force, which is the summed contribution of the longitudinal com-
ponents of the Lorentz forces acting on each species. This driving force acting on En

resembles a convection electric field. When being decoupled from the transverse plasma
and field dynamics, the longitudinal electric field equation just describes free electrostatic
oscillations, such as Langmuir and acoustic waves, as will be shown later.

It is useful to return to the transverse momentum equation and rewrite it by exploiting
the mass continuity equation. Then it is straightforward to derive

dV jt

dξ
=

1
r j

(
V jn

Bn
n̂× Bt − n̂× V jt

)
. (IV-3.44)
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IV.3 Wave equations

Using this equation, one can rewrite the normal component of the convection electric
field, which occurs in Eqs. (IV-3.39) and (IV-3.43), as follows:

E jn ≡
1
c

(
V jt × Bt

)
· n̂ = −

Bn

V jn

r j

c
d
dξ

(
1
2

V2
jt

)
= −

m j

q j

d
dξ

(
1
2

V2
jt

)
, (IV-3.45)

a relation which is going to be used later. If the module of the transverse plasma velocity
of species j is constant, then its convection electric field E jn vanishes. Using Ampère’s
law from Eq. (IV-2.30) and the previous Eq. (IV-3.45), one can derive by vector cross mul-
tiplication of Eq. (IV-2.30) with n̂ and subsequent scalar multiplication with Bt another
conservation law:

d
dξ

∑
j

% jV2
jt −

1
4π

B2
t

 = 0. (IV-3.46)

If the integration constant is zero, this equation expresses equipartition between the trans-
verse total particle kinetic energy and the transverse magnetic energy, like it is the case in
a classical MHD Alfvén wave.

Now the equation for the transverse magnetic field is considered. By differentiation of
Ampère’s law, one can obtain a second-order nonlinear wave equation for the transverse
magnetic field:

d2

dξ2 n̂× Bt =
4π
c

∑
j

q j

(
n j

dV jt

dξ
+ V jt

dn j

dξ

)
. (IV-3.47)

Here the skin depth or inertial length ` j = c/ω j can be used again, the sum of which gives
the total skin depth

1
`2

S

≡
∑

j

1
`2

j

, (IV-3.48)

where each species brings in its own length scale ` j. It is again convenient to introduce a
second-order wave operator

DB ≡
d2

dξ2 −
1
`2

S

. (IV-3.49)

Using this, one finally obtains a driven wave equation for the transverse magnetic field:

DBBt = −
∑

j

 Bn

V jn

1
`2

j

V jt +
1
λ2

jc
(n̂× V jt)

[
En +

1
c

(V jt × Bt) · n̂
] . (IV-3.50)

On the right-hand side, the transverse currents appear, and the longitudinal charge density
variations and related electrostatic effects show up through the nonlinear electromotive
force, which involves the longitudinal electric field. Note that this nonlinear driver con-
tains the natural length scales (density dependent) of all the species involved. Of course,
this wave equation seems, without further approximation, quite formal but elucidates the
nature of the coupling of the unforced transverse magnetic field (dynamics described by
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IV Nonlinear Alfvén/ion-cyclotron waves

the operator DB) with the compressive electrostatic fluctuations and transverse plasma
motions. When being decoupled from the plasma currents and electric-field (no charges)
dynamics, this transverse magnetic field equation just describes the finite penetration of
the magnetic field into the skin layer of the plasma and results in its exponential decline
on the length scale `S. To gain better insight into the terms contributing to Eq. (IV-3.50),
it may be rewritten also in the form

DBBt = −
∑

j

1
`2

j

 Bn

V jn
V jt +

c(En + E jn)
c2

j − V2
jn

(n̂× V jt)

 . (IV-3.51)

Similarly one can also rewrite the driven wave equation for the longitudinal electric field
in the concise form

DEEn =
∑

j

1
λ2

j

E jn, (IV-3.52)

reminding that E jn can be derived after Eq. (IV-3.45) from a potential that is given by
the transverse kinetic energy of species j. These two coupled nonlinear equations are
completed and closed by Eq. (IV-3.39) for the density and Eq. (IV-3.44) for the transverse
velocity of each species.

So far, neither any approximation nor linearization was made, but just the original
momentum equations (IV-3.39) and (IV-3.44) have been inserted into the differentiated
Ampère’s and Gauß’ laws. Therefore, the above equations still depend in a highly nonlin-
ear manner on the different number densities n j. Yet, the transition in Eqs. (IV-3.44) and
(IV-3.51) to the incompressible limit is simple because then the electrostatic nonlinear
forcing terms En and E jn vanish, and the plasma frequency ω j and the inertial length ` j,
respectively, become constants as defined by the fixed background density of species j.
This is discussed in the section after the next one.

IV.4 Eigenmodes and driven waves

IV.4.1 Nonlinear Alfvén/ion-cyclotron waves
In order to maintain the linear form of the original equations, it is convenient to intro-
duce new variables relating to left- and right-hand polarized fields, which are defined as
follows:

B±t = Bt ± (n̂× Bt) , (IV-4.53)

V±jt = V jt ±
(
n̂× V jt

)
. (IV-4.54)

These field variables are orthogonal, i.e., B±t ·B
∓
t = 0 and V±jt ·V

∓
jt = 0. By taking the cross

product of Eqs. (IV-2.30) and (IV-3.44) with the unit vector n̂, one obtains after some
algebra the equations of motion for the circular transverse variables:

dB±t
dξ

= ±
4π
c

∑
j

%c jV∓jt, (IV-4.55)

72



IV.4 Eigenmodes and driven waves

dV±jt
dξ

= ∓
1
r j

(
V jn

Bn
B∓t − V∓jt

)
. (IV-4.56)

First, nonlinear incompressible solutions are considered now. Since En = 0, conse-
quently quasineutrality strictly holds,

∑
j q jn j = 0. The velocity fields and magnetic field

must have constant modules and be aligned so that after Eq. (IV-3.45) their respective
vector cross product, and thus also E jn vanishes. As n j, r j, V jn, c j, and ω j then all are
constant, one can solve the resulting linear set Eqs. (IV-4.55) and (IV-4.56) by Fourier
transformation, here indicated by the tilde sign, without putting any limitations on the
amplitudes of B±t or V±jt other than from Eq. (IV-3.46), which implies that the magnetic
field amplitude is also constant. As usually, Fourier transform means that d/dξ → ik, and
thus one can invert the transverse momentum equation (IV-3.44), which yields with the
normalized wavevector κ j ≡ kV jn/Ω j the complex vector relation

Ṽ jt(k) =
V jn

Bn

(
1 − κ2

j

) (
B̃t(k) + iκ j n̂× B̃t(k)

)
. (IV-4.57)

This result can be inserted into the Fourier transform of Eq. (IV-3.51) to obtain the alge-
braic wave equation(

k2 +
1
`2

S

)
B̃t(k) =

∑
j

1
`2

j

1
1 − κ2

j

(
B̃t(k) + iκ j(n̂× B̃t(k))

)
, (IV-4.58)

which may also be written ask2 −
∑

j

1
`2

j

κ2
j

1 − κ2
j

 B̃t(k) = i

∑
j

1
`2

j

κ j

1 − κ2
j

 (n̂× B̃t(k)), (IV-4.59)

and which yields, by taking the vector cross product of Eq. (IV-4.59) with n̂ and by re-
solving the resulting two equations, the two dispersion relations describing left- and right-
hand polarized waves as follows:

k2 =
∑

j

(ω j

c

)2 ±κ j

1 ∓ κ j
=

∑
j

%̂ j

(
Ω j

VA

)2
±κ j

1 ∓ κ j
(IV-4.60)

with the fractional mass density %̂ j = % j/%. Eq. (IV-4.60) is nothing else but the standard
dispersion relation for the Alfvén/ion-cyclotron (and fast/whistler) waves in a multicom-
ponent plasma with the differential drifts contained in V jn and for parallel propagation
(see e.g., Davidson, 1983), yet which applies here to arbitrarily large wave amplitudes.
Apparently the wave frequency is obtained by the Doppler shift formula ω = kV , where
V is hidden in V jn = U jn − V , i.e., in κ j ≡ kV jn/Ω j. Once the wavevector k = k(V) is
known, the wave frequency is obtained as a function of the phase speed V .

The long-wavelength limit of Eq. (IV-4.60) is considered, which when being expanded
to second order in κ j reads

1 =
∑

j

%̂ j

(
Ω j

kVA

)2 (
±κ j

) (
1 ± κ j

)
, (IV-4.61)
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where the first term of the sum vanishes since
∑

j

(
ω2

j/Ω j

)
V jn = 0 because of the quasi-

neutrality condition, i.e., %c = 0 in Eq. (IV-2.2) and the zero-longitudinal-current con-
straint (IV-2.26). The second term then yields

1 =
∑

j

%̂ j

(U2
jn − 2U jnV + V2)

V2
A

. (IV-4.62)

As a vanishing bulk speed U = 0 may be assumed, the center-of-momentum condition
means that

∑
j %̂ jU jn = 0, and thus one can solve for the phase speed in the center of

momentum frame and obtains

V = ±VA

√√
1 −

∑
j

%̂ j

(
U jn

VA

)2

. (IV-4.63)

This is the phase speed of an Alfvén wave in a multi-component plasma including field-
aligned drift motions leading to a slowing down of the phase speed.

Now the incompressible A/IC wave shall be derived without resort to the Fourier
transformation but instead recoursing on Eq. (IV-3.45). Since E jn = 0, each velocity
vector and magnetic field must be aligned, which generally implies that V jt = a jBt. This
can be inserted in Eq. (IV-3.44) to obtain

dV jt

dξ
=

1
r j

(
V jn

Bna j
− 1

)
n̂× V jt. (IV-4.64)

Twofold differentiation yields the simple harmonic oscillator equation for the gyromotion:

(
d2

dξ2 + k2
j

)
V jt = 0 (IV-4.65)

with the squared wavevector defined as

k2
j =

1
r2

j

(
V jn

Bna j
− 1

)2

. (IV-4.66)

Since all species must spatially oscillate in the same way, the wavevector must not depend
on the index j, i.e., one can put k j = ±k, which yields with κ j = kr j two possible solutions
for the desired proportionality coefficient:

a j =
V jn

Bn

1
1 ± κ j

. (IV-4.67)

Knowing the coefficient a j, it can be used in the wave equation (IV-3.51) without electric
fields yielding another harmonic oscillator equation:(

d2

dξ2 + q2
)

Bt = 0, (IV-4.68)

where the squared wavevector q2 is an abbreviation for exactly the same sum as appear-
ing on the right hand side of Eq. (IV-4.60). Since all velocities and the magnetic field
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IV.4 Eigenmodes and driven waves

are aligned, the wavevector q must be equal to k, and thus one again obtains the same
dispersion relation as in the previous Fourier analysis. Finally, the polarization relation
(with the plus sign for incompressible A/IC and minus for F/W waves) reads

V jt =
V jn

Bn

1
1 ± κ j

Bt. (IV-4.69)

With this result, the conservation law (IV-3.46) can be evaluated further, and after some
algebra the result is obtained that

d
dξ

∑
j

%̂ jV2
jn

1(
1 ± κ j

)2 − V2
A

 = 0. (IV-4.70)

Note that the dispersion relation (IV-4.60) can also be cast into the form

V2
A =

∑
j

%̂ jV2
jn

∓κ j

κ2
j

(
1 ± κ j

) , (IV-4.71)

which facilitates a comparison with the previous equation. Expansion of Eqs. (IV-4.70)
and (IV-4.71) to lowest order in κ j = kr j yields the MHD dispersion relation (IV-4.62),
i.e., in this case, the conservation equation (IV-4.70) has a zero integration constant and
simply expresses equipartition between kinetic and magnetic energy densities. This is not
true any more if effects due to the finite gyromotion are considered.

IV.4.2 Linear electrostatic waves
Pure linear electrostatic waves are discussed now, which are obtained by taking the trivial
solutions V jt = Bt = 0 of the wave equation (IV-3.51), which also implies that E jn = 0.
Then the linearized electrostatic wave equation (IV-3.52) simply reads DEEn = 0. After
Fourier transformation, one obtains that (k2 + λ−2

D )Ẽn(k) = 0, which explicitly yields the
dispersion relation

k2 =
∑

j

ω2
j(

U jn − V
)2
− c2

j

. (IV-4.72)

Only the case of zero drifts may be considered here, i.e., U jn = 0 and a simple electron-
proton plasma. Then one always finds two solutions for V2 from the equation

k2 =
ω2

e

V2 − c2
e

+
ω2

p

V2 − c2
p
. (IV-4.73)

In the long-wavelength limit (k → 0), the diverging phase speed VL(k) = ωP/k corre-
sponds to the Langmuir wave with the total plasma frequency being defined by ω2

P ≡

ω2
e + ω2

p. For the ion-acoustic or sound wave, the constant speed is found as

VS =

√
ω2

ec2
p + ω2

pc2
e

ω2
P

=

√
kB(γeTe + γpTp)

me + mp
. (IV-4.74)

75



IV Nonlinear Alfvén/ion-cyclotron waves

The general solution in terms of frequency follows from the biquadratic equation

ω4−ω2
(
ω2

e + ω2
p + (cek)2 + (cpk)2

)
+ (cek)2(cpk)2 +ω2

e(cpk)2 +ω2
p(cek)2 = 0. (IV-4.75)

In the short-wavelength limit (k → ∞), two solutions are obtained corresponding to the
proton-acoustic wave with ω ≈ kcp or electron-acoustic wave with ω ≈ kce. Both modes
are usually strongly Landau damped if a thermal Vlasov description of the plasma is
used. The sound wave, however, can exist since me � mp and thus VS ≈

√
kBγeTe/mp for

Te > Tp so that strong proton Landau damping can be avoided.
For a multi-component plasma with drifts, the structure of the eigenmodes becomes

correspondingly richer as each species contributes its own plasma frequency and thermal
speed as well as drift speed. In the presence of a compressive transverse wave, these
modes all become coupled and are driven by the nonlinear ponderomotive electric fields
E jn according to Eq. (IV-3.52). Similarly the transverse eigenmodes defined by Eq. (IV-
4.60) are driven according to Eq. (IV-3.51) by the longitudinal electric field En and the
combined action of the various E jn.

IV.4.3 Compressive Alfvén/ion-cyclotron–acoustic waves
In this section, the coupling between the nonlinear electromagnetic A/IC waves and the
electrostatic modes is considered. It is important to recall that no assumptions, such as
incompressibility, had to be made as to derive the wave equations (IV-3.51) and (IV-3.52).
Also the transverse momentum equation (IV-3.44) shall be rewritten, which describes the
gyromotion as a second-order wave equation. Since the longitudinal gyration scale r j

depends on the density according to Eq. (IV-2.34), its differentiation has to be considered.
If the magnetic field is neglected for a moment, then one gets for the transverse motion
an equation in the form d2

dξ2 +
1
r2

j

−
d ln n j

dξ
d
dξ

 V jt = 0. (IV-4.76)

Mathematically speaking, this is the well known equation for a harmonic oscillator with
an amplitude that may vary exponentially in ξ at a scale set by the density gradient length.
For the differential operator yielding harmonic oscillations (first two terms of Eq. (IV-
4.76)), the symbolDV j is introduced to be used below. For the density gradient term, one
may approximately write

d
dξ

ln n j =
d
dξ

ln (n̄ j + δn j) ≈
1
n̄ j

d
dξ
δn j =

δn j

n̄ j

d ln δn j

dξ
(IV-4.77)

with the averaged constant background density n̄ j. If the gradient is positive (negative),
and therefore the density increases (decreases), the longitudinal scale, and thus the am-
plitude of V jt will decrease (increase) correspondingly. However, as long as the relative
density variation remains small, a few percent say, this change will occur on a much larger
scale than r j, namely L̄ j ≡ r jn̄ j/δn j. If the density fluctuates about zero, the net effect of
the density modulation on V jt will remain comparatively small.

For the sake of consistency in the remainder of this section, this density-induced pos-
sible amplitude variation of V jt according to Eq. (IV-4.76) will be fully retained, but later
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on the density variations will be neglected and all density-dependent parameters consid-
ered to be fixed at their background values without denoting them explicitly by a barred
symbol. Yet, remember that the essential and lowest-order variations of the densities of
all species have been considered and already taken care of in Gauß’ law and the dynamics
of En, which indeed is of order unity as the background electric field is zero and similarly
in Ampère’s law through the appearance of the electric fields En and E jn.

