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Summary

The increasing realism of 3D radiative MHD simulations provides a unique laboratory of
solar photospheric processes. In order to confront these simulations with observations,
observables have to be computed, including spectropolarimetric quantities, which pro-
vide the most powerful tool for probing the properties of solar magnetoconvection. The
study of spectropolarimetric properties of electromagnetic waves originating in a realis-
tic simulated solar photosphere allows us to identify suitable diagnostics of the various
solar phenomena resulting from the interaction between the plasma and the magnetic
field in the photosphere and sub-photospheric layers. In addition, the comparison of the
spectropolarimetric properties of light originating from MHD simulations and from ac-
tual solar observations allows us to get a better insight into the fascinating and complex
photospheric phenomena. In this thesis we have studied the following subjects :

• Small scale magnetic flux concentrations are often modelled as some form of flux
tube or flux sheet, having respectively, axial and translational symmetries. A com-
mon representation of these flux tubes/sheets is given by the thin flux tube/sheet ap-
proximation. We have made a comparative analysis between these forms of models
and flux concentrations existing in 3D radiative MHD simulations. We found that
the second-order thin flux tube/sheet models are consistent with the fluxtubes/sheets
obtained in the MHD simulations.

• A powerful way of studying the properties of magnetic flux concentrations in the
photosphere is to observe them near the solar limb. In this situation rays cross flux
elements obliquely thus sampling these flux elements laterally. Together with ob-
servations at disc center, this allows to better constrain models aiming to represent
these flux concentrations and their surrounding plasma. We make a spectropolari-
metric study of magnetic elements in 3D MHD simulations at disc center and at a
heliocentric angle θ = 67◦ (μ = cos θ=0.39). We investigate the dependence of the
sign of the Stokes-V area asymmetry on the gradients of the line-of-sight compo-
nents of the velocity and magnetic field. The amplitude asymmetry of the average
simulated Stokes-V profile is larger than its area asymmetry. These asymmetries
are positive at disc center and negative at μ=0.39. The distribution of the simulated
Stokes-V area asymmetry across a magnetic element at disc center is close to the
observed one by Hinode’s SP.

• We compare the spectropolarimetric signal obtained from simulations with the ob-
served one at μ=0.39. The comparison is made possible by degrading the spectral
and spatial resolutions of the simulated signal to mimic the observation conditions.
We find that observations are reproduced by simulations with average field strength

5



Contents

varying between 200G and 400G. The magnetic flux is mainly distributed over kilo-
Gauss flux elements situated in intergranular lanes.

• Flux emergence into the photosphere is studied by analysing the spectropolarimet-
ric signal obtained from MHD simulations of a buoyant rise of a flux rope into
the photosphere. We identify some aspects of the spectropolarimetric signature
of this rising event over a time-sequence of snapshots. Following observational
procedures we degrade the simulated signal to observation conditions and apply
a Milne-Eddington inversion to obtain atmospheric parameters. Comparison with
observations reveals that the magnetic field strength and upflow velocity of the ob-
served emerging flux are reasonably well reproduced by the MHD model, whereas
the amount of twist applied in the simulations was higher than the one in the con-
sidered observations.
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1 Introduction

The sun is the star in the center of our solar system. It is the only star on which we can
resolve physical processes down to some important scales. The magnetic field plays a
key role in solar physics. It is what makes the sun an "active" star. It results in a large
variety of fascinating phenomena like: sunspots, faculae, prominences, coronal loops,
etc. The magnetic field is generated by hydromagnetic dynamo processes (Ossendrijver
2003) in the presence of differential rotation, turbulent convection, and meridional flows.
The most likely location for the intensification of the large-scale azimuthal magnetic field
is the tachocline region at the bottom of the convection zone, where there is strong ra-
dial and azimuthal differential rotation (Thompson et al. 2003). The intensified azimuthal
magnetic fields are then transported to the solar surface and atmosphere through the buoy-
ant rise of Parker-unstable magnetic flux tubes (Fan 2004, and references therein).

1.1 The solar atmosphere

The solar atmosphere is the outermost part of the sun. There, photons can escape to the
interstellar medium. Conventionally, the solar atmosphere is divided into three layers : the
photosphere, the chromosphere and the corona. One way of quantitatively defining these
layers is to look at the altitude distribution of the average kinetic temperature through the
solar atmosphere (Gray 2005). We focus here only on the photosphere, which is the layer
indicated by the shaded region in Figure 1.1

The photosphere is the lowest layer of the solar atmosphere. Its thickness is only a few
hundred kilometers, but most photons escaping from the sun are coming from this region.
This is due to a relatively sharp increase of photon mean free path in the photosphere
comparing to the underlying sub-photospheric layers. The escaping photons carry infor-
mation about the plasma they interacted with (see chapter 2). Analysing the photospheric
radiation allows us to diagnose about the properties of the plasma in this layer. Here we
carry out spectro-polarimetric diagnostics. This means we not only investigate the spec-
tral properties of the electromagnetic radiations but also their polarization state which is
encoded in the electric field vector of the radiation. The polarization in the photosphere
is mainly introduced by the Zeeman effect. This will allow us to probe the dynamics
and properties of magnetic flux elements in the solar plasma via the theory of radiative
transfer of polarized light.
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1 Introduction

Figure 1.1: The height distribution of temperature in the outer layers of the sun. The
height is given in kilometers measured from a zero point where the average optical depth
< τ5000 >= 1. The photosphere is indicated by the shaded region. Adapted from Gray
2005, based on the work of Vernazza et al. (1973).

1.2 Photospheric magnetic phenomena

Magnetic features covering a wide variety of sizes are observed in the photosphere. Their
related magnetic flux varies by six orders of magnitude between the smallest and the
largest of these phenomena (Solanki 2001). For convenience we can split these magnetic
manifestations into two categories : 1/ sunspots, 2/ small-scale magnetic field elements

Sunspots are the most readily visible manifestations of the interaction between solar
magnetic field and the solar plasma (Solanki et al. 2006). They have been systematically
observed and studied since about 400 years, starting with the first solar observations using
a telescope in 1611 by Galilei and others. The first evidence of their magnetic nature was
revealed by Hale (1908) who measured the Zeeman splitting of spectral lines. Sunspots
are constituted by a dark central part called the umbra (see Figure 1.2), surrounded by a
brighter region characterized by an organized filamentary structure called the penumbra.
For recent reviews on sunspots, see Thomas and Weiss (1992) and Solanki (2003).

Small scale magnetic features contain most of the solar magnetic flux. Using line ratio
technique Frazier and Stenflo (1972), and Howard and Stenflo (1972) have determined
that more than 90 percent of the solar magnetic flux is contained in small-scale magnetic
features. They are concentrated mainly in active regions and in the network (the latter
found all over the sun) outlining the supergranular cells. These flux concentrations have
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1.2 Photospheric magnetic phenomena

Figure 1.2: Continuum image of a sunspot taken with the Dutch Open Telescope (DOT)
operating on La Palma, Tenerife. The image was taken in the blue continuum (around
432nm). The image was downloaded from the DOT website

typically field strengths larger than a kilogauss (Stenflo 1973, Wiehr 1978, Rabin 1992,
Rüedi et al. 1992, Martínez Pillet et al. 1997), for reviews see (Solanki 1993, 2003).
Part of the magnetic field is also forming the so called internetwork elements, which are
located in the interiors of supergranular cells. There is also observational evidence of
omnipresent turbulent (i.e., randomly oriented on small scales) field of few tens of gauss
(Faurobert-Scholl et al. 1995, Faurobert et al. 2001, Trujillo Bueno et al. 2004). These
last references have used Hanle depolarization as a diagnostic tool for determining the
magnetic field properties (Stenflo 1994). More recent observations using Hinode’s SP and
Zeeman diagnostic (Lites et al. 2008) have revealed the presence of an average horizontal
magnetic field five times larger than the vertical one. These differences suggest the need
of higher spatial resolution and more realistic simulations in order to better understand
the quiet sun internetwork magnetic field (e.g. Schüssler and Vögler 2008).
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1 Introduction

1.3 Modelling the solar photospheric features

The photosphere is constituted of electrically conducting plasma. Thus the magnetic
field couples to the plasma. The wide variety of magnetic phenomena observed at the
photosphere is described by the MHD equations (including a proper treatment of energy
transport by radiation). Under some simplifications, it is possible to model photospheric
features using an analytical approach. This has revealed some physical processes govern-
ing photospheric phenomena (e.g. Chaouche and Abdelatif 2005). Nevertheless the dy-
namical, three dimensional, and structured nature of the photospheric phenomena makes
it necessary to use more elaborate, invariably numerical models in order to capture the
complex nature of the considered photospheric features.