By using conserved or constant quantities, normalized variables are introduced now
such that u jt ≡ V jt/V and bt ≡ Bt/Bn. Similarly normalized electric fields are introduced
as follows:

e jn ≡
cE jn

BnV
, en ≡

cEn

BnV
. (IV-4.78)

According to Eq. (IV-3.51), the field e jn is just an abbreviation for the gradient of a po-
tential given by the transverse kinetic energy, for which one has the normalized form

e jn = −
V
Ω j

d
dξ

(
1
2
u2

jt

)
. (IV-4.79)

Using the same normalization for the transverse electric field from Eq. (IV-2.23), one
simply obtains that

et = −(n̂× bt), (IV-4.80)

which is fully determined by the solution for bt. Like et, the charge densities %c j are now
merely auxiliary quantities and obtained from an integration of the previous equation (IV-
3.39), which in the new variables can be written as

r j
d
dξ

ln %c j = (en + e jn)
VV jn

c2
j − V2

jn

(IV-4.81)

and then be formally integrated with the result

%c j(ξ) = q jn̄ j exp

VΩ j

ξ∫
ξ̄

dξ′
en(ξ′) + e jn(ξ′)
c2

j(ξ′) − V2
jn(ξ′)

 . (IV-4.82)

As an outcome of all the above considerations, the resulting set of fluid wave equa-
tions can now be summarized. Firstly, for each species’ transverse motion, a forced and
amplitude-modulated harmonic oscillator equation is obtained reading

DV ju jt =

 V2

c2
j − V2

jn

(en + e jn)
du jt

dξ
+

1
r j

bt +
d
dξ

n̂× bt

 Ω j

V
. (IV-4.83)

Secondly, one can rewrite the mutually driven and coupled wave equations for the longi-
tudinal electric field and transverse magnetic field in the concise forms

DEen =
∑

j

1
λ2

j

e jn, (IV-4.84)
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DBbt = −
∑

j

1
`2

j

 V
V jn

u jt +
V2

c2
j − V2

jn

(en + e jn)(n̂× u jt)

 . (IV-4.85)

It is worth to remember that, up to this point of the algebraic derivations, no lin-
earization has been made, and the density variations have been entirely accounted for.
Eqs. (IV-4.81) or (IV-4.82) permit to calculate the density of species j completely through
the line integral over the electric fields that appear in the exponential Boltzmann factor
in Eq. (IV-4.82). So the density is a functional of the electric potentials. However, this
dependence of n j on ξ may now, without loss of essential physics, be neglected if the
density fluctuations can be assumed to remain small (i.e., MHD shocks (Goossens, 2003)
or electrostatic shocks and double layers are not considered here). Thus, all scales and
parameters such as V jn, c j, ω j, λ j, ` j, and r j, which have non-vanishing mean values, will
from here on be calculated by use of the background number density n̄ j as well as the
conditions for quasi-neutrality and zero longitudinal current and the center-of-momentum
condition. All compressive effects are described by the longitudinal electric field en in
this approximation. Consequently the nonlinear equations (IV-4.83), (IV-4.84), and (IV-
4.85) form a closed set, which yet will generally require a numerical treatment to obtain
solutions.

Note that, in each of these equations, the spatial variations are determined by the nat-
ural scales of the dynamics of the involved field variables, i.e., by the longitudinal scale
r j for the transverse motions of the particles, their Debye lengths λ j for the charge fluc-
tuations, respectively, and their skin depths ` j for the magnetic field penetration into the
plasma driven by the transverse currents. Differential motion of the species j might be
important and is therefore included in its drift speed V jn. Its effect on the parametric in-
stabilities has been studied, addressing the modulational and decay instability of Alfvén
waves by considering streaming of alpha particles in the solar wind (Hollweg et al., 1993).
If there are no differential motions along the mean field in the background plasma, i.e., if
for all j the normal velocity U jn = 0, then V jn = −V , and thus the longitudinal gyration
scale simply becomes r j = −V/Ω j, which by its definition is not for each species a positive
definite quantity as the gyrofrequency carries the sign of the charge of the species consid-
ered. The factor in front of the electric field term in the above Eqs. (IV-4.83) and (IV-4.85)
thus changes in the drift-free case to 1/(1−(c j/V)2), which becomes 1/(1−β j) for V = VA

with the species plasma beta being here defined as β j = (c j/VA)2. For the parallel prop-
agation considered here, only this factor contains the thermal speed, and therefore this
factor simply becomes unity for a cold multi-species plasma without drifts.

IV.4.4 Electric field fluctuations driven by an elliptically polarized
Alfvén wave

In this section, electrostatic waves are considered, which can be generated by an ellip-
tically polarized Alfvén wave, which for the sake of simplicity is assumed to be given.
Then the effect, this wave has in generating compressive fluctuations driven by the spatial
variation of the kinetic energy of the particles moving coherently in the same wave mag-
netic field, shall be studied. The starting point is Eq. (IV-4.84), which can with the help of
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Eq. (IV-4.79) be written as a driven oscillator equation for the longitudinal electric field:

DEen = −
∑

j

V
2Ω j

1
λ2

j

du2
jt

dξ
. (IV-4.86)

Before the wave fields are written down, a proper coordinate system shall be defined.
For the right-handed orthogonal system, the unit vectors n̂ = e3 = e1 × e2, e1 = e2 × n̂,
and e2 = n̂ × e1 are chosen. The wave may have a wavenumber k, and its normalized
(dimensionless) magnetic field reads

bt = b1e1 cos (kξ) + b2e2 sin (kξ). (IV-4.87)

Similarly the related flow velocity of species j is given by

u jt = v j1e1 cos (kξ) + v j2e2 sin (kξ). (IV-4.88)

The associated electric field according to Eq. (IV-4.86) reads

e jn =
kV
Ω j

cos (kξ) sin (kξ)
(
v2

j1 − v
2
j2

)
. (IV-4.89)

On the other hand, using the original definition (IV-3.45) of this field, the result

e jn = cos (kξ) sin (kξ)(b2v j1 − b1v j2) (IV-4.90)

is obtained, which, by comparison of the last two equations, determines the particle ve-
locity components as v j1,2 = b2,1Ω j/(kV). Finally, one has

e jn =
Ω j

2kV
sin (2kξ)

(
b2

1 − b2
2

)
, (IV-4.91)

which can be inserted in Eq. (IV-4.84). The forced oscillator equation

d2en

dξ2 + q2en = ε
sin (2kξ)

2k
(IV-4.92)

is obtained. The Debye length λD was defined in Eq. (IV-3.41). As an abbreviation, the
complex wavevector q ≡ i/λD is used, and furthermore the forcing amplitude is introduced
as

ε =
∑

j

1
λ2

j

Ω j

V
(b2

1 − b2
2), (IV-4.93)

which vanishes for a circularly polarized wave with b1 = b2 but is non-zero otherwise.
The solution of Eq. (IV-4.92) can be obtained by using the Green’s function method and
Fourier transformation. The Green’s function G(ξ) for the differential operator in Eq. (IV-
4.92) has to fulfill the general condition

d2G
dξ2 + q2G = δ(ξ). (IV-4.94)
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In Fourier space, it is given by

G =
1
√

2π

1
q2 − k2 . (IV-4.95)

This function can be back-transformed to real space according to

G(ξ) =
1

2π

∫
eikξ

q2 − k2 dk =
1
q

[
eiqξ − e−iqξ

2i

]
=

sin(qξ)
q

, (IV-4.96)

where the Cauchy integration according to the residue theorem is used at the two poles of
the integrand at k = ±q.

The convolution integral of the forcing term with the Green’s function then yields
the solution depending upon ξ in the form of another convolution integral, which can be
calculated analytically with the (in q symmetric) result

en(ξ) = G(ξ) ∗ ε
sin(2kξ)

2k
=

ε

2kq

ξ∫
0

sin
(
q(ξ − ξ′)

)
sin(2kξ′)dξ′

=
ε

4kq

(
sin (2kξ) + sin (qξ)

2k + q
−

sin (2kξ) − sin (qξ)
2k − q

)
. (IV-4.97)

Eq. (IV-4.97) solves the original Eq. (IV-4.92), which can easily be shown by straight-
forward differentiation. By definition, the square of the wavevector q = q(V) is given
by the right-hand side of the electrostatic dispersion relation (IV-4.72). Therefore, q is a
real number for an appropriate choice of V . The solution is then related naturally with
the electrostatic eigenmodes, i.e., the sound, ion-acoustic, and Langmuir waves, which
was already discussed in a previous section. The overall solution (IV-4.97) apparently
describes forced compressive (charge) waves occurring as electrostatic eigenmodes and
a superposed electric wave at the second harmonic of the transverse Alfvén pump wave,
the anisotropy (due to its elliptic polarization) of which determines the amplitude of these
driven longitudinal electric field oscillations. L’Hôpital’s rule allows one to determine the
behavior in the resonant cases. For the resonances (q→ ±2k), one finds

en(ξ) = −
ε

2q2

[
ξ cos(qξ) −

sin(qξ)
q

]
, (IV-4.98)

which corresponds to the amplitude of the compressible oscillation growing or decaying
with ξ, i.e., an instability in space. The spatial evolution of en for the resonant and the
non-resonant case is shown in Fig. IV-1.

IV.5 Discussion
Starting from the multi-fluid equations of a warm plasma, the coupled wave equations
for the particles’ gyromotions about the mean field, for the transverse magnetic field,
and for the longitudinal electric field have been derived and investigated. The nonlinear
coupling is a natural outcome of the electromotive forces arising from compressive A/IC
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IV.5 Discussion

Figure IV-1: Non-resonant and resonant evolution of en in an elliptically polarized wave
field. The parameters are ε = 0.3 and q = 3. In the non-resonant case, the wavenumber
of the background wave is set to k = 1, in the resonant case to k = q/2 = 3/2. The linear
growth of the amplitude is visible. The non-resonant wave does not grow.

waves and can be derived from a potential that is just the kinetic energy associated with
the gyromotion in the electromagnetic wave. Electric waves are, thus, excited, which can
react back on the pump wave by nonlinear effects through terms in its own wave equation,
which contains the electric field explicitly. Known limiting cases are reproduced such as
the standard linear electric waves like the ion-acoustic or Langmuir waves of course and
for the transverse magnetic field the usual two branches of A/IC and F/W waves in case
of a two-component electron-proton plasma or many similar related branches in the case
of a multi-ion plasma. The main result of this chapter is the closed set of second-order
wave equations (IV-4.83), (IV-4.84), and (IV-4.85), from solutions of which the transverse
electric field and charge densities of each species can be derived as auxiliary quantities.
To find their nonlinear solutions is left as a future task, which will presumably require a
numerical treatment. The equations are studied in Chapt. V in the frame of a perturbation
analysis.

The structure of the equations already permits to derive some qualitative conclusions
and to treat some simple applications (like the effect of elliptical polarization) analytically.
Further study is certainly required to corroborate them quantitatively. Apparently the
weakly-compressive large-amplitude A/IC waves can drive electric fluctuations along the
mean field, essentially of the ion-acoustic type, and thus will naturally produce an electric
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IV Nonlinear Alfvén/ion-cyclotron waves

field that can accelerate particles and will lead to heating via Landau damping in a kinetic
Vlasov description. By excitation of acoustic waves, the amplitude of the driver wave
will be diminished until a dynamic wave–wave equilibrium is reached. Similar processes
are clearly found in direct numerical simulations (Araneda et al., 2008, 2009; Valentini
et al., 2008; Valentini and Veltri, 2009). The third-order coupling terms in Eqs. (IV-4.83)
and (IV-4.85) correspond to such three-wave processes in Fourier space and therefore will
lead to cascading of spectral energy and broadening of the original spectrum of the pump
wave, which is not necessarily monochromatic. This way, a new path towards micro- and
macro-turbulence could be opened, and a non-MHD cascade is rendered possible by these
compressive A/IC–acoustic wave interactions.
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V Compressive high-frequency waves
riding on an Alfvén/ion-cyclotron
wave in a multi-fluid plasma

The following chapter has been published in wide parts before submission of the thesis.
The copyright holder of the pre-publication is Cambridge University Press, and the cited
parts are reprinted with permission. The reference of the published article is:

Daniel Verscharen and Eckart Marsch: Compressive high-frequency waves riding on
an Alfvén/ion-cyclotron wave in a multi-fluid plasma, J. Plasma Phys. 77, 693-707, 2011,
doi:10.1017/S0022377811000080.

V.1 Resonances, compressibility, and parametric decay
of nonlinear Alfvén waves

The plasma waves in the solar wind can be understood as riding on a varying back-
ground due to the broad spectrum of different wave modes. Here weakly-compressive
high-frequency plasma waves are studied, which are superposed on a large-amplitude
Alfvén wave in a multi-fluid plasma consisting of protons, electrons, and alpha particles
like in the solar wind. The term ‘high-frequency wave’ refers to the wavenumber regime
around the inverse ion inertial length `p in contrast to the non-dispersive low-frequency
MHD limit.

It is worth to repeat from Chapt. II that there are two important kinetic resonances that
can lead to dissipative heating of a plasma by wave–particle interactions with waves that
propagate parallel to the background magnetic field. The first is Landau resonance, re-
quiring a parallel wave electric field, and the second is cyclotron resonance (e.g., Akhiezer
et al., 1975; Hollweg and Isenberg, 2002), which couples to the perpendicular wave elec-
tric field. The condition for Landau resonance is given by kv‖−ω = 0, where k denotes the
parallel wave number, v‖ the particle velocity in the direction parallel to the background
magnetic field, and ω the wave frequency. This effect can lead to parallel heating of the
particles (Lehe et al., 2009). In a low-beta plasma such as the solar corona, it is difficult to
fulfill this condition if the wave phase speed is close to the Alfvén speed because vth � VA

(Chandran et al., 2010a).
The cyclotron resonance is connected with the transverse electromagnetic field, and

the resonance condition is given by kv‖ − ω − nΩ j = 0, where n is an integer and Ω j is
the particle gyrofrequency (only n = ±1 is allowed in the case of parallel propagation).
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V Compressive high-frequency waves

This resonance can lead to pitch-angle diffusion, which is indeed observed in solar wind
protons (see Chapt. I). The perpendicular fluctuations must have high wavenumbers in the
range of the inverse gyroradius to fulfill the resonance condition. Alfvén/ion-cyclotron
(A/IC) waves are possible candidates for waves that can undergo this kind of interaction.
However, their origin and evolution are not fully understood, even though their existence
in the solar wind was recently proven. Indirect evidence for Alfvén-cyclotron heating was
already referred to by several authors beforehand from simulations (Gary et al., 2005b)
and proton in-situ observations (Marsch and Tu, 2001; Kasper et al., 2008).

The role of weakly-compressive waves in the different phenomena of plasma heating
is currently under wide discussion (Tu and Marsch, 1994; Chandran, 2005; Bale et al.,
2005; Kellogg et al., 2006; Chandran et al., 2009; Verdini et al., 2010). Especially, kinetic
Alfvén waves (KAWs) have come into the focus of the debate because they are both
transverse and compressive. However, several problems also arise from this interpretation
of solar wind fluctuations, especially at high wavenumbers (Podesta et al., 2010).

It has also been known for a long time that compressibility plays a major role in the
context of the parametric instabilities of large-amplitude waves (Galeev and Oraevskii,
1963; Goldstein, 1978; Lashmore-Davies and Stenflo, 1979; Stenflo and Shukla, 2007).
These instabilities are always connected with compressive components of the daughter-
wave products. The subsequent analysis is based on the previous derivations in Chapt. IV,
which treat the density fluctuations in terms of the longitudinal electrostatic field and a
ponderomotive electric field. The relation between density fluctuations and ponderomo-
tive forces in the context of parametric instabilities was discussed before by Sharma and
Shukla (1983) for many different wave modes. However, the work of those authors was
focused on frequencies around the upper-hybrid frequency, which is much higher than
the frequencies considered here and hence beyond the scope of this work. Electromag-
netic circularly polarized waves can also be generated from the high-frequency side. For
example, Murtaza and Shukla (1984) discussed how an upper-hybrid wave can generate
such waves in a two-fluid model. For this purpose, electrostatic effects and ponderomo-
tive forces had to be included in the model describing the high-frequency pump wave.
The importance of electrons in the decay of compressional Alfvén waves was discussed
more recently by Brodin et al. (2008) in terms of the Hall-MHD description. These au-
thors found a new decay channel for oblique daughter waves and discovered that the wave
decay products could grow on scales around the ion inertial length. They also discussed
the role of kinetic Alfvén waves as decay products and their possible ability to heat the
plasma.

The present chapter concentrates on purely parallel wave propagation, but the role
of both electrostatic and electromagnetic components of the wave modes in a multi-fluid
plasma are considered. The nonlinear coupling of the longitudinal electrostatic field and
of the ponderomotive electric fields with the transversal electromagnetic wave fields is the
main reason for the significant changes that are found in the mode structure and polariza-
tion. However, the modified wave modes and the possible decay products are, due to the
given geometry, forced to propagate along the mean field which is determined by the con-
stant longitudinal magnetic field component. Hence, genuine oblique wave propagation
is not considered.