The numerical models exhibit a large variety of assumptions and simplifications, mak-
ing a trade-off between including the necessary physics (which complicates the model)
and applying some suitable simplifications due to the limitation in computing resources
and available algorithms. We can distinguish two main numerical modelling approaches:
empirical (or semi-empirical) models and self consistent MHD models.

The first approach considers empirical or semi-empirical models. In this approach,
a model atmosphere with some free parameters (like temperature stratifications, density,
etc.) is assumed. These free parameters are adjusted to fit observational data. This is
done usually by inversion techniques. Empirical models with increasing sophistication
levels have allowed to construct models of various photospheric features. These play a
key role in understanding the solar atmosphere (Vernazza et al. 1976, Solanki and Stenflo
1985, Solanki 1986, Fontenla et al. 1990, Solanki et al. 1991). For a review about small
scale flux concentrations see Solanki (1993) and Solanki et al. (2006). For reviews about
sunspots see Thomas and Weiss (1992), Solanki (2003), Solanki et al. (2006).

The second approach consists of solving numerically the MHD equations, includ-
ing as much physical processes as possible. One version of these models assumes that
magnetic flux elements are represented by magnetic flux tubes or flux slabs, having re-
spectively an axial or translational symmetry (also true for empirical models). These
come from solutions of the MHD equations at low order (Defouw 1976, Roberts and
Webb 1979, Spruit 1981). This modelling approach is widely used (see Solanki et al.
2006, for a review). Flux tube models are still successfully used (e.g. Khomenko et al.
2008). This last reference presents a study of some properties of magneto-acoustic waves
in a vertical flux tube. Due to the 3D nature and the many physical processes involved
in photospheric phenomena, a more self consistent way of modelling photospheric fea-
tures involves using numerical solutions of the MHD equations that are not limited by
restrictions to certain symmetries, etc. This is done including as many realistic aspects as
possible, like including a proper treatment of radiative energy exchange, and partial ion-
ization of chemical elements. 3D simulations of solar granulation were first carried out
by Nordlund (1982). This has been followed by an increasingly large body of work ow-
ing to the increasing computing resources and the attractive success of these models (for
reviews, see Schüssler 2001, Schüssler and Knölker 2001). In the last few years, realistic
magneto-convection simulations have been successfully carried out for studying different
photospheric magnetic phenomena and physical processes: Solar surface dynamo (Vögler
and Schüssler 2007), flux tube emergence at the solar surface (Cheung et al. 2007, 2008),
the formation and evolution of umbral dots (Schüssler and Vögler 2006), the structure
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1.3 Modelling the solar photospheric features

and internal dynamics of a pore (Cameron et al. 2007). Comparison of these simulations
with observational data allows to validate the findings of these numerical studies or to
determine their shortcomings. Studying the spectropolarimetric properties of the Stokes
profiles emerging from a simulated atmosphere and comparing them with observations is
the best way of determining similarities and differences between the simulated and ob-
served phenomena. E.g. Schüssler et al. (2003) and Shelyag et al. (2004), have carried
out a spectral synthesis of the G-band spectrum emerging of a 3D radiative MHD sim-
ulation, and compared it with observations. This has been successful in explaining the
origin of G-band bright points. Khomenko et al. (2005) have carried out a comparison
between the observed and synthesized (from 3D MHD simulations) Stokes signal for Fe
I spectral lines at 6301.5, 6302.5, 15648 and 15652 Å for several simulations with aver-
age field strengths ranging from 10 to 140 Gauss. They found that the synthetic spectra
show many properties in common with the observed ones. Nevertheless, they pointed out
that the seeing conditions affect the resulting Stokes spectra leading to different possible
diagnostic, of the same data, depending on the degrading seeing conditions.

The advent of 3D radiative MHD simulations with a high degree of sophistication
including a non-grey and non-local treatment of radiative energy exchange (see MURaM
code Vögler et al. 2005), raises some key questions:

As mentioned earlier there exists a large body of work explaining some aspect of
photospheric flux elements using the concept of thin flux tube or flux slab. How do these
models compare with 3D MHD simulations? This is a key question which may clarify the
validity of some widely used empirical and numerical models. In order to find an answer
to this question we will compute thin flux tube and thin flux sheet models and compare
them with magnetic flux elements existing in high resolution MHD simulations. This will
be done in chapter 3.

Another fundamental question is: to what extent do the 3D radiation MHD simula-
tions reproduce photospheric phenomena? To address this question, we need to make
a comparison between the simulations and spectropolarimetric observations. We have
analysed two simulation scenarios. The first one (chapter 4) aims to study the spectropo-
larimetric properties of small scale flux elements at disc-center and near the solar limb.
The emerging Stokes spectra from such simulations have been calculated using the STO-
PRO code in the SPINOR package (Solanki 1987, Frutiger et al. 2000). This allows us to
study the line formation process in a realistic atmosphere. Then, in order to compare these
synthesized Stokes spectra with spectropolarimetric observations, we reduce the spatial
and spectral resolution of the synthetic Stokes spectra to make them comparable with
those of the observations. The comparison is presented in section 4 of the fourth chapter.
The second simulation scenario will be analysed in chapter 5. It considers a flux tube
emerging into the solar photosphere (Cheung et al. 2007). From an observational point
of view, the properties of flux emergence have been studied since a few decades (Brants
1985a,b). Our aim is to determine the spectropolarimetric signature of the simulated flux
emergence event and discuss it in terms of its origin in the MHD simulations. In order to
define similarities and differences between the simulations and the actual flux emergence
in the solar photosphere, we perform a comparison of the synthetic spectropolarimetric
data with recorded observations.
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2 Radiative transfer in a magnetized
medium under Zeeman regime

2.1 Introduction

A spectral line results from the interaction of an electromagnetic wave with a quantum
system (usually atoms, ions or molecules). In an astrophysical context the ensemble of
quantum systems appears macroscopically often as a plasma. The resulting spectral line
will be affected by the characteristics of the atoms or other constituents of the plasma
interacting with the electromagnetic wave. In the presence of a magnetic field, the spectral
lines may exhibit some polarization properties. In the next sections we will discuss the
processes producing an atomic spectral line in a magnetized plasma. The first section
is dedicated to the effect of the magnetic field on spectral line formation in the Zeeman
regime. The absorbtion and dispersion of electromagnetic waves in a plasma will be
discussed in the second section. The transfer of a polarized electromagnetic wave is
described by a transport equation developed by Unno (1956) and further by Rachkovsky
(1962). This radiative transfer equation will be treated in the last section.

2.2 The Zeeman effect

The Zeeman effect is the splitting of spectral lines into several components in the presence
of an external magnetic filed. It was fist recorded by Pieter Zeeman in 1896. An early
attempt to explain the origin of the Zeeman effect was given by Lorentz in term of the
classical Larmor’s precession theory. The quantum mechanical approach offers a more
adequate and general explanation of the Zeeman effect (e.g. the text book by Cohen-
Tannoudji et al. 1973). The splitting of spectral lines into several components is due
to a change in energy levels of the electrons involved in the quantum transitions. To
understand that, we turn to the Hamiltonian characterizing an electron bound to an atom
in the presence of an external magnetic field.

H = H0 +HM, (2.1)

where H0 is the Hamiltonian of the system without magnetic field, HM is the Hamiltonian
associated with the perturbation introduced by the external magnetic field. We will first
describe H0 and then talk about HM.

The main contribution to H0 is coming from the kinetic and potential energy operators
associated with the motion of an electron in the potential created by the nucleus of the
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2 Radiative transfer in a magnetized medium under Zeeman regime

atom. In the case of multi-electronic atoms, we have to take into account contributions
from the other electrons on the considered one. An orbiting electron will have an orbital
angular momentum L, such that the eigenvalues of the operator L2 will be �l(l + 1), and l
being the orbital quantum number, with l = 0, 1, 2, ... depending on the considered orbital.
The electron will have a spin momentum S, with S2 having the eigenvalues (�s(s+1)), and
the spin quantum number taking the values s = 0, 1/2, 1, ... depending on the electronic
configuration.

The momenta L and S will have magnetic moments μl and μs respectively. This will
make the two momenta interact with each other.

μl = −gl
μB

�
L, (2.2)

with μB = e �/(2 m) being the Bohr magneton. e is the electron’s charge, m the electron’s
mass and � the reduced Planck constant. gl = 1 is the Landé factor corresponding to
the orbital momentum. It is a proportionality factor between the magnetic and orbital
momenta, which might be retrieved in a more fundamental formulation of the magnetic
momentum in terms of the field resulting of an electron in an orbital motion.

For the spin we can write a similar formula:

μs = −gs
μB

�
S, (2.3)

where gs = 2 is the Landé factor for the Spin of the electron

We only consider interaction between orbital and spin magnetic moments, and ne-
glect the nuclear magnetic moment which is shown to be at least 3 orders of magnitude
smaller than the electronic moments (Sobel’man 1972). We consider only a spin-orbit
(L-S) interaction. The Hamiltonian H0 will then include a small contribution due to the
L-S coupling. We define the total angular momentum J = L + S, with J2 having the
eigenvalues � j( j + 1), and j varying between |l + s| and |l − s|

The external magnetic field will also interact with the magnetic moment of the bound
electron. If the L-S coupling dominates over the interaction of the external magnetic field
with the magnetic moment of the bound electron, HM can be treated as a perturbation
to H0. This is the so called Zeeman regime. This is a common situation with relatively
weak magnetic field (like in the solar photosphere). But if the interaction of the external
B dominates over the L-S coupling, the magnetic orbital moment and the spin moment
interact separately with B. This is the so called Paschen-Back effect. We will describe
here the Zeeman effect only.

The total magnetic moment of the electron will couple to the external magnetic field,
such that the Hamiltonian HM has eigenvalues EM, such that:

EM = −μ j.B (2.4)

with μ j being the magnetic moment associated with the total angular momentum J.

μ j = −g
μB

�
J (2.5)

where "g" is the Landé factor associated with the total magnetic moment.
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2.2 The Zeeman effect

In term of L and S, we get:

EM =
μB

�
(glL + gsS).B (2.6)

L and S are not separately conserved, only the total angular momentum J is conserved.
The spin and orbital angular momentum vectors can be thought of as precessing about the
total angular momentum vector J. We can write:

EM =
μB

�
(gl < L > +gs < S >)B (2.7)

Where < L > and < S > are the time-averaged spin and angular momenta. They are the
projection of the spin and angular momenta on the direction of J :

< S >=
SJ
J2

J, (2.8)

and

< L >=
LJ
J2

J. (2.9)

Thus the eigenvalue associated with a Zeeman perturbation can be written:

EM =
μB

�
J(gl

LJ
J2
+ gs

SJ
J2

)B. (2.10)

Using the square of the relation L = J − S, we get:

SJ =
1
2

(J2 − L2 + S2) =
�

2

2
[ j( j + 1) − l(l − 1) + s(s + 1)] (2.11)

Using the square of the relation S = J − L, we also get:

LJ =
1
2

(J2 + L2 − S2) =
�

2

2
[ j( j + 1) + l(l − 1) − s(s + 1)] (2.12)

The presence of the external magnetic field introduces a preferential direction (let us
call it the z direction in a Cartesian coordinate system (x,y,z)). Jz is the projection of J on
the direction parallel to B such that Jz = �M, with j ≥ M ≥ − j. Substituting the relations
2.11 and 2.12 in equation 2.10 we obtain:

EM = μBMB [gl
j( j + 1) − l(l − 1) + s(s + 1)

j( j + 1)
+ gs

j( j + 1) + l(l − 1) − s(s + 1)
j( j + 1)

] (2.13)

and, considering the Landé factors gl = 1, and gs = 2, we finally get:

EM = μBMBg = μBMB [
3
2

s(s + 1) − l(l − 1)
j( j + 1)

] (2.14)

thus, the Landé factor associated with the total angular momentum J is:

g =
3
2

s(s + 1) − l(l − 1)
j( j + 1)

(2.15)
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2 Radiative transfer in a magnetized medium under Zeeman regime

EM is then the energy shift associated with an external magnetic filed in the Zeeman
regime. In this case, an original state (without external magnetic field) characterized by
a set of quantum numbers (l, s, and j) will split (in the presence of an external magnetic
field) into (2j+1) sub-states corresponding to all possible values of M. Thus the external
magnetic field has removed the degeneracy of the initial state (without magnetic field).

A quantum transition starting from a lower state (with j = jl) to an upper state ( j = ju),
will start from one of the sub-states (with j = jl and also M = Ml, ( jl > M > − jl)) to
one of the upper sub-states (with j = ju and also M = Mu ( ju > M > − ju)). Not all the
transitions between two given states are allowed. The electric dipole radiation selection
rules allow only certain transitions to happen. These selection rules are : Δ j = ju − jl =
0,±1 andΔM = Mu−Ml = 0,±1. An exception to these rules is the case when ju = jl = 0,
which is forbidden.

The central frequency ν0 of the wave associated with each transition is then:

ν0 =
EM

h
=
μB

h
B (Ml gl − Mu gu) (2.16)

The transitions with ΔM = 0 are called "π-components". Those with ΔM = ±1 are
called "σ±-components" respectively. In some textbooks σ+ and σ−-components are also
referred to as σb and σr-components respectively.

If we define jmin ≡ min( jl, ju), then the selection rules will give us the total number of
possible transitions for each ΔM case. We have :

Nπ = (2 jmin + 1) possible π − components (ΔM = 0) (2.17)

Nσ+1 = ( ju + jl) possible σ+ − components (ΔM = 1) (2.18)

Nσ−1 = Nσ+1 = ( ju + jl) possible σ− − components (ΔM = −1) (2.19)

The strength S α,i of the different Zeeman components (not to be confused with the spin)
is given by:

S α,i =
S̃ α,i∑
i S̃ α,i
, α = ΔM = +1, 0,−1, (2.20)

The non-normalized strengths S̃ α,i are given in table 2.1. i = 0, 1, 2, ...Nπ for π-components,
i = 0, 1, 2, ...Nσ+1 for σ+1-components and i = 0, 1, 2, ...Nσ−1 for σ−1-components.

These strengths are defined for the case where the magnetic field vector is perpen-
dicular to the line-of-sight (i.e. the inclination angle γ = π/2). In the general case, the
strengths (S α,i,γ) of Zeeman components at an arbitrary angle γ are calculated from the
strengths (S α,i) at π/2 via the Seares formulae (Seares 1913):

S 0,i,γ = S 0,i sin2(γ) (2.21)

S +1,i,γ = S +1,i (1 ± cos(γ))2 (2.22)

S −1,i,γ = S −1,i (1 ∓ cos(γ))2 (2.23)
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2.3 Absorption and dispersion in a conducting plasma

Figure 2.1: Non-normalized strengths S̃ α,i for the possible values of α = Δ M and ΔJ.
Adapted from Borrero (2004).

where the upper and lower signs in the right-hand-sides of equations 2.22 and 2.23 are
relevant for right- and left-handed circular analysers respectively.

2.3 Absorption and dispersion in a conducting plasma

Throughout this section we have been mainly using the following sources : Mihalas
(1970), Solanki (1987), Rutten (2003), del Toro Iniesta (2003), Borrero (2004), Gray
(2005).

We consider a quasi-monochromatic electromagnetic wave propagation parallel to the
Z axis in a Cartesian coordinate system (X, Y , Z) (del Toro Iniesta 2003). The electric
field associated with this wave is defined in the plane (X, Y) perpendicular to the direction
of propagation of the wave. The projections of the electric vector on the X and Y axes are:

Ex(t) = ax(t) exp[−i(2πν0(t) − δx(t))] (2.24)

Ey(t) = ay(t) exp[−i(2πν0(t) − δy(t))] (2.25)

ax and ay are the amplitudes of each component of the electric field. δx(t) and δy(t) are
phase factors to account for time lags between the components of the electric field vector.
δ(t) = δx(t) − δy(t) is defined as the phase difference between the x and y components of
the electric field. ν0(t) is the central frequency of the quasi-monochromatic light beam.
The Stokes parameters associated to this light beam are defined as averages over an entire
period :

I = 〈a2
x〉 + 〈a2

y〉 (2.26)

Q = 〈a2
x〉 − 〈a2

y〉 (2.27)

U = 2〈ax ay cos(δ(t))〉 (2.28)

V = 2〈ax ay sin(δ(t))〉 (2.29)

Let us consider an initial Stokes vector I

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.30)
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2 Radiative transfer in a magnetized medium under Zeeman regime

The infinitesimal change on that vector experienced when passing through an infinitesimal
path ds is given by the transport equation:

dI
ds
= −KI + j (2.31)

K is the 4 × 4 absorption matrix, and j is the emissivity vector. This radiative transfer
equation (RTE) for polarized light has been first derived by Unno (1956), and completed
by Rachkovsky (1962) to include magneto-optical effects. It tells us that the first term
on the right hand side represents infinitesimal subtraction from the Stokes beam and the
second term represents infinitesimal additions to the Stokes beam.