The multi-fluid wave equations are solved by using an eigenvalue and eigenvector
method that opens a new and unusual way of analyzing the pump-wave decay and disper-
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sion properties of the resulting plasma waves. This approach also provides the dispersion
and polarization properties of these waves in a comprehensible and direct way.

As mentioned before, it is known for a long time that the solar wind is permeated by
waves and structures on many different scales. But also in the solar corona, low-frequency
waves in the magnetic field were recently observed by remote-sensing techniques (De
Pontieu et al., 2007; McIntosh et al., 2011). Therefore, it is obviously necessary to assume
an inhomogeneous background magnetic field in theory and modeling. The natural choice
for such a field might be one consisting of low-frequency Alfvén waves.

Consequently the scenario assumed for the present theoretical treatment is the fol-
lowing. A low-frequency Alfvén/ion-cyclotron (A/IC) wave is assumed to provide the
non-uniform background magnetic field and corresponding background velocity field ac-
cording to the wave polarization relation. In the flank of this wave, a linear dispersion and
stability analysis is performed for a three-component plasma consisting of protons, elec-
trons, and alpha particles, whereby drifts among these species with respect to each other
can also be included. The situation is sketched in Fig. V-1. The applied multi-fluid model
allows one to consider transverse waves with an intrinsic weakly-compressive component.
If transverse dispersion branches at wavenumbers close to the inverse ion gyroradius are
found, then these can be made responsible for possible perpendicular ion heating. Their
compressive electrostatic components can, in turn, explain parallel heating. Since the ob-
servations indicate large perpendicular temperature anisotropies in the corona (Antonucci
et al., 2000; Kohl et al., 2006) as well as in fast solar wind (Marsch, 2006), the assump-
tion of weak compressibility seems to be justified empirically and is also consistent with
the measured density fluctuation level (Tu and Marsch, 1995).

V.2 Theoretical approach and numerical treatment

V.2.1 The multi-fluid model

Following the detailed derivations in Chapt. IV, the subsequent set of second-order or-
dinary coupled differential equations of the relevant fields for parallel propagation is ob-
tained, in which case Bn is a conserved quantity, and hence the fields can be made dimen-
sionless as follows: u jt ≡ V jt/VA and bt ≡ Bt/Bn. Similarly the normalized longitudinal
electric fields are defined as follows:

e jn ≡
cE jn

BnVA
, en ≡

cEn

BnVA
. (V-2.1)

Length scales can all be normalized in units of the proton inertial length scale `p =

c/ωp. In the following, all velocities are normalized to the proton Alfvén speed VA =

Bn/
√

4πnpmp and then denoted by lower case letters. This choice is different than the
normalization in Chapt. IV, but it is more appropriate here because the wave phase speed
V will be used as a free parameter for different evaluations of the wave equations. There-
fore, it is better to normalize with a fixed velocity. The natural choice for such a velocity
is the proton Alfvén speed. In this normalization system, frequencies are normalized to
the proton gyration frequency Ωp, which is equal to VA/`p. In the subsequent chapter, Ω j
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V Compressive high-frequency waves

Figure V-1: Geometry of the scenario. On a constant magnetic field Bn along the axis of
propagation k0, a low-frequency Alfvén wave (LFAW) propagates and generates the trans-
verse background fields Bt0 and V jt0 = −ζBt0 with ζ = const. > 0. Weakly-compressive
high-frequency waves (WCHF) are superposed in the flank of the Alfvén wave.

is used as the normalized gyration frequency of species j. Also the original definition

e jn =
1
c

(
u jt × bt

)
· n̂ (V-2.2)

is recalled. Using the same normalization for the transverse electric field, one obtains

et = −v(n̂× bt), (V-2.3)

which is fully determined by the solution found for bt, which means it is a dependent
auxiliary field. Completing the required definitions, the differential operator

DV j ≡
d2

dξ2 +
1
r2

j

(V-2.4)

shall be quoted, where the spatial coordinate along Bn is defined as ξn = ξ, which will
be used continuously in the subsequent chapter. After these preparations, one can state
the differential equations as derived from the equations for parallel wave propagation.
Firstly, for each particle species with respect to its transverse motion, the forced harmonic
oscillator equation is given by

DV ju jt =

en + e jn

c2
j − v

2
jn

du jt

dξ
+

bt

r j
+ n̂×

dbt

dξ

 Ω j (V-2.5)
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in this normalization. Secondly, one can rewrite the mutually coupled and driven wave
equations for the transverse magnetic field as

DBbt = −
∑

j

1
`2

j

 u jt

v jn
+

(en + e jn)
c2

j − v
2
jn

(n̂× u jt)

 (V-2.6)

and the longitudinal electric field

DEen =
∑

j

e jn

λ2
j

. (V-2.7)

All involved parameters such as v jn, c j, λ j, ` j, and r j have non-vanishing mean values as
the density n j is always non-zero, and its fluctuations throughout are assumed to be small.
Note that Ω j is strictly constant as it depends on the conserved quantity Bn. The other
parameters can be calculated by use of the background number density n̄ j as well as by
exploiting the conditions for quasi-neutrality, zero longitudinal current, and zero center-
of-momentum velocity (see Chapt. IV). Compression is accounted for solely by the longi-
tudinal electric field in this approximation. This is the major advantage of this multi-fluid
system.

Furthermore, the multi-fluid approach incorporates the natural scales of the plasma
and therefore permits the treatment of dispersive waves in the high-frequency range,
which is not accessible by MHD considerations. The compressibility can be accounted
for in a comparably lucid way through the electric field variables en and e jn. The nonlin-
ear equations (V-2.5) through (V-2.7) form a closed set of differential equations, which
describe the leading-order compressive effects via en(ξ). Before these field equations are
written down in their respective components, an appropriate coordinate system is chosen,
which is the same as in Sect. IV.4.4. The normalized (dimensionless) transverse magnetic
field is

bt = b1(ξ)e1 + b2(ξ)e2. (V-2.8)

Similarly the transverse flow velocity of any species j is given by

u jt = v j1(ξ)e1 + v j2(ξ)e2. (V-2.9)

The dimensionless particle speed along the direction of propagation in the fixed coordi-
nate system (not in the co-moving frame) is denoted by u jn. If there are no differential
drift motions along the mean magnetic field in the background plasma, i.e., if for all j
one has u jn = 0, then v jn = −v, and hence the longitudinal gyration length becomes
r j = −v/Ω j, which by definition is not a positive-definite quantity as the gyrofrequency
carries the sign of the charge of the species considered. Using Eq. (V-2.8) and Eq. (V-2.9),
the longitudinal electric field associated with species j simply reads

e jn = v j1b2 − v j2b1. (V-2.10)

It is known from Chapt. IV that e jn can also be expressed as the gradient of a potential,
which is given by the transverse kinetic energy of species j and then has the form

e jn = −
1

Ω j

d
dξ

(
1
2
u2

jt

)
(V-2.11)
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in this normalization. In terms of components, the relation

−
1

Ω j

dv j1,2

dξ
= ±b2,1 (V-2.12)

can be found from a comparison of Eq. (V-2.10) with Eq. (V-2.11), which can be used
to replace the first derivative of the transverse velocity by the magnetic field. Written out
explicitly, the set of differential equations in the new dimensionless normalization finally
reads as follows:

d2v j1,2

dξ2 +
v j1,2

r2
j

=

b1,2

r j
∓

db2,1

dξ
∓

en + e jn

c2
j − v

2
jn

b2,1

 Ω j, (V-2.13)

d2b1,2

dξ2 −
b1,2

`2
S

= −
∑

j

1
`2

j

v j1,2

v jn
∓

en + e jn

c2
j − v

2
jn

v j2,1

 , (V-2.14)

d2en

dξ2 −
en

λ2
D

=
∑

j

1
λ2

j

(v j1b2 − v j2b1). (V-2.15)

The operators on the left-hand sides of Eqs. (V-2.13) through (V-2.15) describe the
dynamics of the uncoupled free fields and have a simple physical interpretation. After
Fourier transformation (yielding d/dξ → ik), the solution of Eq. (V-2.13) gives a helical
gyration in space of the transverse velocity about the mean field Bn with wavenumber
k = ±1/r j. The solution of Eq. (V-2.14) corresponds to diamagnetism, i.e., the static
penetration of the transverse field into the plasma by the skin depth `S = c/ωP. Eq. (V-
2.15) gives for v = 0 the static screening by the Debye length λD or for finite speed v the
electrostatic wave dispersion relation (kλD)2 + 1 = 0. This, for zero drifts, transforms into
the electrostatic dispersion relation

k2 =
∑

j

ω2
j

v2 − c2
j

, (V-2.16)

the zeros of which yield the Langmuir and ion-acoustic waves as it is presented in detail
in Chapt. IV. For finite right-hand sides of the above differential equations, the fields are
coupled (note that the abbreviation from Eq. (V-2.10) has to be included). The incom-
pressible limit (with en = e jn = 0) then gives the monochromatic (only a single k = k(V)
is permitted from the dispersion relation) electromagnetic A/IC wave, which has a con-
stant but arbitrarily large amplitude. When considering compressibility, the electric and
electromagnetic waves are linked and interact through the nonlinear rightmost terms in
the above wave equations. Considering compressibility may require either a perturbative
approach or numerical treatment.

V.2.2 Perturbative approach and linearization
The above equations are a system of second-order wave equations. To simplify it, the sys-
tem is reduced to a system of first-order equations. Therefore, the quantities e′n ≡ den/dξ,
b′1,2 ≡ db1,2/dξ, and v′j1,2 ≡ dv j1,2/dξ are introduced. With this substitution, the system
corresponds to a set of 14 coupled nonlinear first-order ordinary differential equations
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in ξ for an electron–proton plasma. For each additional particle species, four coupled
equations are added.

In the next step, the system (V-2.13) through (V-2.15) is linearized around a back-
ground given by the wave amplitude vectors u jt0 and b jt0 to determine the wave dispersion.
A suitable choice of the background values is given in Sect. V.2.3.

Nonlinear couplings of low-frequency waves with fluctuations at high frequencies
cannot be described by a linearized system. The low-frequency wave with wavenum-
ber k0, however, may be treated as a constant inhomogeneous background if the high-
frequency waves with wavenumbers k fulfill the condition k0 � k. The high-frequency
waves are then treated in the flank of this low-frequency wave that does not change its
fields significantly over several periods of the high-frequency waves. The particle veloci-
ties, the electromagnetic field, and their derivatives are combined in a state vector

y ≡ (v′p1, v
′
p2, . . . , vp1, vp2, . . . , b′1, b

′
2, b1, b2, e′n, en), (V-2.17)

and therewith one can write the linearized equation as

d
dξ
δy = Aδy (V-2.18)

with the quadratic matrix A = (ai, j) ∈ M(n) with n = 4s + 6, where s is the total number
of species. The solution of Eq. (V-2.18) is in general given by

δy =

4s+6∑
i=1

αiδyie
λiξ (V-2.19)

with the eigenvalues λi and the corresponding eigenvectors δyi. Since A is a real matrix,
the complex-conjugated eigenvalues and eigenvectors are also solutions once a complex
eigenvalue and eigenvector pair is found. The coefficients αi are arbitrary. However,
they must be equal for the pairwise complex-conjugated eigenvalues to construct a real
solution.

An imaginary part of an eigenvalue λi always indicates a periodic fluctuation. Due
to the rule of pairwise complex-conjugated eigenvalues, they are represented by real sine
or cosine functions. Real parts of λi correspond to growth or damping. The imaginary
part is denoted as k and the real part as κ. If the eigenvalues are pairwise symmetric in
the real part, the growth is described by hyperbolic sine or cosine functions, which is the
symmetric solution for the instabilities growing in positive and in negative ξ-direction.

The eigenvalues can be calculated numerically with the QR-method after transforming
A to an upper Hessenberg matrix (Press et al., 1992). The existence of the complex-
conjugated eigenvalues means that, for wave-like daughter products, two solutions always
exist, one forward and one backward propagating with the same frequencies.

V.2.3 Background wave
An adequate background to calculate the dispersion is the flank of a circularly polarized
Alfvén wave since these waves are exact eigenmodes of a plasma and obey Eqs. (V-2.13)
and (V-2.14) in the incompressible limit with arbitrary amplitudes. The phase speed of
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this wave is denoted by v0. It is left-hand polarized and has a magnetic field of the structure

bt0 = b
(
cos(k0ξ)
sin(k0ξ)

)
, (V-2.20)

as it has already been used in Chapt. III. Without loss of generality, this field is evalu-
ated at the point ξ = 0. For sufficiently low k0-values, this field appears as a constant
magnetic background field of the magnitude bt0 = (b, 0) as stated above. Therefore, this
background describes analogous conditions as used to treat oblique propagation of linear
modes. However, the wave is additionally associated with a transversal velocity for each
species. Corresponding to this magnetic field, a background velocity field occurs that is
determined by the polarization relation of circularly polarized Alfvén waves

u jt0 =
v jn0

1 + k0v jn0/Ω j
bt0 (V-2.21)

as derived by Sonnerup and Su (1967) for example. The normal velocity component of the
particle species j in the reference frame moving with v0 is denoted by v jn0. The polariza-
tion relation is also in agreement with the results from the previous chapter on nonlinear
A/IC waves. For a sufficiently small wavenumber k0, the wave fulfills the Alfvénic dis-
persion relation v0 ' vA.

The transformation of the transverse velocity to the co-moving reference frame does
not change the value for u jt0. Therefore, the polarization relation provides the necessary
(constant) value for u jt0 depending on a given (small) k0 and the wave amplitude b. To
evaluate the polarization relation exactly, the dispersion relation for the circularly polar-
ized Alfvén waves is used. It is given by

k2
0 +

∑
j=1

ω2
j

c2

k0v jn0

k0v jn0 + Ω j
= 0 (V-2.22)

in the non-relativistic limit as used in Chapts. II and IV.

V.3 Dispersion of high-frequency waves
In this section, the wave dispersion relation of high-frequency waves propagating on the
non-uniform background Alfvén wave is studied. The most important free parameter of
the system of equations (V-2.13) through (V-2.15) is the disposable wave phase speed v.
For a fixed v, the eigenvalue/eigenvector method provides the corresponding wavenumber
values k(v). The relation ω = kv then delivers the corresponding ω, and hence, by scan-
ning through all relevant values of v, the full dispersion relation can be determined. The
growth rate γ can be determined similarly by evaluating γ = κv with the spatial growth
rate κ from the eigenvalue determination. The very high-frequency branches, which are
dominated by the electron dynamics, are not treated in detail since the ions carry the main
momentum and their wave-induced motion is, therefore, more important for the heating
and acceleration processes. The electron density and relative velocity with respect to the
protons and the other ionic species are determined by the requirement of vanishing charge
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density (quasi-neutrality) and vanishing constant longitudinal currents of the background,
such that∑

j=1

n jq j = 0, (V-3.23)∑
j=1

n jq jv jn = 0. (V-3.24)

The specific heat ratio is set to its adiabatic value of γ j = 5/3 for all species.

V.3.1 Homogeneous background
Before the case of an inhomogeneous plasma is discussed, the system of equations and
the linearization is applied to an electron–proton plasma for a homogeneous background
and with β j = 0. The background field is set to Bn = 5 × 10−5 G and the particle number
densities to np = ne = 5 cm−3. The ratio B2

n/np must be parameterized even in the di-
mensionless normalization of the system in order to fix the normalized plasma frequency
ω j/Ωp for electrostatic processes. The result of the calculation is shown in Fig. V-2.
The three incompressible branches correspond to the transverse particle motions. One of
them represents a free motion with the gyration frequency for the protons at ω = 1, their
normalized gyrofrequency. The branch approaching the gyrofrequency asymptotically
corresponds to the A/IC wave. The cold dispersion relation for parallel A/IC waves from
Chapt. II,

ω2 = k2 +
k4

2
−

k3

2

√
k2 + 4, (V-3.25)

is additionally plotted as a green dotted line. The branch at low k-values with high phase
speed v corresponds to the fast/whistler (F/W) mode shown as a red dashed line. The
corrected low-frequency dispersion for the multi-fluid R-mode wave (i.e., the fast/whistler
wave including ionic effects) is given analytically by

ω

Ωp
=

k2`2
p

2

1 +

√
1 +

4
k2`2

p

 (V-3.26)

as shown in Eq. (II-2.83) of Chapt. II. Both relations show a perfect agreement with the
numerical calculations made with the eigenvalue method. This confirms the validity of
this approach.