The absorption matrix is formed by two terms:

K = χcont� + χline = χcont� + χ0φ, (2.32)

where χcont is the continuum absorption coefficient. � represents the 4 × 4 unity matrix.
χ0 is the line center absorption coefficient, and φ is the 4x4 dimensionless frequency-
dependent absorption matrix.

χcont is included isotropically to the absorption matrix since the continuum light is
unpolarized. χcont reflects the properties of the medium in absorbing photons in a large
wavelength range. This is by opposition to spectral line formation which comes from
the absorption (or emission) of photons associated with the transition of an electron be-
tween two bound states. Thus a bound-bound transition produces an absorption in a nar-
row range of frequency leading to a spectral line. Whereas the continuum absorption
coefficient will have much larger variation scales (not at absorption edges or ionization
edges), which makes it often approximately constant over a given spectral line. There are
two main physical processes that add up to produce χcont. The first is ionization, where
bound-free transition happens, the second is free-free transitions. In these two processes,
photons might be absorbed with an infinity of frequencies since the free state can have any
energy. One might mention a third process of lower contribution to χcont, that is bound-
bound transition which gives "spectral bands". Normally, bound-bound transitions are not
included in χcont, but in the case where many spectral lines are overlapping in a very dense
way (like in the case of neutral hydrogen series near absorption or ionization edges), their
contribution becomes much like the two other continuous absorption processes.

Let us have a look to the term χ0φ in equation 2.32. It is formed by the line center
absorption coefficient χ0 multiplied by a 4×4 matrix φwhich is a function of the frequency
ν.

Let us start with a simpler case where we have no polarization. We assume also Lo-
cal Thermodynamical Equilibrium (LTE). Thus equation 2.31 reduces to the transfer of I
which is then a scalar quantity. In this case the absorption matrix becomes a scalar ab-
sorption profile. In order to keep a clear notation we represent the 4× 4 absorption matrix
by the "bold character" φ, and the scalar absorption profile by the "normal character" φ .
We might not always write it, but φ is naturally a function of the frequency (ν), since it
modulates the line shape over the spectrum. We can also write it as function of (ν − ν0)
the frequency distance from the center of the line at ν0. From a quantum mechanical
approach, for an absorption line, we have:
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2.3 Absorption and dispersion in a conducting plasma

χline = χ0φ(ν − ν0) =
hν0

4π
[nlBlu − nuBul]φ(ν − ν0) (2.33)

where nl and nu are the populations of the lower and upper states of the transition. These
populations are determined through the Saha-Boltzmann statistics (Mihalas 1970, Rutten
2003). Blu and Bul are the Einstein coefficients for radiative excitation and induced deex-
citation, respectively. h is Plank’s constant, and ν0 is the frequency at the center of the
line.

Blu gives the probability per unit time per unit energy density of the radiation field, that
an electron in a state "l" with energy El will absorb a photon with an energy Eu − El = hν
and jump to a state "u" with energy Eu.

Similarly Bul gives the probability per unit time per unit energy density of the radiation
field, that an electron in a state "u" with energy Eu will decay to a state "l" with energy El.

Using the relations between Einstein’s coefficients and applying Boltzmann statistics
(Mihalas 1970, Gray 2005), we find:

χ0φ(ν − ν0) =
hν0

4π
nlBlu[1 − ehν/kT ]φ(ν − ν0) (2.34)

the factor between brackets is referred to as the "correction factor for stimulated emis-
sion". It is shown that for photospheric temperatures, we have: [1 − ehν/kT ] 	 1 (Gray
2005, page 149). Thus for photospheric temperatures we may write:

χ0φ(ν − ν0) 	 hν0

4π
nlBluφ(ν − ν0) (2.35)

The lifetime of an electron in an exited state is Δt, thus following Heisenberg, the cor-
responding energy spread is ΔE = h/(2πΔt). Thus, the corresponding frequency spread
is: Δν = γrad/(2π) with γrad ≡ 1/Δt is called the radiative damping constant. This natural
broadening process defines a distribution function around the line center (ν = ν0). This
"distribution function" φ(ν − ν0) which we were using in equation 2.35 is:

φ(ν − ν0) =
γrad/(4π2)

(ν − ν0)2 + (γrad/4π)2
(2.36)

2.3.1 Classical derivation of the absorption and dispersion profiles

The quantum mechanical approach introduced above, has a classical counterpart which is
the Lorentz theory considering bound electrons as damped oscillators. Although mainly
phenomenological, the classical approach brings several clarifications concerning the in-
teraction of an electromagnetic wave with a plasma. We will proceed now to the calcu-
lation of the absorption and dispersion profiles associated with the absorption, dispersion
or emission of an electromagnetic wave in a conducting plasma. Considering an electron
bound in an atom and perturbed by the electric field of an electromagnetic wave, Newton’s
second law for this electron can be written:

mr̈(t) = −eE(t) − qr(t) − mγṙ(t), (2.37)
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2 Radiative transfer in a magnetized medium under Zeeman regime

The first term on the right-hand-side expresses a force exerted by the external electric
field E(t). The second one is the quasi-elastic restoring force, which keeps an electron
bound to its equilibrium state. The third term represents a resisting force which damps
the oscillator’s motion. r(t) is the displacement, e is the electron’s charge and m its mass.
q is a proportionality factor associated with the restoring electrostatic forces, and γ is a
damping constant. Dots over r(t) represent time-derivatives.

Assuming that the E(t) and r(t) are proportional to e−iωt, we obtain:

r(t) = −e0

m
E(t)

(q/m) − ω2 − iωγ
, (2.38)

where ω is the frequency of the damped oscillator. In the absence of damping (γ = 0),
the oscillator will have a resonant frequency at ω2

0 = (q/m), at which the displacement
will have infinite values. The presence of damping has caused the oscillator to only have
oscillations with finite amplitude. We can write :

r(t) = − e
m

E(t)

ω2
0 − ω2 − iωγ

, (2.39)

Since in a spectral line we are dealing with frequencies close to the resonant frequency,
we can write (ω2

0 − ω2)/ω2 
 1. Thus (ω2
0 − ω2) 	 2ω(ω0 − ω).

Then equation 2.39 can be written :

r(t) = − e
2 mω

E(t)
ω0 − ω − iωγ

, (2.40)

replacing ω = ν/2π, γrad/4π = Γ and multiplying by the denominator we get:

r(t) 	 − e
8π2mν

E(t)
(ν0 − ν) − iΓ

= −e0 E(t)
8π2mν

((ν0 − ν) + iΓ)
(ν0 − ν)2 + Γ2

, (2.41)

An electromagnetic wave propagating in a medium with electric permittivity ε and
magnetic permeability μ will have a velocity V such that:

V2 = c2

(
ε0μ0

εμ

)
, (2.42)

ε0 and μ0 are the electric permittivity and magnetic permeability, respectively, for vacuum.
c is the speed of light in vacuum. Since we are dealing with gases of very low density, we
can assume that μ = μ0 (Gray 2005).

The electric field passing through the plasma will cause a charge displacement (dis-
placement of the negatively charged electrons from their position around the positively
charged nuclei). This will lead to the creation of electric dipoles. The electric field cre-
ated by N displaced charges per unit volume is 4πN e r(t), where r(t) is the displacement
of electrons induced by the external field. We can write:

ε

ε0
=

E + 4πN e r(t)
E

= 1 +
4πN e r(t)

E
, (2.43)

The velocity of an electromagnetic wave in a given medium is proportional to the index of
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2.3 Absorption and dispersion in a conducting plasma

refraction n of the medium, such as : V2 = c2/n2. Here the index of refraction is a complex
function n2 = 1 + 2(δ + iκ). κ will be responsible for the decrease of the amplitude of the
electromagnetic wave when travelling through the plasma. δ induces a phase shift to the
electromagnetic wave across its path in the plasma.