In Fig. V-3, the dispersion relation is shown for a plasma consisting of electrons, pro-
tons, and alpha particles without any relative drifts and without a background wave field.
The particle species have a beta of 0.01. The proton number density is set to np = 5 cm−3,
the alpha particle number density to nα = 0.04np, and the electron number density ac-
cording to Eq. (V-3.23). The alpha-particle cyclotron branch approaches asymptotically
the frequency ω = 1/2 as expected. This value corresponds to the alpha-particle gyrofre-
quency in normalized units. The cyclotron branch of the protons is slightly deformed in
the low-k range in comparison to the cold plasma dispersion relation. Also the F/W wave
mode is slightly shifted. The presence of the alpha particles is responsible for this devia-
tion. Further correction terms would be needed to represent the dispersion relation in this
three-fluid plasma analytically.
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Figure V-2: Dispersion relation for an electron–proton plasma in a homogeneous back-
ground with β j = 0. The cold dispersion relation for Alfvén/ion-cyclotron waves and for
ion-corrected R-mode waves are additionally plotted.

This model also allows one to include relative drifts of the particles along the wave-
normal direction. The relative drift speed between protons and alpha particles is defined
as vd ≡ vpn − vαn. In Fig. V-4, the dispersion relation for vd = 0.2 is shown. The alpha-
particle branch starting at ω = Ωα is turned into the so-called beam-mode branch (line
inclined to the left) derived from the resonance condition

ω = Ωα + kuαn, (V-3.27)

where uαn = v − vαn denotes again the alpha-particle bulk speed component along the
wave-normal direction in the proton rest frame. For a vanishing drift uαn, this mode is
flattened back to the horizontal line ω = Ωα = 1/2.

V.3.2 Inhomogeneous background
Next, the above system of coupled wave equations can be applied to an inhomogeneous
background plasma, which corresponds to realistic solar wind conditions. The plasma
consists of three species: protons, electrons, and alpha particles. The relative drift be-
tween protons and alphas is set to vd = vpn − vαn = 0.2 and the plasma beta to β j = 0.01
for each species. The background wave is assumed to have a normalized wavenumber of
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V.3 Dispersion of high-frequency waves

Figure V-3: The same as Fig. V-2 for a plasma consisting of electrons, protons, and alpha
particles with β j = 0.01.

k0 = 0.01 and an amplitude of b = 0.1. Such a wave has a phase speed of almost the local
proton Alfvén speed. The wavenumber is small enough to neglect any direct nonlinear
couplings between the background wave and the high-frequency waves. For the latter, the
background wave appears as a quasi-constant field, with respect to which the system can
be linearized. The results are shown in Fig. V-5.

The dispersion branches are deformed for several reasons. The proton A/IC branch
at lower wavenumbers is not further deformed as compared to Fig. V-3. Some branches
turn at some bifurcation positions into completely different dispersion branches. These
transitions correspond to mode couplings. For example, the faster sound wave (alpha-
particle mode) couples with the A/IC wave of the protons at high wavenumbers, whereas
the ion-acoustic wave couples with the drift-deformed A/IC wave of the alpha particles.
The R-mode couples with the ion gyration at ω = 1 but, interestingly enough, not with
the alpha-particle beam mode. It shows a break at ω = 1 and then continues above that
frequency.

Two additional linear branches occur with merely constant phase speeds of v ≈ 0.13
and v ≈ 0.03. Such linear acoustic modes as these two were also found by Mann et al.
(1997) for a warm plasma. The wave phase speed of these modes is usually determined
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V Compressive high-frequency waves

Figure V-4: Dispersion relation for a plasma consisting of protons, electrons, and drifting
alpha particles with vd = 0.2. The beam mode occurs for drifting alpha particles.

by

vPh1 =
γpkBTp + γekBTe

mp
, (V-3.28)

vPh2 =
γαkBTα

mα

(V-3.29)

for a plasma with nα � np. The first is the so-called ion-acoustic speed, the second is
the sound speed of the alpha-particle component. In the present case, these velocities
are given by vPh1 = 0.13 and vPh2 = 0.23 in normalized units. The first one corresponds
perfectly with the fast (steeper line) sound wave that has been found here. The drift
velocity vd of the alpha particles is the reason for the deviation of the second linear mode.
In the non-drifting reference case, the two velocities match (vPh2 − vd = 0.03). If the
numerical dispersion code is applied to a plasma without drift, the second sound-wave
branch is directly found at v = vPh2 (not shown here).

The two sound-wave modes do not appear in the homogeneous plasma. Remember
that the phase speed v is a free parameter in the calculation, and a wavenumber is given
by the eigenvalues obtained for each v. If a wave is not dispersive and therefore has a
constant phase speed, it is not possible to calculate the full set of possible k-values that
belong to this v. The sound waves exist already in the homogeneous case; however, they
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Figure V-5: Dispersion relation for a plasma consisting of protons, electrons, and drifting
alpha particles. The frequency ω is shown in dependence on the wavenumber k in dimen-
sionless units. The derived A/IC branch deviates from the cold dispersion branch at low
and high wavenumbers. Mode coupling between the various branches occurs as discussed
in the text.

become visible only after becoming dispersive due to mode coupling. This type of wave
becomes only dispersive for non-zero beta and in the presence of the background wave.
Also above the corresponding gyrofrequencies ω = 1 and ω = 1/2, the branches continue
with their constant phase speed.

The waves on all branches have a compressive component, owing to the non-vanishing
electric fields en and e jn. The real part of the eigenvalues λi is always zero, i.e., none of
the compressive modes is unstable in this case.

Note that it is the amplitude of the background wave which mainly determines the
strength of the mode coupling and hence the position and shape of the deformation of the
ion-cyclotron branch. For higher amplitudes, the branch turns earlier away from the A/IC
dispersion branch, and hence the phase speed of the linear mode increases already at lower
k-values. The plasma beta determines the phase speeds of the linear branches. Higher
betas lead to higher phase speeds of these modes. The phase speeds can be adjusted
relative to each other by choosing different betas for the individual species. However,
the overall topology of the dispersion branches is not significantly changed by assigning
different beta values to different species.

However, if beta is chosen to be greater than 1, then the situation changes tremen-
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Figure V-6: Dispersion relation for a plasma with β = 1.2.

dously. The sound waves become unstable. In Fig. V-6, the dispersion is shown for a
situation with β j = 1.2. The corresponding growth rates γ = κv of the modes are shown
in Fig. V-7.

Mode coupling between the sound wave and the F/W wave mode leads to an instability
that occurs at k ≈ 0.8 . . . 1.6. Interestingly enough, this range is the ion gyroradius scale
for moderate plasma betas close to 1. This growing instability can, therefore, provide
wave energy to the dissipative regime by means of Landau resonance since the particle
distribution has a significant number of particles at the corresponding wave speed of about
v ≈ 1.36 for a plasma with β j & 1. This instability vanishes if the background wave is
absent, i.e., in the homogeneous case. For higher beta values, the position of the instability
is shifted to higher wavenumbers.

V.4 Discussion
As expected, the inhomogeneity of the background wave field leads to a deformation of
the standard normal modes in the plasma. All of the discovered waves have a compressive
component. Compressibility and inhomogeneity of the background plasma are the causes
for the new effects in the dispersion properties. The initially non-compressive A/IC waves
become slightly compressive due to the inhomogeneous background and are therefore
able to interact with the protons via their electrostatic field components in addition to the
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Figure V-7: Imaginary part of the frequency depending on k.

cyclotron resonance enabled by their transverse components. The quantitative details of
these wave–particle interactions cannot be treated in the fluid description since they are
purely kinetic processes. They require a kinetic Vlasov treatment, at least in the frame of
quasilinear theory and are therefore beyond the scope of this work. The kinetic refinement
of the dispersion analysis of circularly polarized waves of the same type was described by
Stenflo (1976), who also showed how relativistic effects and compressibility can modify
the dispersion of large-amplitude waves in multi-fluid theory.

The non-constant (due to the presence of the pump wave) background leads to nonlin-
ear mode couplings between some of the linear wave modes. It also leads to the excitation
of initially non-dispersive modes such as the ion-acoustic wave or the alpha-particle sound
wave, yet now with k-dependent wave speeds.

The acoustic modes can grow at wavenumbers around the ion gyration scale under
certain conditions and for adequate parameters. Thus, they are good candidates for a
longitudinal electrostatic wave field, with which particles can undergo Landau-resonant
wave–particle interactions. Kinetic Alfvén waves (KAWs) have recently been discussed
as another possible reason for this kind of interaction. KAWs owe their compressibility
to the oblique geometry of their propagation with respect to a constant background field.
In this study, it was possible to show that also waves with purely parallel propagation can
grow nonlinearly at the corresponding resonant wavenumbers, provided that the back-
ground has a non-trivial—but quite reasonable—magnetic field configuration. These two

97



V Compressive high-frequency waves

mechanisms are quite different in nature and should be further investigated and compared
with each other.

The instability of ion-acoustic modes coupled to transverse modes were also discussed
in studies of the parametric decay of large-amplitude pump waves and evaluated by nu-
merical simulations (Araneda et al., 2007; Valentini and Veltri, 2009). Also in these stud-
ies, instabilities of longitudinal waves at high wavenumbers were found, however, at dif-
ferent background parameters. These waves are usually interpreted as results of nonlinear
wave–wave interactions. The linearized wave equations, however, can explain a similar
growth of daughter waves at higher frequencies than the initial pump-wave frequency as
a consequence of compressibility and a non-uniform background. This mechanism can,
thus, be understood as a new spectral transfer process of plasma fluctuations. It is very
similar to the decay instability, which is found with the characteristic k � k0.

The eigenvector analysis still keeps the freedom to choose the amplitudes αi in Eq. (V-
2.19). This means that a wave can, in general, only occur if its amplitude is finite. It is
beyond the scope of this work to investigate how the discovered wave branches can be
excited in a real plasma. The linear dispersion analysis can only show possible normal
modes. The discovered instability leads to growth in the initial phase only until nonlinear
couplings and perhaps saturation occur. Yet, unstable modes can grow from the thermal
noise (that is constrained as a finite eigenvector of the system of equations) with a certain
finite amplitude. In the presence of a large-amplitude wave, this thermal noise can lead
to growth according to the calculated growth rate γ at the gyroradius scale range for β j &
1. Maybe, full nonlinear calculations can investigate the further evolution and possible
nonlinear excitations of such modes. The linear approximation appears to reflect the basic
situation well (Lehe et al., 2009).

In the future, other background conditions should also be inquired. The above chosen
background is one of the simplest inhomogeneous conditions. It is important to note that,
in this approach, the background has to change slowly in dependence upon the position ξ.
Otherwise, the use of a fixed phase speed v is not possible anymore, and then the present
approximation needs to be changed. The original set of coupled wave equations remains
valid, yet another mathematical treatment is required to cope with their nonlinearity.
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VI Parametric decay of parallel and
oblique Alfvén/ion-cyclotron waves
in hybrid simulations

VI.1 Parametric decay in numerical simulations

Monochromatic plasma waves with certain properties are known to be parametrically
unstable and decay to daughter waves in a multiple-wave interaction process (Galeev
and Oraevskii, 1963; Derby, 1978; Goldstein, 1978; Lashmore-Davies and Stenflo, 1979;
Wong and Goldstein, 1986; Inhester, 1990; Ruderman and Simpson, 2004). Ubiquitous
small thermal fluctuations in the plasma are the seed for growing daughter waves in the
presence of a large-amplitude wave if it obeys the necessary unstable characteristics.

Following the early analytical descriptions, numerical simulations have become ca-
pable of modeling the parametric decay (Viñas and Goldstein, 1991a; Araneda, 1998).
Kinetic simulations allow one to investigate the interaction between particles and the
participating waves and show resultant particle heating under typical coronal conditions
(Araneda et al., 2008). This observation has brought the parametric decay process into the
focus of coronal heating research. Large-amplitude plasma waves are directly observed in
the solar chromosphere and corona, which seem to be mainly Alfvénic and strong enough
to deliver sufficient energy for the coronal heating (De Pontieu et al., 2007; McIntosh
et al., 2011). This makes them promising energy sources also for the acceleration of the
fast solar wind, even though the details of the dissipation and the spectral transfer are not
well understood.

Most models, however, use a simplified basis such as a one-dimensional geometry.
Recently the higher computational resources have paved the way for two-dimensional
analyses including the possibility of oblique propagation of mother and daughter waves
(Viñas and Goldstein, 1991b; Matteini et al., 2010). There are, however, still many open
questions in this context. The compressive component of the fluctuations, for example,
is known to be important for the parametric decay. In the oblique case, it is not well
understood yet. Also the direction of propagation of the daughter-wave products and their
ability for resonant wave–particle heating are still unclear. This work tries to address
some of these aspects with the aid of the numerical hybrid code A.I.K.E.F. First, some
one-dimensional test runs are presented, before results of the two-dimensional oblique
simulation are shown.
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VI.2 The hybrid code A.I.K.E.F.
The A.I.K.E.F. (adaptive ion-kinetic electron-fluid) code is based on the work by Bag-
donat and Motschmann (2002). The basics of the code were extensively described by
Bagdonat (2005). It has been completely revised, and the possibility for adaptive re-
finement has been included by Müller et al. (2011). It is a so-called hybrid code, which
means that ions are treated as particles, whereas electrons are treated as a massless charge-
neutralizing fluid. This description is reliable as long as gyration effects of the electrons
can be neglected. Strong electrostatic effects due to local space charge differences are not
treatable in this model because the massless electron fluid would immediately fill up a lo-
cal space charge and neutralize it. Therefore, a numerical investigation of the results from
Chapt. V is not possible with a hybrid code. Electrostatic waves can partly be treated in
the frame of the plasma approximation, applying the concept of quasi-neutrality, which is
discussed in Sect. VI.2.2.

VI.2.1 The hybrid equations
The basic equations are Maxwell’s equations without displacement current, the ion equa-
tions of motion, and the momentum equation for the electron fluid. The above cited
descriptions of the code are all given in SI-units. For the reason of consistency, they
are written in cgs-units hereafter. The code allows for finite resistivity, drag due to neu-
tral particles, and adaptive mesh refinement. All of these additional possibilities have no
meaning for this work and are therefore omitted in the following description.

Firstly, the equations of motion for the ions are given by

du j

dt
=

q j

m j

(
E +

1
c
u j × B

)
, (VI-2.1)

dx j

dt
= u j (VI-2.2)

as the characteristics of the collisionless Vlasov equation for the ions. The particle posi-
tion is denoted by x j and its velocity by u j.

The massless electron fluid has to fulfill the momentum conservation according to

me
d(neue)

dt
= 0 = −ene

(
E +

1
c

ue × B
)
− grad pe, (VI-2.3)

where ue stands for the electron bulk velocity and pe for the pressure of the electron fluid.
From the momentum equation, the electric field can be derived as

E = −
1
c

ue × B −
1

nee
grad pe. (VI-2.4)

The weighted ion bulk velocity is defined as ui = ji/%c with the ion current density ji
and the charge density %c, which are both calculated from the moments of all ion species’
distribution functions. By using quasi-neutrality (ni = ne = n) and j = je + ji = −eneue +

qiniui, the electric field is given by

E = −
1
c

ui × B +
curl B × B

4π%c
−

1
%c

grad pe (VI-2.5)
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with the charge density %c =
∑

j n jq j summed over all ion species. The number density
n j can be determined from the zeroth moment of the ion distribution functions. The
polytropic relation

pe = pe0

(
%c

%c0

)γ
(VI-2.6)

with the polytropic index γ is assumed for the electron pressure as a closure relation.
The magnetic field is determined by use of the induction equation, following from

Faraday’s law. With Eq. (VI-2.5), the temporal evolution of the magnetic field can be
written as

∂B
∂t

= curl (ui × B) − curl
(

c
4π%c

curl B × B
)
. (VI-2.7)

The pressure gradient vanishes due to Eq. (VI-2.6) and the vector identity curl grad = 0.
The set of equations is closed. Even for runs with lower spatial dimensions, the code
evaluates the full 3D vector components of all vector quantities. In the following, the
boundary conditions are always set to be periodic.

The plasma ions are not treated as single particles but as so-called superparticles. This
means that always a bunch of ions is treated like one particle with corresponding mass and
charge. This strategy helps to save calculation time. The number of superparticles per
cell is a free parameter and should be chosen carefully. The particles are initialized with
a Maxwellian distribution, shifted to the given initial values for the velocity. The width of
the Maxwellian distribution is determined by the species’ beta, which is a free parameter
as well. A divergence-cleaning algorithm is applied to keep possible unphysical magnetic
field errors low and to increase the numerical stability of the system.

VI.2.2 The plasma approximation
In the framework of the so-called plasma approximation, quasi-neutrality (np ≈ ne for an
electron-proton plasma) is assumed, but a non-vanishing divergence of the electric field
is allowed (Chen, 1985). The hybrid equations fulfill this approximation. To avoid a
misunderstanding, especially regarding the influence of electrostatic effects, the plasma
approximation should be discussed here in more detail.

It can be understood as a perturbation expansion with respect to the relative density
contrast

µ ≡
ne − np

np
� 1. (VI-2.8)

The electron density is, thus, given by

ne = np + µnp, (VI-2.9)

which is a complete representation of ne. The electron number density is used in the
derivation of only one of the hybrid equations, namely the equation of motion for the
electrons. The electron bulk velocity can be written as

ue =
1

1 + µ

[
up −

c
4πenp

curl B
]
. (VI-2.10)
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The factor before the bracket is obviously close to unity for small µ. In a similar way,
the pressure gradient term is dominated by the gradient of np as long as µ does not have a
large spatial gradient, which is another implicit assumption of the plasma approximation.

The divergence of the electric field has the form

div E = −4πeµnp (VI-2.11)

in this system. It is, therefore, small but yet one order lower in the perturbation hierarchy,
taking into account that small values of div E may be cumulated and lead to a significant
effect.

An interesting special case in wave studies is the electrostatic limit of fluctuations, in
which the electric field is assumed to have the form

E = −grad Φ (VI-2.12)

with the electric potential Φ. The Poisson equation takes the form

div grad Φ = 4πeµnp. (VI-2.13)

Neglecting magnetic couplings with the plasma dynamics, the electron equation of motion
(see Eq. (VI-2.4)) yields

enegrad Φ = grad pe = kBTegrad ne (VI-2.14)

after a corresponding definition of the constant electron temperature Te from the isother-
mal (γ = 1) equation of state. The direct use of the Poisson equation in this balance
relation is not applicable because it would be based on higher-order effects again, which
are not treatable in this way. The solution of Eq. (VI-2.14) is given by

ne = ne0 exp
(

eΦ

kBTe

)
(VI-2.15)

with the familiar exponential Boltzmann factor.
The electric potential and the electron density are now supposed to vary on a typical

scale L. The hydrodynamic change in the electron density is assumed to be significant.
Combining the linearized relation from Eq. (VI-2.14), in this case meaning eΦ ∼ kBTe,
with the approximated Laplace operator div grad ∼ 1/L2 permits then to estimate the
value of µ as

µ ∼
λ2

D

L2 (VI-2.16)

with the electron Debye length

λD ≡

√
kBTe

4πne0e2 (VI-2.17)

for a significant gradient in ne. As long as the changes in Φ occur on long scales compared
to the Debye length, the parameter µ is small and quasi-neutrality is a good assumption.
This means that the density contrast µ has to be almost constant on small scales of the
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order of the Debye length. However, the cumulative effect on larger scales may still be
important for electrostatic waves on larger scales. To inquire this effect in more detail, a
scale analysis should be applied to the electric field. The change in the electron density
ne is supposed to occur on the typical outer scale L, say, of the order of the ion inertial
length. Typically this scale is several orders of magnitude larger than the Debye length,
meaning that µ ∼ 10−6 for example. This small density contrast justifies the assumption
np ≈ ne because the densities are almost equal but not exactly equal at each position. The
total quasi-neutrality on even larger scales might still be justified because the gradient in
ne should be also of a periodic form for a wave. The integrated electric field on the outer
scale is given according to Gauß’ law by

E ∼ −4πeµnpL. (VI-2.18)

The electric field expressed by the equation of motion in Eq. (VI-2.14) has the form

E ∼ −
kBTe

eL
. (VI-2.19)

Using the relation µ ∼ λ2
D/L

2 and the definition of the Debye length from Eq. (VI-2.17)
shows that both expressions for E are of the same order of magnitude.

The divergence of the electric field turns out to be of order one in dimensionless units
in the typical normalization system. The charge density, however, is by a factor of v2

A/c
2

smaller than div E in these units, whereas the ion and electron densities are again of order
unity. This shows that the divergence of the electric field is non-zero and an important
quantity, while the density contrast is unimportant in this approximation.

So the hybrid equations are able to treat electrostatic waves on large scales (limited by
the quasi-neutrality) and at low frequencies (limited by the vanishing electron mass). The
role of the electron pressure in this balance is crucial as it compensates for all changes
in the electrostatic potential Φ according to Eq. (VI-2.14). Without the pressure gradient
term, the potential would have to be constant to fulfill the electron equation of motion.
The situation is illustrated in Fig. VI-1. If the charge density would be exactly zero
over the density gradient initially, the electrons would diffuse due to their high mobility
and thermal speed into a configuration, which is consistent with the small space charge
difference again and in which the protons pull them back against their drift in a figurative
sense. This situation is similar to the classical ambipolar diffusion (Chen, 1985).

It is interesting to consider the meaning of Maxwell’s displacement current and the
continuity equation in this context. Taking the divergence of the complete Ampère’s law
yields the classical charge continuity equation

∂µnp

∂t
= div

[
npup − (1 + µ)npue

]
. (VI-2.20)

The local temporal derivative and the correction due to density differences in the current
are of order µ, while the divergence of japp = enp

(
up − ue

)
is of order one in the perturba-

tion hierarchy. Therefore, the assumption div j ≈ div japp ≈ 0 is valid.
These considerations show that the hydrodynamic pressure gradient term in the hybrid

equations is able to represent cumulative electrostatic effects, even though the local den-
sity difference between electrons and protons may be assumed at most places to be equal.
Local corrections due to µ , 0 have to be taken into account only if spatial changes occur
on the scale of the plasma Debye length, which is beyond the treated cases here.
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Figure VI-1: Illustration of pressure gradients and the electrostatic field. The different
dots represent protons or electrons, respectively. Both obey a density gradient on large
scales compared to the Debye length.

VI.3 Parallel propagation

VI.3.1 Parallel Alfvén/ion-cyclotron waves
Alfvén/ion-cyclotron (A/IC) waves can be parameterized by

B =

Bt cos(k0z − ω0t)
Bt sin(k0z − ω0t)

Bn

 (VI-3.21)

as already used in Chapts. III through V.
The transversal components of each quantity are combined in a two-component vector,

denoted by the index t. With a constant z-velocity U jn for the species j, the transversal
velocity is given by

V jt = −
ω0/k0 − U jn

1 − ω0/Ω j + k0U jn/Ω j

Bt

Bn
, (VI-3.22)

which is the known polarization relation for A/IC waves. The dispersion relation, con-
necting the frequency ω0 with a (given) wavenumber k0, is given by

k2
0 −

ω2
0

c2 +

s∑
j=1

1
`2

j

ω0 − k0U jn

ω0 − k0U jn −Ω j
= 0. (VI-3.23)
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The total number of species is denoted by s. The second term in the dispersion re-
lation comes from Maxwell’s displacement current and can be safely neglected in the
non-relativistic limit. The electrons are massless, so their contribution to the dispersion
relation is given by the last term on the left-hand side of

k2
0 +

si∑
j=1

1
`2

j

ω0 − k0U jn

ω0 − k0U jn −Ω j
+

1
`2

p

ω0 − k0Uen

Ωp
= 0, (VI-3.24)

where si is the total number of ionic species. Note that in the electron term the ionic skin
depth and the ionic gyration frequency are used, which is useful for reasons of normaliza-
tion. For a two-component plasma without any drifts, this equation reduces to

k2
0 +

1
`2

p

ω0

ω0 −Ωp
+

1
`2

p

ω0

Ωp
= 0. (VI-3.25)

The wavenumber k0 is chosen in a way that an integer number of maxima fits into the
simulation box:

k0 =
2πn
Lz

(VI-3.26)

with integer n and box size Lz. The code is initialized with a magnetic field of the form

b =
1
|b|

b cos k0z
b sin k0z

1

 (VI-3.27)

and with a velocity field following Eq. (VI-3.22) with U jn = 0. The initial conditions
have to be chosen carefully because the total space charge density and current density
have to be zero. This is especially crucial if further species with a beam structure along
the magnetic field are considered.

VI.3.2 Results
The parametric decay of a circularly polarized wave is treated with the following parame-
ter set. The initial wave has a wavenumber of k0 = 64π/Lz and an amplitude of b = 0.25Bn

as described above. The configuration is one-dimensional with a grid in z-direction con-
sisting of 2048 grid points spread over a length of Lz = 500`p. The proton inertial length
`p is the normalization unit for all length scales. The betas are chosen as βp = 0.08 and
βe = 0.5. The electrons are supposed to be isothermal (γ = 1). Each cell contains 800
superparticles. 150 000 time steps are applied with a step width of ∆t = 0.01. The proton
gyrofrequency Ωp is the normalization unit for all frequencies and its inverse value for
the time dimension. The magnetic field in all components and the particle density are
recorded every 300 time steps along the z-axis, which allows one to perform a Fourier
transformation of these fields to determine the decay result and the spectral spread of the
wave energy in wavenumber space.

The initial conditions for the magnetic field, the electric field, and the ion velocity are
shown in Fig. VI-2. The wave propagates out of the drawing plane, and the vector set
rotates in the clockwise direction at each fixed position z.
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Figure VI-2: Vector fields of an Alfvén/ion-cyclotron wave. Black: tangential magnetic
field, red: tangential electric field, blue: tangential proton bulk velocity field. The wave
propagates out of the drawing plane.

After a while, the wave decays due to nonlinear couplings with other minor (thermal)
fluctuations. This noise is ubiquitous in every numerical simulation due to rounding errors
and field approximations of derivatives. Also a natural plasma contains these fluctuations
due to thermal noise. To analyze the nature of the daughter-wave products, a Fourier
transformation can be applied to the magnetic field or the density, respectively. The fast-
Fourier transform (FFT) procedure is used for this purpose. Afterwards the real power
spectral density of the Fourier transformed magnetic field B(k) is calculated as

Pk = B(k) · B∗(k), (VI-3.28)

where the asterisk indicates complex conjugation. Usually the power is then divided by
the spatial length over which the transformation was carried out. In a finite integration
domain of the discrete Fourier transform, this just leads to a constant, which is omitted
here.

The lowest and highest accessible wavenumbers are constrained by the sampling of
the discretized function. The highest accessible (normalized) wavenumber is given by

kmax =
π(Nx − 1)

Nx∆x
≈

π

∆x
, (VI-3.29)

where Nx is the number of spatial steps, and ∆x is the interval between each step in the
sampling. The lowest wavenumber (apart from the constant value at k = 0) is determined
by the step width in discrete x-space as

kmin =
π

Nx∆x
≈

kmax

Nx
. (VI-3.30)
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Figure VI-3: Transversal power spectral density of daughter waves after parametric decay
of an Alfvén/ion-cyclotron wave in arbitrary units. a) at t = 180. b) at t = 700.

The dispersion of the waves can be determined by applying the FFT algorithm twice,
first in space and then in time. Therefore, a short temporal period has to be selected, over
which the temporal Fourier transformation is applied. It must not be too long because
then the evolution of the spectrum could mitigate the accuracy of the transformation. On
the other hand, one needs quite some periods to apply the Fourier transform in the time
domain because otherwise only a small frequency band is accessible. The definition of the
highest accessible (normalized) frequency is similar to the above definition of the highest
wavenumber:

ωmax =
π(Nt − 1)

Nt∆t
≈
π

∆t
, (VI-3.31)

where Nt is the number of recorded timesteps and ∆t the interval between each saved
timestep. The lowest frequency (apart from the constant value at ω = 0) is

ωmin =
π

Nt∆t
≈
ωmax

Nt
. (VI-3.32)

The total time between the beginning (at t = 0) and the end of the transformed interval is
given by t = Nt∆t.

A typical spectrum of transverse magnetic field power for two different times is shown
in Fig. VI-3. In Fig. VI-3a, the strong pump wave is visible at k ≈ 0.4. It has spread
already to lower and higher wavenumbers. With the later evolution, this effect continues
as can be seen in Fig. VI-3b. After a longer duration, also compressive fluctuations grow,
which have not been present at the initialization. The compressive spectra for the same
two time steps are shown in Fig. VI-4. In Fig. VI-4b, it is visible how efficiently energy
is transformed into low-frequency pressure fluctuations. This is the typical behavior of
the parametric decay of such a wave. The total energy in the magnetic field has to be less
than the total initial energy in the magnetic field.

A common effect of the modulational instability is the occurrence of some local peaks
both in magnetic field and in density in configuration space. After a certain time, these
peaks are also observed in the spatial distribution of the magnetic field from this sim-
ulation. The field components can exceed values of more than 0.3Bn, whereas at other
positions it becomes very small. The solely random distribution of wave phases adds up
to high values at these positions.
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VI Parametric decay in hybrid simulations

Figure VI-4: Compressional power spectral density of daughter waves after parametric
decay of an Alfvén-cyclotron wave. a) at t = 180. b) at t = 700.

VI.4 Oblique propagation

A wave propagating obliquely with respect to the background magnetic field provides au-
tomatically a fluctuation in the longitudinal electric field (e.g., Stix, 1992; Hamza et al.,
2006). Some waves are intrinsically oblique like the kinetic Alfvén wave. Therefore,
this wave type always exhibits a parallel electric field component (Goldreich and Srid-
har, 1995; Hollweg, 1999; Marsch, 2006). This generally different nature of oblique
waves can also lead to different wave–particle phenomena compared to the parallel cases.
The Alfvén/ion-cyclotron wave mode is again an interesting candidate to achieve efficient
plasma heating, also in the oblique propagation. Therefore, this work continues to focus
on this normal mode.

VI.4.1 Oblique Alfvén/ion-cyclotron waves

It is also possible to use the A.I.K.E.F. code in more than one dimension. The oblique
propagation of A/IC waves and their spectral evolution is studied in this section for an
electron-proton plasma. It is known and observed that A/IC waves are damped more if
they propagate obliquely with respect to the background magnetic field direction (Jian
et al., 2010). The dispersion relation of A/IC waves changes for oblique propagation.
The angle between the wavevector k and the constant magnetic field component Bn is
denoted by ϑ.

Sonnerup’s solution cannot be used for an oblique initialization since it describes the
exact solution of the kinetic equations only for parallel propagation. The cold plasma
dispersion for obliquely propagating A/IC waves appears as a good choice for the initial-
ization of the simulation. It is given by

k4 cos2 ϑ

ω4 −
k2

(
1 + cos2 ϑ

)
ω2 (

1 − ω2) +
1

1 − ω2 = 0 (VI-4.33)

in the applied normalization (Stix, 1992; Chandran et al., 2010b). The A/IC root of this
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VI.4 Oblique propagation

Figure VI-5: Cold dispersion relation for Alfvén/ion-cyclotron waves depending on the
angle ϑ between k and B0. The dispersion deviates from the classical branch significantly
only for quite oblique propagation angles.

equation can also be written as

ω2 =
1
2

[
k4 cos2 ϑ + k2(1 + cos2 ϑ)

−k2
√

k4 cos4 ϑ + 2k2(cos4 ϑ + cos2 ϑ) + (1 − cos2 ϑ)2
]
. (VI-4.34)

The dispersion relation depending on the angle ϑ is shown in Fig. VI-5.
The coordinate system of the simulation box is chosen in a way that the z-direction is

parallel to the background magnetic field. The orientation of the other axes is set up in
such a way that the wavevector has no component along the x-axis. Thus, its component
in the y-direction corresponds to the perpendicular component.

An appropriate initialization is a wave from the cold dispersion relation. Therefore,
the distribution function can be assumed to have the shape of a delta function, and the
ion fluid velocity ui becomes equal to the particular ion velocity ui for an electron-proton
plasma. The above given hybrid equations then correspond to the equations known from
Hall-MHD (e.g., Krauss-Varban et al., 1994; Vocks et al., 1999). The approximations in
the frame of Hall-MHD suppress some typical wave features that are only present in the
kinetic picture as discussed by Krauss-Varban et al. (1994). All kinetic effects discussed
by these authors do not arise from the multi-fluid nature and the finite electron mass but
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VI Parametric decay in hybrid simulations

from effects of spread distribution functions, which are due to finite β-values. All of
these effects, however, are covered in the hybrid description, and therefore this ansatz is
appropriate.

The wave is given to be left-hand elliptically polarized with

B =

Bx

By

Bz

 =

 0
0
B0

 +

B1 cos(k · r − ωt)
B2 sin(k · r − ωt)
B3 sin(k · r − ωt)

 . (VI-4.35)

The linearized characteristics of the Vlasov equation from Eq. (VI-2.1) and the general-
ized Ohm’s law from Eq. (VI-2.5) lead to an equation of motion, taking the form

dup

dt
=

curl B × B0

4πm jn0
−

c2
e

n0
grad ne. (VI-4.36)

The electron sound speed is defined as ce ≡
√
γpe/%m = vA

√
βe with the proton mass

density %m and the electron beta βe. The density is supposed to behave as ne = n0 +

n̂e sin(k · r − ωt). Its phase (i.e., the fact that it is a sine function and not a cosine for
example) is the result of trying to find a consistent solution with the fields B, E, and up.
The z-component phase of B and E are found in the same way. The y-component of
the term curl B × B0 contains By and Bz, which shows that these two components must
have the same phase. The pressure gradient term, however, has only a non-vanishing
component in y and z. Since the gradient has to have the same phase in all components,
this phase has to be the same as the phase of the y- and z-components of the magnetic
field. With Ampère’s law, the full phase relations are determined. These definitions lead
to the proton velocity

vpx = −
kz

ω
v2

A
B1

B0
cos(k · r − ωt),

vpy =

(
ky
ω
v2

A
B3

B0
−

kz

ω
v2

A
B2

B0
+

ky
ω

c2
e
n̂e

n0

)
sin(k · r − ωt), (VI-4.37)

vpz =
kz

ω
c2

e
n̂e

n0
sin(k · r − ωt).