After replacing ε/ε0 from equation 2.43 in equation 2.42, we can write :

c2

V2
= 1 + 2(δ + iκ) = 1 +

4πNer(t)
E

, (2.44)

Replacing r(t) (equation 2.41) in equation 2.44, we obtain :

1 + 2(δ + iκ) = 1 +
Ne2

2πmν
(ν0 − ν) + iΓ
(ν0 − ν)2 + Γ2

, (2.45)

and by identification:

δ =
Ne2

4πmν
ν0 − ν

(ν0 − ν)2 + Γ2
, (2.46)

κ =
Ne2

4πmν
Γ

(ν0 − ν)2 + Γ2
, (2.47)

We can then obtain the absorption coefficient χline = (4πν/c) κ. Its inverse 1/χline

represents the mean free path of photons, (i.e. the distance covered by photons between
two subsequent encounters with atoms).

χline = χ0φ(ν − ν0) =
Nπe2

mc
Γ/π

(ν0 − ν)2 + Γ2
, (2.48)

χ0 is the line center absorption coefficient. We can see that absorbtion is modulated by a
function of ν giving maximum at the resonance frequency and decreasing further away.
This function of ν is the so called Lorentzian profile φ(ν− ν0) which we have already seen
with the quantum mechanical approach (equations 2.36).

φ(ν − ν0) =
Γ/π

(ν0 − ν)2 + Γ2
, (2.49)

The dispersion coefficient χ̃line is also modulated by a function of ν which is ψ(ν − ν0)

χ̃line =
Nπe2

mc
ν0 − ν

(ν0 − ν)2 + Γ2
, (2.50)

ψ(ν − ν0) =
ν0 − ν

(ν0 − ν)2 + Γ2
, (2.51)

Measurement of the absorption coefficient (especially its integrated value over the line
profile) gives values which are usually smaller than that expressed in equation 2.48 by a
given factor called "oscillator strength : f ". This proportionality factor is the same for
each given spectral line, but is different from one line to the other. This correction is
coming from the quantum mechanical nature of the line formation process. We have then

χline = χ0φ(ν − ν0) =
Nπe2

mc
f

Γ/π

(ν0 − ν)2 + Γ2
, (2.52)
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2 Radiative transfer in a magnetized medium under Zeeman regime

At this stage we may equate the quantum mechanical (equation 2.35) and the classical
(equation 2.52) expressions of the absorption coefficient:

χline =
hν0

4π
[N Blu]

Γ/π

(ν0 − ν)2 + Γ2
=

Nπe2

mc
f

Γ/π

(ν0 − ν)2 + Γ2
(2.53)

This gives the oscillator strength:

f =
mchν0

4π2e2
Blu, (2.54)

Thus the oscillator strength is proportional to Einstein’s coefficient for radiative excitation.
That means it will depend on the probability of transition between the lower and upper
considered states. To account for corrections due to stimulated emission, we can use
equation 2.34 instead of equation 2.35 in the above calculations. This straightforward
calculation is not needed under photospheric temperatures (Gray 2005).

2.3.2 The Doppler broadening of spectral lines

The thermal agitation in a given plasma will cause atoms and all particles to have a cer-
tain distribution of velocities. If local thermodynamical equilibrium is assumed, then the
distribution of velocities is Maxwellian. The most probable velocity value is defined as :

VD =

√
2kT
m
+ ξ2

mic, (2.55)

T is the temperature, k is the Boltzmann constant and m is the mass of the considered
particle. The microturbulence ξmic is an additional parameter which takes into account
motions at scales sufficiently smaller than the mean height range of line formation. The
Doppler-frequency-shift associated to VD, will be: ΔνD = c VD ν0. c is the speed of light
and ν0 is the line center frequency.

If we observe a plasma formed of N atoms having, let’s say, a Maxwellian distribution
of velocities, the overall absorption or emission profiles will result from the convolution of
φ(ν0 − ν) with a Gaussian profile accounting for the velocity distribution (see Figure 2.2).
The resulting profile is:

φ(u, a) =
1√
π

H(u, a), (2.56)

with u = (ν0 − ν)/(ΔνD) expresses the frequency shift with respect to the line center
frequency ν0 in units of the Doppler-frequency-shift ΔνD. The damping constant "a" is
defined also in units of Doppler-frequency-shift as: a = Γ/ΔνD. The Voigt function
H(u, a) is given by :

H(u, a) =
a
π

∫ +∞

−∞
e−y2 1

(u − y)2 + a2
dy, (2.57)

And similarly for the dispersion profile (right panel of Figure 2.2):

ψ(u, a) =
1√
π

F(u, a), (2.58)
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2.4 Radiative transfer equation in Zeeman regime

Figure 2.2: In full line, an example of Voigt profile (left panel) and Faraday-Voigt profile
(right panel). In dashed line, the original absorption (left panel) and dispersion (right
panel) profiles, before taking the Doppler broadening into account. Adapted from del
Toro Iniesta (2003).

with F(u0, a) called the Faraday-Voigt profile, defined as :

F(u, a) =
a
π

∫ +∞

−∞
e−y2 u − y

(u − y)2 + a2
dy, (2.59)

2.3.3 Pressure broadening effect

In a collisional plasma, an emitting or absorbing atom might be subject to collisions.
These collisions can be with similar or different atoms, with molecules, with electrons, or
ions. The atomic levels of the emitting or absorbing atom are disturbed by these collisions.
The disturbance of the initial energy states is proportional to the distance "R" between the
atom and the perturbing particle. The shift of energy levels caused by these interactions is
generally expressed in the form of a power law of "R". The presence of theses energy level
perturbations will affect the initial line profile in a way that induces an extra broadening
to the initial natural one. This acts like additional terms in the damping constant.

2.4 Radiative transfer equation in Zeeman regime

In the previous section we have seen that a Stokes vector is subject to absorption, dis-
persion and emission processes when passing through a plasma. This is described by
equation 2.31:

dI
ds
= −KI + j (2.60)

From equation 2.32, we can then write:
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2 Radiative transfer in a magnetized medium under Zeeman regime

K = χcont(� +
χline

χcont
φ) (2.61)

We can define now η0 =
χline

χcont
the line-to-continuum absorption coefficient ratio. After

replacing in equation 2.31, we get:

dI
dτc
= [� + η0φ](I − S) (2.62)

where dτc = −χcontds, and the continuum optical depth is : τc = −
∫ s0

s
χcontds. It is defined

in the direction starting from the observer at (s0) to the specific point in the plasma at (s).
This explains the "-" sign in the integral.

The introduction of the source function (S = j/χcont) brings a big advantage to equa-
tion 2.62 since in many astrophysical cases where the plasma is in Local Thermodynami-
cal Equilibrium (LTE) the source function is simply a Planck functions (S ≈ B(T)). The
combination (S, χcont[� + η0φ]) presents a more "orthogonal" parameter space to describe
the radiative transfer than (j, χcont[� + η0φ]). Indeed, the parameter χcont[� + η0φ] takes
into account the atomic particle properties (such as the gas composition, the degree of
ionization, the probability of spectral line transition). Whereas the parameter S describes
the thermodynamical state of the medium as an ensemble of particles and photons. j is
influenced by both atomic and thermodynamical properties. It is then intrinsically more
complicated, and thus less suitable to use.

Equation 2.62 can be written more explicitly:

d
dτc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ηI ηQ ηU ηV

ηQ ηI ρV −ρU

ηU −ρV ηI ρQ

ηV ρU −ρQ ηI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I − B(T )
Q
U
V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.63)

where the elements of the propagation matrix are explicitly:

ηI =
η0

2
(φ0 sin2 γ +

1
2

[φ+1 + φ−1](1 + cos2 γ)), (2.64)

ηQ =
η0

2
(φ0 − 1

2
[φ+1 + φ−1]) sin2 γ cos 2ϕ, (2.65)

ηU =
η0

2
(φ0 − 1

2
[φ+1 + φ−1]) sin2 γ sin 2ϕ, (2.66)

ηV =
η0

2
[φ−1 − φ+1] cos γ, (2.67)

ρQ =
η0

2
(ψ0 − 1

2
[ψ+1 + ψ−1]) sin2 γ cos 2ϕ, (2.68)

ρU =
η0

2
(ψ0 − 1

2
[ψ+1 + ψ−1]) sin2 γ sin 2ϕ, (2.69)
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2.4 Radiative transfer equation in Zeeman regime

ρV =
η0

2
[ψ−1 − ψ+1] cos γ. (2.70)

The absorption profiles φ0,±1 in equations 2.64- 2.67, are defined as we have seen in the
previous sections:

φ0 =

Nπ∑
i=1

S 0,i φ(ui, ai), (2.71)

where we have summed over all the π-components from 0 to Nπ (see relation equa-
tion 2.17). S 0,i and φ(ui, ai) are respectively the strength and absorption profile of each
π-component (see equations 2.20 and 2.56). ui = (ν0,i − ν)/(ΔνD), where ν0,i is the line-
center frequency of each Zeeman π-component.

Then also φ+1 and φ−1 are:

φ+1 =

Nσ+1∑
i=1

S +1,i φ(ui, ai), (2.72)

and

φ−1 =

Nσ−1∑
i=1

S −1,i φ(ui, ai), (2.73)

The dependence of the line strength on the direction of propagation (equations 2.21-
2.23) is here taken into account directly in equations 2.64- 2.70.

The dispersion profiles ψ0,±1 are:

ψ0 =

Nπ∑
i=1

S 0,i ψ(ui, ai), (2.74)

ψ+1 =

Nσ+1∑
i=1

S +1,i ψ(ui, ai), (2.75)

ψ−1 =

Nσ−1∑
i=1

S −1,i ψ(ui, ai), (2.76)

If we consider a simple case e.g. the transition from jl = 0 to ju = 1, we will have
Ml = 0 and Mu = −1, 0,+1. In this situation Nπ = Nσ+1 = Nσ−1 = 1, we will have
three Zeeman components, but each one is produced by only one possible transition. In
a more general case Nπ, Nσ+1 and Nσ−1 can be larger than one. In this case each polarized
component (described by φ0, φ−1 or φ+1) might result from the contribution of several
different transitions, all with the same polarization for each φM, (M = 0,±1).

The Zeeman radiative transfer equation (RTE) can be solved numerically, knowing the
atomic parameters of the considered transition and the optical-depth distribution of phys-
ical quantities in an atmosphere. There are two widely used numerical methods (among
others) that provides solution of the Zeeman RTE, namely a Hermitian method (Bel-
lot Rubio et al. 1999b), and a Diagonal Element Lambda Operator (DELO: Rees et al.
1989). Both methods are implemented in the fast and widely tested STOPRO code in
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2 Radiative transfer in a magnetized medium under Zeeman regime

the SPINOR package (Solanki 1987, Frutiger et al. 2000). This will be used in the next
chapters to synthesize Stokes parameters for a given spectral line.
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3 Comparison of the thin flux tube
approximation with 3D MHD
simulations

3.1 Introduction

Most magnetic flux outside sunspots at photospheric level exists in the form of discrete
concentrations having a field strength of 1-2 kG, and is concentrated in inter-granular
lanes as a result of flux expulsion (Weiss 1966, Galloway and Weiss 1981, Schüssler
1990). These flux concentrations have generally been described as magnetic flux tubes
(Howard and Stenflo 1972, Harvey 1977, Spruit and Roberts 1983), for a review see
(Solanki 1993)

There has been a large number of attempts to model these flux tubes. An early ap-
proach is the so called "thin flux tube approximation ". In its simplest form, we consider
the vertical component of the magnetic field to be constant across the tube’s cross-section,
and the radial component to be a linear function of the tube’s radius (Roberts and Webb
1978, 1979). The thin flux tube approximation holds if the diameter of the flux tube is
sufficiently small compared to variations of the relevant physical quantities (such as pres-
sure, density,...etc.) along the tube (Spruit 1981, Schüssler 1992). For a vertical tube, this
essentially implies that the tube’s radius must be small compared with the pressure and
density scale heights.

The concept of the thin flux tube can be generalized by writing all physical quantities
(magnetic field, temperature, pressure,...etc) in terms of a Taylor expansion in the radial
distance from the axis, and injecting them in the MHD equations (or MHS equations). If
we only keep 0th order terms, we obtain the 0th-order approximation introduced above. If
we then consider higher-order terms, the equations take into account variations across the
tube’s cross-section.

Such a generalization of the thin flux tube approximation to include variations of the
magnetic field across the tube’s cross section has been often used. Pneuman et al. (1986)
have included in their modelling the effects of field line curvature, internal structures,
twist, and the merging of flux tubes with their neighbours. A derivation of linear wave
modes of a flux tube including second order radial expansion has been carried out by
Ferriz-Mas et al. (1989).

Despite the attractive simplicity of the thin flux tube approximation, it is more self
consistent to model magneto-convection at the solar photosphere using a full set of MHD
equations including a proper treatment of radiative and convective energy transport (e.g.
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3 Comparison of the thin flux tube approximation with 3D MHD simulations

Vögler et al. 2005).
The structure and configuration of flux concentrations in such MHD simulations be-

come seemingly complex, owing to their interaction with convection and energy exchange
with the neighbouring plasma. Here, we investigate the properties of these flux tubes (or
flux sheets) and compare them to a classical thin flux tube approximation (up to 2rd order).

There is a large body of work in the literature based upon the thin flux tube approx-
imation. This includes theoretical work (structure of flux concentrations, equilibrium,
oscillations/wave, stability,...etc.) and interpretation of observations (for some reviews,
see Solanki 1993, Solanki et al. 2006). We wish to evaluate to which extent the assump-
tion of thin flux tubes has been/is justified in the light of the new 3D MHD simulations.
We will then establish a comparative analysis of these two modelling approaches (ie. 3D
radiation-MHD model, and thin flux tube/sheet model).

In what follows, we will first present the necessary equations for the thin flux tube and
thin flux sheet model. After that we will introduce the 3D MHD simulations used in this
chapter.

In Section 5.4, we will present an analysis of a flux sheet in a snapshot of a 3D MHD
simulation and compare it with a thin flux sheet model. A study of the gas and total
pressures is presented in Section 5.5. Sections 3.6 and 3.7 are dedicated, respectively, to
strong and very weak flux concentrations. Concluding remarks are made in Section 3.8.

3.2 A series expansion of the thin flux tube/sheet equa-
tions

We consider a magnetic flux tube to be a bundle of magnetic field lines with a circu-
lar cross section, which is separated from its non-magnetic surroundings by a tangential
discontinuity with a surface current (Schüssler 1992).

For an axisymmetric vertical flux tube, we adopt cylindrical coordinates (r,θ,z), with
the z-axis pointing in the vertical direction. Physical quantities are regular at the axis
(r=0), so that they can be described in terms of a Taylor expansion in the radial coordinate
(Roberts and Webb 1978, Spruit 1981, Spruit and Roberts 1983, Pneuman et al. 1986,
Ferriz-Mas et al. 1989, Schüssler 1992):

w(r, z) = w(0, z) + r
∂w
∂r

(0, z) +
r2

2
∂2w
∂r2

(0, z) + ... (3.1)

≡ w0(z) + rw1(z) + r2w2(z) + ..., (3.2)

Where wk is defined as:

wk ≡ 1
k!
∂kw
∂rk

(r = 0). (3.3)

The properties of the axisymmetric MHD equations (Ferriz-Mas and Schüssler 1989)
imply that only even orders (w0,w2,w4, ...) are non-zero in the above expansion for scalar
quantities (such as temperature or density) and for z-components of vectors, whereas for
the radial and θ-components of vectors only the odd orders remain (w1,w3,w5, ...).

We then have
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3.2 A series expansion of the thin flux tube/sheet equations

Bz = Bz0 + r2Bz2 + r4Bz4 + ..., (3.4)

Br = rBr1 + r3Br3 + ..., (3.5)

Bθ = rBθ1 + r3Bθ3 + ..., (3.6)

and

P = P0 + r2P2 + r4P4 + ..., (3.7)

T = T0 + r2T2 + r4T4 + ..., (3.8)

where Br, Bθ, Bz, represent the three components of the magnetic field vector. P and T
are the gas pressure and temperature, respectively.