The electric field is given after linearization of the generalized Ohm’s law according
to Eq. (VI-2.5) as

Ex =
1
c

(
kz

ω
v2

AB2 −
ky
ω
v2

AB3 −
ky
ω

c2
e
n̂e

n0
B0 − `

2
pΩpkzB1

)
sin(k · r − ωt),

Ey =
1
c

(
−

kz

ω
v2

AB1 + `2
pΩp(kzB2 − kyB3) − c2

e
n̂e

n0

ky
Ωp

B0

)
cos(k · r − ωt), (VI-4.38)

Ez = −
1
c

c2
e
n̂e

n0

kz

Ωp
B0 cos(k · r − ωt).

The polarization relation for the magnetic field components can be calculated from
Faraday’s law in the form

−
1
c
∂B
∂t

= curl E (VI-4.39)
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and yields(
1 −

k2
z v

2
A

ω2

)
B1 = −

kzΩp`
2
p

ω
(kzB2 − kyB3),(

1 −
k2

z v
2
A

ω2

)
B2 = −

kzkyv2
A

ω2 B3 −
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ω2
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k2
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2
p

ω
B1, (VI-4.40)1 − k2

yv
2
A

ω2

 B3 = −
kzkyv2

A

ω2 B2 +
k2
yc

2
e

ω2

n̂e

n0
B0 +

kzkyΩp`
2
p

ω
B1.

The latter two relations can be combined to find

kyB2 + kzB3 = 0, (VI-4.41)

which means that the divergence of B is always zero for all solutions. In the classical
parallel case, these relations lead directly to B3 = 0 and(

ω

Ωp

)2

=
1
2

[
2k2

z `
2
p + k4

z `
4
p − k3

z `
3
p

√
k2

z `
2
p + 4

]
, (VI-4.42)

which is one representation of the dispersion relation of classical A/IC waves, which
has already been used before in Chapt. V (e.g., Stix, 1992; Chandran et al., 2010b). This
means, in turn, that the waves are circularly polarized if they fulfill this dispersion relation.
To close the system in the general case, the density fluctutations of electrons have to be
expressed in terms of known quantities. The linearized continuity equation can infer
informations about the density fluctuation amplitude n̂e:

n̂e = n0
ky
kz

k2v2
A

k2c2
e − ω

2

B2

B0
. (VI-4.43)

This compressibility amplitude is zero for the parallel propagation. After all, the system
can be written as

B3 = −
ky
kz

B2, (VI-4.44)

B1 = Ωp`
2
p

k2ω

k2
z v

2
A − ω

2
B2, (VI-4.45)

n̂e

n0
=

ky
kz

k2v2
A

k2c2
e − ω

2

B2

B0
. (VI-4.46)

It is important to guarantee that the latter expression for the relative density is much
smaller than one so that the density does not take ‘negative’ values and that the linearized
continuity equation is still an adequate description for the compressive effects. It is a
common phenomenon for oblique waves that the amplitude is limited due to the compres-
sive contribution (Yoon, 2011). Nonlinear waves, however, might have a very different
structure than the above assumed planar wave nature. Then also the density modulation
can have a different shape than the found sinusoidal dependence on the phase, and the
condition for a non-negative density would look differently. But the examination of this
is beyond the scope of this work.
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The method is the following: Firstly, values for ky and kz are chosen. The dispersion
relation in Eq. (VI-4.33) then delivers the adequate value for ω. The amplitude of the
wave is determined by choosing a value for B2. With the upper set of equations, the
polarization of the magnetic field and the density amplitude are fully determined. The
velocity field can then be calculated by Eq. (VI-4.37) in the form

vpx = −
kz

ω
v2

A
B1

B0
cos(k · r − ωt),

vpy =

(
−

k2v2
A

kzω

B2

B0
+

ky
ω

c2
e
n̂e

n0

)
sin(k · r − ωt), (VI-4.47)

vpz =
kz

ω
c2

e
n̂e

n0
sin(k · r − ωt).

VI.4.2 Results
The numerical costs are higher in the two-dimensional case. Therefore, the spatial resolu-
tion has to be reduced. A grid size of 2×1024×1024 cells is chosen. The minimum in the
x-direction is given by 2 for internal programming reasons. The number of superparticles
per cell is set to 500 and the time step is 0.01 in units of the inverse proton gyrofre-
quency. The parametric decay is studied for a monochromatic wave with the amplitude
B2 = 0.2|B0|. The plasma betas are set to βp = βe = 0.1.

The boundary conditions are a bit more sophisticated in the case of oblique propa-
gation. The size of the simulation box has to be chosen carefully to make the periodic
boundary conditions useful. If the oblique wave does not connect correctly on the upper
and lower boundaries and on the left and right boundaries, the boundary itself will lead
to wave deformation and undesired side effects such as a non-vanishing divergence of the
magnetic field on the boundaries. The number of wave maxima nz in the z-direction is
a useful input parameter. The number of wave maxima in the y-direction is denoted by
ny. It is required that the phases of the wave correspond to each other on the opposite
boundaries, which can be written as

kyy + kz · 0 = kyy + kzLz − 2πnz, (VI-4.48)
ky · 0 + kzz = kyLy + kzz − 2πny. (VI-4.49)

Then the wavenumber k =
√

k2
y + k2

z is chosen as

k =
2πnz

Lz cosϑ
(VI-4.50)

with the size Lz of the box in z-direction. Under this condition, the upper and lower
boundaries have the same values for all arbitrary y. The size Ly in the perpendicular
direction should be fixed by

Ly =
Lz

tanϑ
ny
nz

(VI-4.51)

to fulfill the condition of equal connection on the left-hand and right-hand side of the box.
It is a suitable idea to make the simulation box as close to the quadratic box as possible
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VI.4 Oblique propagation

Figure VI-6: Component By in the y/z-plane. It is the initial setup for the simulation of
obliquely propagating Alfvén/ion-cyclotron waves with ϑ = 10◦.

(i.e., Ly ≈ Lz). This condition and the correct connection lead to the number of maxima
ny in the form

ny = int (nz tanϑ) + 1. (VI-4.52)

The number one is added to keep the box size in y-direction non-zero in the limit of small
values for nz and ϑ. The number of wave trains nz is chosen in a way that the wavenumber
keeps more or less the same value, independent of the angle ϑ. Little deviations in k might
occur since the number nz has to be an integer, too. The wavenumber is fixed to k ≈ 0.39
in normalized units for the first run.

A typical initial setup for the magnetic field is shown in Fig. VI-6. The condition for
the periodic boundaries is clearly visible in this plot. The values of By are equal on the
upper and the lower boundaries for the same value of y. The values of By are equal on
the left and the right boundaries for the same values of z. Due to the plane wave ansatz,
this condition is fulfilled for all oscillating quantities. Only in this case, the condition
div B = 0 is guaranteed since otherwise the boundaries generate a source of magnetic
field simply due to the jump on these surfaces.

After 50 000 time steps, corresponding to the time t = 500, the wave has decayed
already. The two-dimensional spectrum is shown in Fig. VI-7. The initial oblique pump
wave is visible as a dot at ky ≈ 0.06 and kz ≈ 0.38. Energy is mainly transported along the
initial direction of the wave. It seems to have a higher power until kz = 1 in normalized
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VI Parametric decay in hybrid simulations

Figure VI-7: Two-dimensional power spectral density of magnetic field fluctuations after
t = 500. The red line indicates the initial propagation direction with ϑ = 10◦. The color
coding represents the power spectral density in arbitrary units.

units, which means that also here a spectral break should be expected. There is an increase
in wave activity at higher ky, and significant power is distributed there additionally. At
very low values for kz, a broader perpendicular pattern is visible.

Also the density fluctuation spectrum in two dimensions can be calculated from the
simulated data. It is shown in Fig. VI-8. It indicates that the main features visible in the
magnetic fluctuation spectrum also possess a compressive component. This is especially
true for all components having a non-zero ky. The lower total level of these fluctuations
permits to show some filamentary intermediate structures, which are not as clearly visible
in the magnetic field spectrum. These should be understood as a broad-band compressive
component of the daughter products.

To study the power distribution in more detail, the 2D Fourier transform can be cut
along the direction of the initial propagation. It corresponds to a cut along the red line
in Figs. VI-7 and VI-8. The one-dimensional power spectra are shown in Figs. VI-9 and
VI-10. The initial wave is still visible in both the magnetic field fluctuations and the
density fluctuations. Remember that the initial wave is compressive already due to its
obliquity. The initial wave looses some energy compared to the beginning. Energy is
first given to different wavenumbers and then dissipated at the small dissipative scales.
The wave decays to daughter waves with higher and lower wavenumbers compared to the
initial wavenumber.

The dispersion of the daughter waves can in general be determined along any direction
in the (ky, kz)-plane. Since an enhancement of energy is seen along the initial direction of
propagation (i.e., along the red line in Fig. VI-7), it is appropriate to calculate the disper-
sion along this line. Therefore, the two-dimensional spatial Fourier transform is applied,
and a cut is taken along the direction ϑ = 10◦ for 60 different time steps, which are sep-

114



VI.5 Discussion

Figure VI-8: Two-dimensional power spectral density of density fluctuations after t =

500. The red line indicates the initial propagation direction with ϑ = 10◦. The color
coding represents the power spectral density in arbitrary units.

arated by a time difference of 1/Ωp. The result is shown in Fig. VI-11. The enhanced
power in the (ky, kz)-analysis is also very well located in the (ω, k)-plane at k ≈ 0.75 and
ω ≈ 0.6. Comparing this point with the theoretical cold dispersion analysis of oblique
A/IC waves, shown as a red curve (or in Fig. VI-5, respectively), reveals that this point
is located very close to the branch of this wave mode. The pump wave has a significant
amplitude compared to the background magnetic field. Therefore, the polarization field
has to be added to the background and thus modifies the field, around which the daughter
waves propagate. The guiding field is not anymore strictly parallel to the z-axis. This
effect leads to a small broadening and shift in the dispersion analysis.

Calculations with further, moderately oblique propagation angles show comparable
results, especially the preferred direction of daughter wave propagation along the initial
direction. The obliquity is, however, not arbitrarily high for A/IC waves as stated before.

VI.5 Discussion

The one-dimensional parallel simulation allows one to calculate the evolution of the
plasma over a long time interval and with a high spatial resolution. Decay products with
lower and higher wavenumbers compared to the initial wavenumber of the pump wave are
found. The waves become compressive, which is not the initial situation in the parallel
case.

In the two-dimensional simulation, the computational limitations are more severe.
The daughter waves, which are generated already after quite a short time of evolution,
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Figure VI-9: One-dimensional power spectral density for magnetic field fluctuations after
t = 500 along the initial direction of propagation. Additionally the initial spectrum is
shown.

are mainly aligned along the initial direction of propagation. This can be understood as a
consequence of the conservation of momentum. In general, the wavevectors of the pump
wave and the two daughter waves have to form a triangle to fulfill this conservation in a
three-wave process. Other arbitrary combinations would be possible for an interaction be-
tween four or even more waves (Davidson, 1972). However, it seems that the background
magnetic field is not the most important guiding structure, but rather the initial propaga-
tion direction forces the geometry of the daughter-wave system at the present parameter
set. The oblique hybrid simulations by Matteini et al. (2010) can also be interpreted in this
sense, even though the authors favor the interpretation of a field-parallel spectral transfer.
However, the difference to their setup is the more realistic initialization in the above case
apart from the higher numerical resolution. The daughter waves with lower wavenumbers
seem to orient themselves more perpendicular to the background field. The modulational
instability is the generation mechanism here and seems to favor this direction of propaga-
tion.

The role of compressive effects becomes clear in both the one-dimensional and the
two-dimensional analysis. The parallel wave is intrinsically incompressive, but the de-
cay generates compressive fluctuations very efficiently. The oblique wave is intrinsically
compressive due to its polarization. During its evolution and decay, it also generates a
broad spectrum of compressive fluctuations. It is known from other treatments that com-
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Figure VI-10: One-dimensional power spectral density for density fluctuations after t =

500 along the initial direction of propagation. Additionally the initial spectrum is shown.

pressive waves steepen eventually and can lead to a situation, which the numerical solver
cannot handle. Therefore, it is important to choose the evaluation time properly and stay
far enough from these steepened end points of the integration. The above results (esp., the
normal mode structure and the still dominating pump-wave amplitude), however, under-
line that the critical time has not yet been reached in this case. It is important to remember
that the amplitude of oblique waves is in any case not arbitrary. Its intrinsic compressive
effects give an upper limit because negative density values have to be forbidden (Yoon,
2011). This is irrelevant for the parallel propagation.

The dispersion relation of the decay products from the oblique two-dimensional simu-
lation shows that these daughter waves are still A/IC waves, yet with higher wavenumber
and frequency. Other wave modes such as the fast/whistler branch for example are not
visible. This result is in agreement with previous treatments of the parametric decay,
which have shown that the A/IC wave is a typical daughter product of the decay (Araneda
et al., 2007). The interpretation is the following: The initial oblique A/IC wave with
wavenumber k0 is prone to the decay instability with k > k0 and the modulational instabil-
ity with k < k0. Dispersive effects let the decay instability generate A/IC waves (Hollweg,
1994). Obviously this effect occurs very efficiently for k & 0.6. Daughter waves are
only excited in certain ranges and not on a broad wavenumber range. The A/IC waves,
however, can easily fulfill the condition of cyclotron resonance for sufficiently high fre-
quencies/wavenumbers. Thus, there is an upper limit for the occurring A/IC waves due
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Figure VI-11: One-dimensional dispersion analysis of magnetic field fluctuations along
the direction ϑ = 10◦. The color coding represents the power spectral density. The en-
hancement in power corresponds to A/IC waves propagating obliquely to the background
magnetic field. The red line shows the cold dispersion relation for oblique A/IC waves
with ϑ = 10◦.

to the onset of cyclotron damping. This leads to a quite sudden cut in the spectrum at
k ≈ 0.9. The dispersion diagram together with this typical onset of damping underlines
the A/IC nature of the daughter waves.

The temperature of the particles does not increase significantly over the integration
time. This may be due to the comparably low intensity of the daughter waves and the lim-
ited simulation time. One-dimensional simulations show an increase and saturation of par-
ticle temperatures due to resonant wave–particle interactions (Araneda et al., 2009). The
temperature in the above simulations does, however, increase if no divergence-cleaning or
smoothing algorithm is applied to the electromagnetic fields. So maybe a possible heat-
ing is suppressed by these schemes, or the observed heating in the previous simulations is
only a numerical artifact. This question cannot be answered conclusively here.
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VII Spectral transfer of weak
turbulence from MHD scales into
the kinetic regime

Parts of this chapter have been submitted to a journal before submission of the thesis. The
reference of the article is:

Verscharen, D., Marsch, E., Motschmann, U., and Müller, J: Kinetic cascade beyond
MHD of solar wind turbulence in two-dimensional hybrid simulations, Phys. Plasmas,
accepted, 2012

VII.1 The nature and origin of turbulence on kinetic scales
The solar wind is a dilute plasma and known to be in a highly-turbulent state. It exhibits
fluctuations in the electromagnetic field, the plasma density, and bulk flow velocity over
a wide range of scales (see Chapt. I). However, the nature of solar wind turbulence in the
intermediate wavenumber regime situated between the large inertial MHD scales and the
small dissipative electron scales is not well understood. Especially the role of oblique
wave propagation with respect to the background Parker field is currently under debate.
Some authors favor a more or less independent behavior of the so-called slab component
(parallel with respect to the background magnetic field) and 2D turbulence (perpendicular)
(Montgomery and Turner, 1981; Bieber et al., 1996; Oughton et al., 1998). While in
this picture the highly-oblique 2D turbulence is believed to be an example of a strongly-
turbulent plasma state with high-order correlations between the fluctuating quantities, the
slab component is assumed to be describable within the framework of weak turbulence
theory, i.e., as a superposition of normal modes. Other authors interpret the observed
anisotropy as being the result of a kinetic Alfvén wave (KAW) cascade (Howes, 2008;
Schekochihin et al., 2008), which would suggest a preference of fluctuations with k⊥ �
k‖.

Measurements made by the four Cluster spacecraft have provided further insights into
the nature of solar wind turbulence since multi-spacecraft detections of magnetic fluctua-
tions even permit the analysis of their three-dimensional dispersion properties. However,
these measurements support different interpretations. A fully evolved nonlinear turbulent
state with a preferred 2D component beyond the MHD range was found by Alexandrova
et al. (2008a). The dispersion relation of this mainly perpendicularly structured com-
ponent might reflect a nonlinear cascade that also occurs at small scales. However, an
interpretation on the basis of normal modes, such as the right-hand circularly polarized
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fast/whistler (F/W) waves, is still possible (Narita et al., 2011).
There is strong evidence that the field-parallel component consists at least partly of

Alfvén/ion-cyclotron (A/IC) waves, which are dispersive left-hand circularly polarized
electromagnetic normal modes of a plasma. The temperature anisotropies and beam struc-
tures observed in the solar wind proton distribution functions were explained as resulting
from cyclotron-resonant interactions of the ions with these waves (see Chapts. I and II;
Marsch et al., 2004; Heuer and Marsch, 2007; Bourouaine et al., 2010). Recently direct
wave measurements have confirmed the existence of A/IC waves in the solar wind (Jian
et al., 2009). Yet, due to cyclotron-resonant wave–particle interactions, they are strongly
damped at wavenumbers corresponding to the inverse inertial length of the resonant ions
(Ofman et al., 2005), and thus they are not expected to exist at higher wavenumbers. A
coexistence of left-handed and right-handed modes has been recently supported by mea-
surements of the angle distribution of the magnetic helicity in the solar wind (He et al.,
2011a). Possible candidates for normal modes beyond the resonant wavenumber range
are the F/W modes, which may remain after the dissipation of the A/IC waves (Stawicki
et al., 2001), or an ongoing cascade of dispersive KAWs (Howes, 2008). Both these wave
modes show right-handed polarization under the conditions prevailing in the solar wind.
It is observed that the right-hand polarized waves survive the spectral break, which indi-
cates the transition from the inertial range to the ion dissipative scales, and that they can
exist at higher wavenumbers without damping until the resonant electron scales are finally
reached (Goldstein et al., 1994).

The following numerical simulation work is focused on studying the transition of
isotropic MHD turbulence to non-isotropic kinetic fluctuations on intermediate scales. For
this purpose, at least two-dimensional numerical simulations are necessary, with which
one can analyze the evolution of turbulence in different directions with respect to the con-
stant background magnetic field. The model system is initialized by a superposition of
linear MHD waves. No further external or ongoing driving force is applied, and thus the
system will evolve freely from its initial state. The A.I.K.E.F. code has been described
already in Chapt. VI. In the following, the boundary conditions are always set to be peri-
odic. The normalization is the same as in Chapt. VI.

VII.2 One-dimensional analysis

VII.2.1 Numerical setup
Turbulence always shows a broad spectrum of waves. It is still unclear how wave energy is
transported to higher wavenumbers in the dispersive range of the spectrum, where effects
due to the finite ion gyroradius play a role. Furthermore, dissipation of waves by ions
begins in the same wavenumber range. Thus, it is interesting to study the evolution of a
broad wave spectrum in this wavenumber range. At the beginning, it is done in one spatial
dimension parallel to the background magnetic field. The simulation can be initialized
with a spectrum of waves. So Alfvén/ion-cyclotron (A/IC) waves are add up according to

Bt =

nmax∑
n=1

bn

(
cos(knz + pn)
sin(knz + pn)

)
(VII-2.1)
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for the transverse magnetic field vector Bt with kn = k0 + n∆k. The values k0 and ∆k are
chosen in an appropriate way to cover the spectrum between k0 and a maximum value
kmax equidistantly in k-space. A random phase between zero and 2π is generated for each
wave and is denoted by pn. This guarantees that, at certain positions like z = 0, the field
does not pile up. The amplitudes bn are fixed in such a way that the power spectrum Pk

follows the typical Kolmogorov power-law with a power-index of −5/3. This implies
bn ∝ k−5/6

n . The amplitude is fixed in such a way that the integrated averaged transversal
energy density corresponds to the transversal energy density of a monochromatic wave of
the amplitude A. Such a monochromatic wave has a transversal energy density

E =
A2

8π
. (VII-2.2)

For the spectrum, the averaged energy density is defined as

Ē ≡
1

8πT

T∫
0

|Bt|
2dt. (VII-2.3)

Parseval’s theorem states that the total power in Fourier space has to be the same as
the total power in configuration space. For finite time series, it reads

1
T

T∫
0

|B(t)|2dt =

∞∑
n=−∞

|B(ωn)|2, (VII-2.4)

where the Fourier coefficients are defined as

B(ωn) ≡
1
T

T∫
0

B(t)eiωntdt (VII-2.5)

with ωn = 2πn/T . For a real signal B(t), one can write

1
T

T∫
0

|B(t)|2dt = B2
0 + 2

∞∑
n=1

|B(ωn)|2 (VII-2.6)

(Båth, 1974; Eriksson, 1998). The power spectral density is defined as

Pn = 2T |B(ωn)|2. (VII-2.7)

This leads to Parsevals’s theorem in the form

1
T

T∫
0

|B(t)|2dt = P0
∆ω

2
+

∞∑
n=1

Pn∆ω (VII-2.8)

with ∆ω = (2πT )−1.
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In this case, the total energy density can now be connected with the wave amplitudes
bn by

A2 =

nmax∑
n=1

b2
n, (VII-2.9)

which leads to

bn =
Ak−5/6

n√
nmax∑
n=1

k−5/3
n

. (VII-2.10)

For each wave component, the dispersion relation is evaluated according to Eq. (VI-3.24)
and the transversal wave velocity field by

V jt =

nmax∑
n=1

vn

(
cos(knz + pn)
sin(knz + pn)

)
(VII-2.11)

with vn following from the polarization relation in Eq. (VI-3.22) for each wave compo-
nent. This superposition is not an exact solution anymore because the superposition leads
to net ponderomotive fields. However, since the contribution of each wave is only small,
this choice of the initial polarization is still adequate. The system itself will find the real
polarization after a few steps autonomously and self-consistently. An example for the
initial power spectrum is shown in Fig. VII-1.

VII.2.2 Results
Case A In the first case, the evolution of a spectrum, which passes already over the
dissipative scales, is treated. Therefore, a spectrum continuing up to kmax = 2 is initialized
with 60 A/IC waves beginning at k0 ≈ 0.06. It can be used to investigate how power is
transferred into the dissipation range and how kinetic resonances can change the spectral
slope. Each cell is filled with 400 superparticles. The initial amplitude is set to A = 0.1
and the plasma beta to βp = 0.08. The initial condition is by definition incompressible.
The spectra at different times during the evolution are shown in Fig. VII-2.

Case B In the second case, the spectrum is initialized only up to kmax = 0.5 to see
the interesting spectral range, in which the A/IC waves can act as the source of resonant
heating. The region in which their damping dominates can be found in this case. The
other parameters are chosen as before. The power spectrum after the time t = 1125
is shown in Fig. VII-3. Also here a spectral break is clearly visible. At kz ≈ 0.5, the
spectrum drops significantly. Up to kz ≈ 3, the power spectrum remains on a more or less
constant level. The break point is closer to the inverse inertial length than to the inverse
gyroradius, which is expected at `p/rp =

√
2/βp = 5. The strong break in the spectrum is

in agreement with a combination of normal modes of the turbulence as it can be assumed
in weak turbulence (Li et al., 2001). The onset of the kinetic damping, which is natural
for normal modes, leads to a distinct cutoff in the spectrum.
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VII.2 One-dimensional analysis

Figure VII-1: Initial spectrum of A/IC waves. The transversal power is shown depending
on wavenumber kz. It consists of a superposition of 60 waves at equidistant spectral
positions between k0 = 0.06 and kmax = 2. The intensities of the single constituents
follow a power-law with the Kolmogorov power index of −5/3. At low k-values, the
single modes become apparent due to the logarithmic plotting.

In order to determine the nature of the higher-frequency part in detail, a dispersion
analysis has to be applied. A typical dispersion diagram after a sufficient time of evolution
is shown in Fig. VII-4, taken with Nt = 400 and ∆t = 10.

Two dispersion branches occur with small widths. One branch ends at k ≈ 0.8; the
other one continues almost with a quadratic dependence ofω on kz at higher wavenumbers
and frequencies. For the later discussion, the red curve in Fig. VII-4 shows the R-mode
or fast/whistler mode dispersion including some further corrections for ionic influences
at low wavenumbers additionally to the quadratic behavior of the whistler wave. This
dispersion relation has been discussed already in Chapt. V. It is given by

ω =
k2

2

1 +

√
1 +

4
k2

 (VII-2.12)

in this normalization.
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VII Spectral transfer into the kinetic regime

Figure VII-2: The left panels show the power spectral density of transversal magnetic
field fluctuations, the right panels show the power spectral density of density fluctuations
for Case A in arbitrary units. The line for the Kolmogorov spectrum with power-index
−5/3 has in all cases the same amplitude as in Fig. VII-1 to make the transfer comparable.
a) t = 630, b) t = 1000, c) t = 1500.

VII.3 Two-dimensional analysis

VII.3.1 Numerical setup

The width of the Maxwellian distribution is determined by the species’ beta, which rep-
resents the ratio of thermal to magnetic energy density and is set to βp = 0.05 for the
protons. The electron beta is fixed at βe = 0.5. In this beta regime, even low amplitudes
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VII.3 Two-dimensional analysis

Figure VII-3: Power spectral density of the transversal magnetic field fluctuations at t =

1125 in arbitrary units for Case B.

of magnetic fluctuations will have a strong influence on the motion of the particles due
to their high magnetization. In the known normalization, the two-dimensional integra-
tion box has a size of 250 × 250, which is covered by 2 × 1024 × 1024 cells, each of
which filled with 500 superparticles representing the real number density of protons. A
divergence-cleaning algorithm is applied to guarantee numerical stability.

The initial magnetic field is given as a superposition of linear Alfvén waves according
to

δBx =

mmax∑
m=1

nmax∑
n=1

bn cos(kny sinϑm + knz cosϑm + pn,m), (VII-3.13)

where a constant background field B0 is aligned along the z-axis. A random phase shift
pn,m is applied to each wave. The amplitudes bn are fixed in such a way that the power
spectrum follows a Kolmogorov power-law (Kolmogorov, 1941) in wavenumber with the
scaling ∝ k−5/3, and the total power of the composed wave field is made equal to the power
of a monochromatic wave with δB = 0.01B0. The angles ϑm cover 360◦ of propagation
directions by mmax = 50 discrete values, and the spectrum ranging between k0 = 0.05 and
kmax = 0.2 is covered by nmax = 20 waves. The upper limit kmax is quite high compared to
typical MHD scales but still in the dispersion-less range in first order. The initial velocity
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VII Spectral transfer into the kinetic regime

Figure VII-4: Dispersion relation at t ≈ 1125 in Case B. The color indicates the power
spectral density in arbitrary units. The red line shows the cold dispersion relation for
fast/whistler waves with ion corrections at low wavenumbers.

is obtained from the Alfvénic polarization relation

δV
VA

= ∓
δB
B0

(VII-3.14)

with the Alfvén speed VA = `pΩp.

VII.3.2 Results
In this section, some results of the numerical simulation runs are shown. The code ran
for a sufficiently long time so that an evolved nonlinear dynamic plasma state could be
expected. This was typically the case after an evolution time of about 500 gyroperiods,
at which time the system was analyzed. For this purpose, Fourier transformations in two
dimensions were applied subsequently to the magnetic field data and the density data.
The power spectral density was then calculated and could be shown to depend on the
wavenumbers kz for the direction parallel to the background field and ky perpendicular
to it. The resulting magnetic field power spectral density is shown in Fig. VII-5, and
the power spectral density of the compressive fluctuations is shown in Fig. VII-6. For
comparison, the initial power spectral density of magnetic field fluctuations is presented
in Fig. VII-7.

Apparently the magnetic field fluctuations show a preferred alignment with the di-
rection perpendicular to the background magnetic field. Especially, turbulence energy is
spreading in this direction to much higher wavenumbers than in the parallel direction. But
also the parallel fluctuations at wavenumbers beyond the initialized range are excited and
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VII.3 Two-dimensional analysis

Figure VII-5: Two-dimensional power spectral density of magnetic field fluctuations in
arbitrary units. The background magnetic field is oriented along the kz-axis. The cascade
of energy into the high-wavenumber ranges occurs preferentially in the perpendicular
direction.

gain energy. The compressive density fluctuations, however, are mainly aligned perpen-
dicularly to the background field and have almost no components parallel to B0.

Cuts through the two-dimensional spectra along the perpendicular direction are shown
in Fig. VII-8.

The power spectral density of the compressive fluctuations in the proton number den-
sity is enhanced for ky & 1 and follows mainly a power-law with a slightly steeper index
than k−5/3 in this range. The magnetic field spectrum is flatter in the dispersive range.

To study the nature of these fluctuations, a Fourier transformation can also be used, but
here it is applied in the time domain leading to the corresponding dispersion diagrams.
Therefore, first the two-dimensional spatial Fourier transformation is applied, and the
result is taken in one dimension only (parallel or perpendicular to B0). Then the data
are yet again Fourier transformed, now with respect to time. The result for the parallel
magnetic field dispersion is shown in Fig. VII-9. Two sharp branches can clearly be
seen beyond the initial wavenumber limit at kmax = 0.2. For an easier identification of
them, the cold-plasma dispersions for the left-handed A/IC waves and for the right-handed
F/W waves are additionally shown in the parallel dispersion diagram (Stix, 1992). The
observed parallel dispersion agrees well with that of the linear normal modes. The A/IC
branch ends at a wavenumber value below 1, whereas the right-handed branch continues
to higher wavenumbers and frequencies.

The perpendicular magnetic field dispersion is depicted in Fig. VII-10. Since the
density fluctuations are mainly perpendicularly oriented, their parallel dispersion diagram
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VII Spectral transfer into the kinetic regime

Figure VII-6: Power spectral density of compressive fluctuations in the proton number
density in arbitrary units. The spatial variation of the fluctuations occurs mainly perpen-
dicularly to the background magnetic field.

Figure VII-7: Initial power spectral density of magnetic field fluctuations in arbitrary units
at t = 0.

is not shown here. But the perpendicular dispersion diagram is illustrated in Fig. VII-11.
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VII.3 Two-dimensional analysis

Figure VII-8: Power spectral density of fluctuations in the magnetic field and density at
t = 500 along the perpendicular direction. A power-law with power-index −5/3 is shown
additionally to estimate the slope of the spectrum.

These two dispersion diagrams show a common structure in the fluctuations in the
form of a band signature of the intensity near the gyrofrequency and at higher harmonics
in the magnetic and compressive dispersion. This is a typical indication for the occur-
rence of ion-Bernstein waves (Stix, 1992; Brambilla, 1998; Swanson, 2003). A linear
branch with weak power is observed at ω/k = 1 in the perpendicular dispersion plots of
the magnetic field and density fluctuations. It corresponds to the linear fast-mode wave
in a low-beta plasma. A linear Alfvén wave does not propagate perpendicularly to the
background magnetic field and therefore can be excluded from the interpretation of this
branch. A coupling between it and the ion-Bernstein modes is not observed and can pre-
sumably not be detectable, given the spectral resolution of the numerical analysis applied.

There is further power distributed in compressive and magnetic structures at ω ≈ 0.
These signatures cannot be explained as ion-Bernstein waves because they do not have the
minimum frequency of Ωp and are merely spatial structures constant over time. To analyze
their nature, the possible correlation between the magnetic pressure PB = δB2/(8π) and
the density fluctuations δn can be applied. It is defined as

C ≡
〈δn δ|B|2〉√
〈δn2〉〈δ|B|4〉

, (VII-3.15)

where the brackets indicate a certain way of averaging. This averaging is here done only
perpendicularly to the magnetic field and in the time domain. Averaging over a long time
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VII Spectral transfer into the kinetic regime

Figure VII-9: Dispersion relation of magnetic field fluctuations parallel to the background
magnetic field at t ≈ 500. The red lines indicate the F/W (upper line) and A/IC (lower
line) cold dispersion relation.

Figure VII-10: Dispersion relation of magnetic field fluctuations perpendicular to the
background magnetic field at t ≈ 500.

scale corresponds to structures with low frequency, and averaging over short time scales
corresponds to higher frequencies. The same is true in the spatial domain.
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Figure VII-11: Dispersion relation of magnetic field fluctuations perpendicular to the
background magnetic field at t ≈ 500. The fluctuations coincide well with the magnetic
fluctuations.