3.2.1 Bz and Br under the thin flux tube approximation

We now derive the thin tube equations. For the static case (no velocity, time-independent),
we consider the momentum equation in the three coordinate dimensions, and the solenoidal-
ity relation. We write these four equations in non-dimensional form (Pneuman et al.
1986):

α
∂p
∂x
= bz(

∂br

∂y
− ∂bz

∂x
) − bθ

x
∂

∂x
(xbθ), (3.9)

0 =
br

x
∂

∂x
(xbθ) + bz

∂bθ
∂y
, (3.10)

α(
∂p
∂y
+

p
σ

) = −br(
∂br

∂y
− ∂bz

∂x
) − bθ

∂bθ
∂y
, (3.11)

0 =
1
x
∂

∂x
(xbr) +

∂bz

∂y
, (3.12)

with p = P/P∗, σ = T/T ∗, b = B/B∗, x = r/H∗, y = z/H∗, H∗ = kT ∗/(mpg) and
α = 4πP∗/B∗2. The quantities with an asterisk are defined at the tube’s axis (x = r = 0)
and at a reference height (z = y = 0). k is Boltzmann’s constant, mp the mean particle
mass, g the gravitational acceleration, and H the scale height.

Equations( 3.4 to 3.8) are written in non-dimensional form, as follows:

bz = h0 + h2x2 + h4x4 + ... (3.13)

br = f1x + f3x3 + f5x5 + ... (3.14)

bθ = s1x + s3x3 + s5x5 + ... (3.15)

p = p0 + p2x2 + p4x4 + ... (3.16)
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3 Comparison of the thin flux tube approximation with 3D MHD simulations

σ = σ0 + σ2x2 + σ4x4 + ... (3.17)

Now we insert these equations in equations (3.9 to 3.12) and collect the terms of equal
power in x into equations of corresponding order.

We begin with x0 terms :

h0( f ′1 − 2h2) − 2s2
1 = 2αp2, (3.18)

2 f1s1 + h0s′1 = 0, (3.19)

σ0 p′0 + p0 = 0, (3.20)

2 f1 + h′0 = 0, (3.21)

where prime denotes derivative with respect to y.
The x2 terms give:

α(σ0 p′2 + σ2 p′0 + p2) = −σ0 f1( f ′1 − 2h2), (3.22)

h0( f ′3 − 4h4) + h2( f ′1 − 2h2) − 6s1s3 = 4αp4, (3.23)

4 f1s3 + 2s1 f3 + h0s′3 + h2s′1 = 0, (3.24)

4 f3 + h′2 = 0, (3.25)

At this stage we can determine h2, f1 and f3 as functions of h0 and p2.
We can substitute f ′1 in equation (3.18) from equation (3.21). After some algebra, we

obtain:

h2 = −1
4

h′′0 − s2
1 −
αp2

h0
(3.26)

We assume that the magnetic flux tubes studied here have a negligible twist which
allows us to neglect the s2

1-term, we obtain then :

h2 = −1
4

h′′0 −
αp2

h0
, (3.27)

f1 and f3 are determined from equations (3.21) and (3.25) respectively. we get then :

f1 = −1
2

h′0, (3.28)

and

f3 = −1
4

h′2, (3.29)
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3.2 A series expansion of the thin flux tube/sheet equations

We can then define Bz until the second order, and Br until the third order.
The system of equations ( 3.18 to 3.25) contains 12 variables and only 8 equations. In

fact, equation (3.23) expresses a relation between p4 and h4. We will neglect this equation
here since we are interested in orders lower than the 4th. We have then 7 equations with
10 variables. There have been several approaches in the literature, in order to close this
system, e.g. using a relation expressing magnetic flux conservation, total pressure conser-
vation at the boundary of the flux tube at any height, and an energy equation (Ferriz-Mas
et al. 1989), or by prescribing two quantities like σ0 and σ2 allowing more flexibility
in defining the atmosphere (Pneuman et al. 1986). In order to construct a thin flux tube
which we will compare with the ones in MHD simulations, we take h0 and p2 from these
MHD simulations. Then Bz and Br are determined from equations 3.27to 3.29. The cross
section of the flux tube is determined through the magnetic flux conservation relation:∫ x0

0
(h0 + h2x2)dx = Flux at the base of the tube = constant, (3.30)

where x0 is the tube’s radius at a given height. This equation and a relation expressing
total pressure continuity at the tube’s boundary can be used to close the system ( 3.18
to 3.22, 3.24, 3.25). The total pressure balance can be expressed as follows:

(βpi + b2
i )|x=x0 = (8πPe + B2

e)/B∗2|x=x0 , (3.31)

where β = 8πP∗/B∗2, the suffixes i and e indicate internal and external respectively and
capital letters indicate dimensional quantities.

Notice that under the 0th-order approximation we get :

(βp0 + h2
0)|x=x0 = (8πPe + B2

e)/B∗2|x=x0 , (3.32)

This relation does not depend on the radius. Thus the total pressure at a given height
under the 0th-order approximation is constant across the tube’s cross-section.

Under the 2nd-order approximation we get:

(βp0 + h2
0) + x2(βp2 + f 2

1 + 2h0h2)|x=x0 = (8πPe + B2
e)/B∗2|x=x0 , (3.33)

In this case the total pressure varies inside the flux tube, but has to match the external total
pressure at the tube’s boundary layer.

3.2.2 Bz and Bx under the thin flux sheet approximation

A flux sheet is a structure which when looked from above the solar surface will look like
an elongated line, with a small width (let’s call it ”wi”) comparing to its length (”len”).
At the bottom of the photosphere we have (wi << len). When looked from the side with
a point of view parallel to the solar surface and perpendicular to the vector len, the sheet
will look like a wall. A similar approach as described in the previous section can be used
for a flux sheet. In this case the magnetic field component parallel to len is constant, and
thus plays no direct role in the hydrostatic equilibrium. We can then adopt a Cartesian
2D geometry in the X − z plane, where z is the vertical coordinate and X is the horizontal
coordinate perpendicular to the vector len.
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3 Comparison of the thin flux tube approximation with 3D MHD simulations

Magneto-hydrostatic equilibrium gives:

α
∂p
∂x
= bz(

∂bx

∂y
− ∂bz

∂x
) (3.34)

α(
∂p
∂y
+

p
σ

) = −bx(
∂bx

∂y
− ∂bz

∂x
) (3.35)

0 =
∂bx

∂x
+
∂bz

∂y
(3.36)

Proceeding in a similar way to the flux tube case, we insert the series expansion and
write terms of equal order. We note that here x = X/H∗.

x0 order terms give :

h0( f ′1 − 2h2) = 2αp2 (3.37)

σ0 p′0 + p0 = 0 (3.38)

f1 + h′0 = 0, (3.39)

The x2 terms are:

α(σ0 p′2 + σ2 p′0 + p2) = −σ0 f1( f ′1 − 2h2) (3.40)

h0( f ′3 − 4h4) + h2( f ′1 − 2h2) = 4αp4 (3.41)

and

3 f3 + h′2 = 0, (3.42)

In a similar way as before, we can determine h2, f1 and f3 as functions of h0 and p2.

h2 = −1
2

h′′0 −
αp2

h0
(3.43)

f1 and f3 are determined from equation (3.39) and (3.42) respectively :

f1 = −h′0 (3.44)

and

f3 = −1
3

h′2 (3.45)
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Figure 3.1: Vertical component of the magnetic field at a fixed geometrical height near
the averaged visible solar surface (τ5000 = 1). The black contours outline regions where
Bz > 500 G.

3.3 The radiative MHD simulations

There have been several attempts to model the photosphere in a 3D MHD context (Nord-
lund 1983, Nordlund and Stein 1990, Stein and Nordlund 1998, Bercik 2002, Stein and
Nordlund 2003, Vögler and Schüssler 2003, Vögler et al. 2005), for a review see Schüssler
(2001). The simulations have demonstrated that the photospheric granulation is a phe-
nomenon where both radiation and convection are necessary ingredients.