The result of this calculation is shown in Fig. VII-12. At high values for the time
averaging and at low values for the spatial averaging, a strong anti-correlation between
PB and δn is found. This indicates the existence of pressure-balanced structures (PBSs),
which correspond to steepened-up slow-mode waves in the perpendicular direction (Tu
and Marsch, 1994). The classical slow-mode wave does not propagate at 90 degrees but
in this direction transforms into a tangential discontinuity, which some of the numerical
structures may represent. Therefore, it seems useful to analyze the perpendicular correla-
tion only since a parallel slow-mode component is not expected to survive but to undergo
strong Landau damping. However, it is also important to state that the simulation results
cannot be unequivocal on this issue because at other positions and different time inter-
vals the anti-correlation is not always pronounced, and some cases even show a positive
correlation. These findings should be understood just as an indication for the presence of
PBSs. In this special case, the correlation remains positive for only a few averaging steps
in time.

VII.4 Discussion

The one-dimensional analysis provides a first insight into the spectral transfer. Due to the
lower numerical needs, a longer integration time can be covered. However, the properties
of the waves are quite limited in this geometry. The typical parallel normal modes are
generated. The lower dispersion branch ending at about k ≈ 0.8 corresponds to A/IC
waves. This branch approaches the gyrofrequency asymptotically. The A/IC waves are
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Figure VII-12: Correlation coefficient C between fluctuations of magnetic pressure and
density depending on the averaging in space and time. The range for the spatial averaging
is given in units of the proton inertial length and the time interval for the temporal averag-
ing in units of the inverse proton gyration frequency. A strong anti-correlation is found up
to long averaging times, which correspond to low frequencies in the dispersion diagrams.
This is an indication for the existence of PBSs.

damped at around k & 0.8 as it has been also found in other numerical treatments (Ofman
et al., 2005). This shows that the part of higher frequency fluctuations is mainly domi-
nated by weak and undamped fast/whistler turbulence. So the polarization of the waves
has changed from the left-handed A/IC waves to right-handed F/W waves. The system is
distorted in such a non-trivial way by the initial conditions that the initial polarization is
not important for the later nonlinear evolution. This effect is also seen in the simulations
with two dimensions. The turbulence consists of fast/whistler normal modes and is thus a
representation of weak turbulence.

The two-dimensional simulations show that the turbulent power cascades preferen-
tially into directions perpendicular to the background magnetic field, which is consistent
with the recent results of other numerical simulations (MacBride et al., 2008; Jiang et al.,
2009; Markovskii et al., 2010) and observations (Chen et al., 2010; Sahraoui et al., 2010;
Narita et al., 2011). However, there is also a parallel cascade present, and the nature of
all the fluctuations shall be discussed depending on the direction of propagation.

The parallel fluctuations again seem to be well described as a superposition of normal
modes. In the range above the ion-cyclotron scales, they are mainly F/W waves as it has
been suggested before by many authors (Matthaeus et al., 1990; Stawicki et al., 2001;
Gary et al., 2008). This finding is in agreement with observations in the solar wind, indi-
cating that left- and right-handed normal modes coexist until a wavelength of the order of
1/`p, where the left-handed waves undergo resonant wave–particle interactions (Goldstein
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et al., 1994) with cyclotron absorption. At higher wavenumbers, only right-handed waves
can survive the transition into the intermediate dissipative range of solar wind turbulence
(He et al., 2011a). Linear wave damping seems to dominate the dissipation compared
to nonlinear damping effects as it has been discussed before in the context of interstellar
medium heating (Spangler, 1991).

Parallel A/IC waves are the most prominent of the left-handed waves that are known
to undergo strong ion-cyclotron damping under certain conditions (Marsch, 2006). The
observed perpendicular solar wind heating (Marsch et al., 2004) can, thus, be largely
explained by absorption of this left-handed normal mode, which is mostly observed in
parallel propagation. Quasi-perpendicular ion-Bernstein waves may also be able to heat
the plasma due to cyclotron-resonance effects. Therefore, also the here identified ion-
Bernstein modes could provide a heat source for the ions. The efficiency of the dissipation
of ion-Bernstein waves strongly depends on beta and is higher for larger beta values. This
effect is also discussed by Markovskii et al. (2010) in the context of a cascade of F/W
waves.

Fast waves themselves can of course also be dissipated by ions if they propagate
obliquely (Marsch, 2006). This effect may, however, be slow when compared to the
cyclotron-resonant absorption of A/IC waves and needs to be accumulated over a longer
solar wind travel time to become significant. The intensity of the ion-Bernstein bands
is more pronounced for higher electron betas, which is an indication for the electrostatic
character of these wave structures. A kinetic micro-instability, which is able to excite
ion-Bernstein waves in a way consistent with the wave structures observed in magneto-
spheres, has recently been treated in detail with particle-in-cell simulations (Liu et al.,
2011).

The nature of the perpendicular low-frequency fluctuations cannot be uniquely iden-
tified. There is evidence for the existence of pressure-balanced structures (PBSs), which
show the typical anti-correlation between δPB and δn. It is observed in the solar wind
that this anti-correlation dominates on shorter time averaging (Tu and Marsch, 1995). A
positive correlation dominates on longer time-scales, which is interpreted as the indica-
tion for co-rotating interaction regions as a result of interactions between different solar
wind streams with high and low outflow speeds. The correlation shows a typical spatial
dependence on large scales in the solar wind. A positive correlation is built up inside 0.7
to 0.8 AU, whereas the anti-correlation is already observed closer to the Sun prevailing
over a large distance range (Roberts et al., 1987a). Cluster observations also show PBSs
on smaller scales than the typical low-frequency MHD range (Yao et al., 2011). The ori-
gin of these structures, however, is unclear. Part of these structures may be generated by
a nonlinear cascade of the turbulence into the intermediate wavenumber range as it is re-
vealed by the simulations. Other possible non-propagating perpendicular wave structures
are mirror modes or Weibel modes.

The MHD modes with low wavenumbers mainly keep their amplitude level over their
temporal evolution and stay mostly isotropic. A longer integration time might also show
a preferred direction of the cascade at lower wavenumbers as it was observed by other
authors (Wicks et al., 2010). Waves with higher wavenumbers, however, may hand over
their energy more easily. This underlines that the spectral transfer occurs also in this case
locally in wavenumber space as it seems typical for a turbulent cascade (Coleman, 1968).
This effect is also incorporated in models concerning the coronal heating problem, where a
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nonlinear local cascade is often effectively described as an advection and diffusion process
in wavenumber space (Zhou and Matthaeus, 1990; Cranmer and van Ballegooijen, 2003).

Normal modes can also be directly excited from the ubiquitous thermal fluctuations
in a plasma (Araneda et al., 2011). However, their amplitudes usually stay on a very
low level, and they do not increase with time at the expense of energy drawn from lower
wavenumbers as it is observed in the here analyzed simulations. Therefore, it is reason-
able to interpret the observed wave structures at higher frequencies as being the products
of processes driven from the low-frequency side in the sense of a nonlinear mechanism,
instead of being of purely thermal origin with a typical energy content of the order kBT .

If the wave power in the inertial range is much higher than assumed here, other non-
linear couplings might also play a role in the kinetic regime. This can possibly destroy the
normal mode superposition even above k = 1 and then lead to a completely different pic-
ture with respect to both the spectral transfer to higher wavenumbers and the dispersion
structure in the dispersive spectral range.

Finally, the treated simulation box is small compared to all global structures in the
solar wind, and the numerical conditions are hence homogeneous in the above considera-
tions. There are, however, recent indications that inhomogeneities foster the thermaliza-
tion of wave energy (Ofman et al., 2011). This effect may play also a role for the global
evolution of the solar wind.
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This thesis has approached the problem of convected wave structures and spectral transfer
in space plasmas in three different ways. A kinetic study has shown how the presence of a
plasma wave (or even a wave field) modifies the structure of the velocity distribution func-
tion. The particles have to participate in the wave and follow the wave fields coherently.
It has been shown that measurements of these moving particle distributions can lead to
apparent temperature anisotropies due to a finite sampling effect. This smearing out could
be even stronger for future missions, such as Solar Orbiter or Solar Probe+, because of
the higher wave activity at close distances to the Sun compared to the orbits of Helios
and due to the high aberration as a consequence of the special orbital configuration of
these spacecraft. However, the better technical possibilities of modern instruments permit
a lower sampling time, which is, nevertheless, limited by the finite counting rates in dilute
plasmas.

The classical circularly polarized Alfvén/ion-cyclotron wave, which is believed to be
an important component of space plasma turbulence, has been studied in Chapts. IV and
V. Only a simplified case (monochromatic, parallel, fully-circularly polarized) allows one
to apply the classical incompressible description. As soon as one of these conditions is
broken, the wave obtains a compressive electrostatic component, and density fluctuations
of the ion-acoustic type are driven by ponderomotive forces. A multi-fluid description al-
lows one to take finite scale effects at the important kinetic plasma scales and frequencies
into account. Furthermore, the finite compressive effects change the mode structure of the
plasma significantly if a purely electromagnetic wave is present. Under certain reasonable
solar wind conditions, the large-amplitude wave can even provide free energy for an in-
stability of waves with a high wavenumber in the range of the inverse ion inertial length.
These waves are good candidates for resonant plasma heating. Thus, a new spectral trans-
fer mechanism has been found, which generates waves due to weakly-compressive effects
in the presence of a low-frequency wave. These high-frequency waves are able to interact
with particles resonantly. This mechanism is similar to the classical parametric decay,
but the shown derivation reveals the role of compressibility in a different, somewhat more
comprehensible way.

Another complication in real plasmas is the possibility of oblique propagation. The
study of parametric instabilities of oblique waves is still incomplete because of previous
computational limitations. The study in this work has shown that the decay of a circularly
polarized wave favors daughter waves in the same direction of propagation and with the
same polarization as the pump wave. The pump wave is already intrinsically compressive,
and so are the daughter waves.

A two-dimensional hybrid analysis of the turbulence spectrum beyond the MHD-
inertial range has shown that the parallel component favors the known normal modes
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Figure VIII-1: Consistent picture of the wave–particle cascade. The interplay of the parti-
cles (represented by the distribution function) and the electromagnetic fields (according to
Maxwell’s equations) is the crucial reason for spectral transfer in a collisionless plasma.

(Alfvén/ion-cyclotron and fast/whistler wave) for weak turbulence. The perpendicular
component shows signatures of a broad turbulent spectrum, which can be partly inter-
preted as pressure-balanced structures on small scales together with evidence for ion-
Bernstein waves.

Still, the nature of space plasma turbulence has not been fully understood. Once this is
achieved satisfactorily, these considerations should be integrated into the kinetic and fluid
models for the turbulence dissipation self-consistently. This additional aspect is, however,
far beyond the focus of this work.

It has become clear that the interplay between waves and particles plays an impor-
tant role in the framework of the cascade of energy. The consistent picture is shown in
Fig. VIII-1. Energy is introduced to the system on large scales. It may be interpreted as
a low-frequency forcing of the plasma, which is by nature a deformation of the distribu-
tion function similar to the description that has been found in Chapt. III. The distribu-
tion functions of particular plasma species modify the electromagnetic fields according
to Maxwell’s equations. These fields in turn shape the distribution function according to
the Vlasov equation. A self-consistent solution for this circle is an appropriate descrip-
tion of the cascade mechanism. As described in Chapt. III, properties of the solar wind
velocity distribution function are in many cases limited by micro-physical thresholds for
instabilities. Waves can, for example, shape the distribution function by pitch-angle scat-
tering and lead to a temperature anisotropy. If this anisotropy exceeds a certain threshold,
the distribution function becomes unstable and radiates waves with different wavenum-
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Figure VIII-2: Qualitative picture of a turbulent power spectrum. The red informations
summarize conclusions of this work.

bers/frequencies. This emission and absorption can occur until an equilibrium is reached.
A low-frequency wave itself can be the source of free energy, which generates high-
frequency waves as shown in Chapt. V. In all cases, the wave–particle nature of plasma
turbulence has to be taken into account.

The idea of spectral transport after the considerations of this thesis is depicted in
Fig. VIII-2, revisiting Fig. I-5 from the Introduction. Energy is injected to the system at
low wavenumbers. These waves can directly generate waves in the dispersive/dissipative
wavenumber ranges due to parametric decay or other instabilities. In the classical inertial
range, energy is transported from lower to higher wavenumbers following the typical cas-
cade, which is well confirmed by plenty of observations. The cascade may be described by
the methods of magnetohydrodynamics, or maybe even by hydrodynamics, consistently
with the observed spectral indices in this range. However, other processes are needed to
explain the transport of energy to higher wavenumbers in the dissipation range. Nonlin-
ear wave–wave interactions in the sense of the above described wave–particle cascade are
such mechanisms. These effects are well modeled by numerical simulations. Anisotropy
and oblique propagation play major roles there. Under weakly-turbulent conditions, the
turbulence is well represented by a superposition of normal modes. Starting from the
inverse proton inertial length scale, their energy is dissipated by the cyclotron resonance
of protons, and only the non-resonant modes survive. Up to the electron inertial length
scale, a cascade of mainly R-mode or whistler turbulence, respectively, is expected.

To summarize the conclusions of this work, the six open questions from the Introduc-
tion are revisited, and the possible answers after the analyses of this thesis are given:
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• How can coherent motions due to waves be described, and how can they influence
particle measurements from space probes?

→ A plasma wave leads to a coherent variation in the velocity distribution function
of the particles. Sampling over time can lead to a smearing effect and hence to
apparent temperature anisotropies in the measured distribution function.

• What is the nature of fluctuations below the ion scales?

→At wavenumbers higher than the inverse inertial length of the solar wind protons,
only right-handed waves are possible propagating normal modes for parallel prop-
agation. Fast/whistler waves are good candidates in this case. The perpendicular
direction mainly shows a broad spectrum for density fluctuations with signatures of
ion-Bernstein modes and small-scale pressure-balanced structures.

• How are these waves associated with electric fields that can accelerate/thermalize
particles?

→ Already a non-constant transversal amplitude of a parallel circularly polarized
wave drives electrostatic fluctuations due to a non-vanishing ponderomotive field.
Landau- and cyclotron-resonant wave fields are generated already as a direct con-
sequence of the parametric decay and other spectral transfer processes.

• What is the role of compressive effects in solar wind turbulence?

→ As soon as waves leave the simplified special case of circularly polarized mono-
chromatic parallel normal modes, they become compressive by nature with an asso-
ciated electric field. Also simulations show that compressive fluctuations are always
growing during the evolution of the system.

• Are the solar wind fluctuations (at least partly) a non-interacting superposition of
waves?

→ If the amplitudes of the fluctuations are not too high, the parallel component
is well represented by a superposition of normal modes. Also the perpendicular
component shows this property, but additional higher-order effects seem to play an
important role for them.

• How does the (anisotropic) spectral transfer work?

→ Daughter-wave products of the parametric decay of a monochromatic oblique
wave seem to favor the initial direction of the pump wave with respect to the back-
ground magnetic field and its polarization. A broad isotropic inertial-range spec-
trum evolves into different fluctuating structures depending on the direction with a
preferentially perpendicular orientation.

The observational confirmation of some of the above predictions is still unsettled. A
wave telescope in the free solar wind would be desirable, which is able to determine the
polarization and dispersion of the solar wind fluctuations directly. The Cluster spacecraft
can deliver these measurements in times, when the spacecraft have an appropriate geom-
etry and are outside the Earth’s magnetosphere in the free solar wind (Narita et al., 2010;
Sahraoui et al., 2010). If a system of several (minimum four) spacecraft was available
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in the unperturbed solar wind measuring the fluctuation properties in the convected solar
wind reference frame due to a certain orbital configuration, the still undiscovered prop-
erties of solar wind turbulence could be revealed. However, such a mission would most
probably be foredoomed due to the high efforts so that further turbulence studies will be
likely achieved as side-effect results from other missions. Even the highly-elliptic orbits
of the Helios space probes reached a radial spacecraft velocity of only about 30 km/s,
which is still too low to be co-moving in the solar wind outflow. For the solar corona, no
in-situ measurements will be possible in the medium term. The remote observations will
improve and provide a better spatial and temporal resolution in future. Also the extrapo-
lation from close orbiters, such as Solar Orbiter or Solar Probe+, will have to provide the
empirical background.

From the numerical point of view, full particle-in-cell simulations can deliver promis-
ing access to yet unsolved questions because the high-frequency processes and effects due
to finite space charge densities can be treated with them. Also strong turbulence should
be approached with this strategy. Maybe one day the computational systems permit a
multi-dimensional treatment of space plasma turbulence on the many relevant scales. The
global evolution of the solar wind, including all observed particle species (protons, elec-
trons, other ions, neutrals, pick-up ions, cosmic rays, and so on), could then perhaps be
modeled based on the underlying micro-physical mechanisms. Analytical studies (espe-
cially in the focus of the yet open question about the role of compressibility and oblique
propagation) shall deliver, until then and beyond that time, an intuitive and comprehensi-
ble access to the problem of the nature of space plasma turbulence.
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