The simulation run used here has been obtained with the MURaM code (Vögler 2003,
Vögler and Schüssler 2003, Vögler et al. 2005). It takes into account non-local and non-
gray radiative energy transport, and includes effects of partial ionization. The simulation
box is 6 × 6 Mm2 in horizontal extension and 1.4 Mm deep. The cell size is 5 km in
the horizontal direction and 7 km in the vertical. The simulation run starts from a plane-
parallel atmosphere which extends from −0.8 Mm below to 0.6 Mm above a reference
0, which is roughly situated −100 km below the average continuum optical depth unity
(τ5000 = 1, which corresponds to the solar surface in the visible). After convection has
fully developed, a magnetic field configuration is introduced. This is done such that the
simulation domain is divided into four parts with alternate polarities. After some time we
choose a representative snapshot (see Figures 3.1- 3.3 taken at a fixed geometrical height
roughly representing the solar surface). The mean unsigned field strength at this height is
200 G.
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Figure 3.2: Vertical component of the velocity at a fixed geometrical height near the
average visible solar surface (τ5000 = 1). Downflows are represented in red and upflows
in blue.
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Figure 3.3: Temperature at the same height as the two previous figures.

3.4 Analysis of a thin flux sheet

The approach we want to consider here is aiming to compare the properties of a relatively
thin flux sheet in the MHD data (Figure 3.4) with the properties of a second-order thin
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3.4 Analysis of a thin flux sheet

flux sheet model presented above (which includes the second order approximation in Bz

and third order in Bx). It is important to keep in mind that the flux tubes existing in such
a magneto-convection simulation are clearly not in a static state (unlike the assumption
made in Section 5.2). They interact with the rest of the plasma, and get distorted dynam-
ically by the granulation motion. They also exchange energy (mainly by radiation) with
the surrounding plasma. In order to maintain the numerical stability of the simulation,
the gradient of any physical quantity cannot be too important between two neighbouring
grid cells. More specifically, the magnetic flux density cannot jump too abruptly from
the boundary of a flux tube to the neighbouring non-magnetized plasma (Vögler 2003,
PhD thesis). Thus the boundary layer separating a flux tube from the surrounding non-
magnetized plasma is a few grid points wide, unlike the tangential discontinuity in the
case of an ideal flux tube. We wish to see whether simulations and thin flux sheet/tube
approximation are consistent with each other in spite of the fact that MHD flux tubes have
finite boundary layers, internal and external dynamics and deviate from an axi- or transla-
tionally symmetric configuration. One can qualify where one can hope this comparison to
work: 1) Boundary layer thickness
 sheet’s thickness (or tube’s diameter). 2) velocities

 sound speed or Alfvén speed. 3) Internal structuring not inconsistent with low-order
truncation of the thin flux tube/sheet equations.

We then select a candidate thin flux sheet in the simulation domain (Figure 3.4). A
vertical 2D cut through the flux sheet (Figure 3.5) at the location indicated by the dark
line on Figure 3.4 indicates the morphology of the magnetic field. The expansion of the
flux sheet with height is mainly determined by magnetic flux conservation with height
and a horizontal balance between the magnetic plus gas pressure inside the sheet with
the gas pressure outside the sheet. Since the external pressure decreases exponentially
with height, it follows that the flux sheet must expand with height (e.g. see Figure 3.5),
(Defouw, 1976; Roberts and Webb, 1978).

Figure 3.6 shows profiles of gas pressure (in black), and total pressure (green triangles)
along the 5 horizontal lines in Figure 3.5. The location of the sheet is recognizable, by
the lower gas pressure. The profiles indicate that the flux sheet’s equilibrium in the lower
panels is consistent with balance of total pressure in the zeroth-order approximation (see
equation 3.32). On the highest panel we see that the total pressure increases somewhat
towards the center of the sheet, which is consistent with a second-order approximation
(see equation 3.33). In Figure 3.7 we plot the relative difference between the average
gas pressure through the whole simulation box and the total pressure, according to the
formula:

Relative difference in pressure =
〈P〉 − (P + B2

8π )

〈P〉 (3.46)

where 〈P〉 represents the average gas pressure over the simulation domain and P+B2/(8π)
is the total pressure. Orange triangles indicate the location of the flux sheet (where |B| is
higher than 75 percent of its maximum value). We notice for the two lower panels that
deviations from zero are not specifically correlated with the flux sheet but are rather due to
the neighbouring dynamics. For the upper panel we notice a larger relative difference, in
the sense that the total pressure is higher than the average pressure, and increases towards
the center of the sheet. At this height, the gas pressure, and more precisely the plasma

35



3 Comparison of the thin flux tube approximation with 3D MHD simulations

 

-1000

-500

0

500

1000

1500

2000

B
z 

[G
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mm

0.0

0.2

0.4

0.6

0.8

1.0

M
m

 

6000

7000

8000

9000

10000

T
em

pe
ra

tu
re

 [K
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mm

0.0

0.2

0.4

0.6

0.8

1.0

M
m

 

-4

-2

0

2

4

6

V
z 

[k
m

/s
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Mm

0.0

0.2

0.4

0.6

0.8

1.0

M
m

Figure 3.4: From top to bottom : vertical component of the magnetic field, temperature
and vertical velocity at the upper left corner of Figure 3.1 at an altitude of 0 km (See
Figure 3.5 for height reference). The black lines indicate the location where we will
perform a vertical 2D cut in the MHD data.
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Figure 3.5: Vertical 2D cut in the MHD data at the location shown by the black line in
Figure 3.4. The horizontal lines indicate the locations at which we will plot some physical
quantities.

β = 8πP/B2 (see table 3.1) has become so small that the equilibrium tends to become
force free, i.e. curvature forces and magnetic pressure gradient balance each other. So
the inward tension force will be balanced by outward magnetic pressure force. Thus the
magnetic pressure (	 total pressure) has to increase inward. Hence the increase of Ptot

at the center of the sheet in the upper panels of Figure 3.7. This behaviour can be also
seen over the whole simulation domain by plotting the horizontally-averaged gas and total
pressures as function of height (Figure 3.8). We see the mean gas pressure averaged over
regions with field strength smaller than 50 G (black line). The red line shows the mean
gas pressure averaged over regions with field strength higher than 500 G, and the green
line is for the total pressure over regions with field strength higher than 500 G. We can
see that in the lower atmosphere, curvature forces play no role, they only come to play
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Figure 3.6: Gas pressure (in black) and total pressure (in green), plotted in Logarithmic
scale along the 5 horizontal lines in Figure 3.5.

above 250 km. A natural question may be addressed now : Does the divergence between
the total pressure (in green) and gas pressure in non-magnetic regions (in black) imply
something about the validity of the thin flux sheet/tube model? At this stage we notice
that a diagnostic using total pressure does not give a definitive answer on the applicability
of a thin flux tube/sheet model to reproduce the MHD sheet. We can only say that the
invariance of Ptot across a flux tube/sheet is a necessary (but not sufficient) condition for
the validity of the 0th-order thin flux tube/sheet approximation. We need then to make a
direct comparison of Bz and Bx from the MHD case and from a thin sheet model.

Figure 3.9 indicates the vertical component of the magnetic field, plotted along the 5
horizontal lines in Figure 3.5. The orange triangles represent Bz in the case of a thin flux
sheet in the second-order approximation. The dark curves represent Bz from the MHD
simulations.
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Figure 3.7: Profiles of the relative pressure difference at the 5 heights in the previous
figure. It is calculated according to the formula (〈P〉 − (P + B2/(8π)))/〈P〉, where 〈P〉 is
the average gas pressure over the simulation box at the considered height. The orange
triangles indicate the location of the flux sheet.

Table 3.1: Values of β at the 5 heights in Figure 3.5
Line number from bottom to top 1 2 3 4 5

Geometrical height from reference [km] -98 42 182 322 462
Plasma β 0.85 0.38 0.37 0.26 0.15

We notice that Bz for the thin flux sheet at the two lower panels is close to a con-
stant (small contribution from the 2nd-order terms), whereas at the three upper panels the
second-order terms play a clearer role.

We see that low-order approximations (0th and 2nd) reproduce reasonably well the
overall Bz profiles obtained from the MHD simulations, especially in the higher layers of
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Figure 3.8: Horizontal average of gas and total pressure as function of height. The black
line indicates the mean gas pressure averaged over regions with field strength smaller than
50 G. The red line shows the mean gas pressure averaged over magnetic flux concentra-
tions, and the green line is for the total pressure over magnetic flux concentrations.

the atmosphere. The MHD profiles of Bz exhibit some structuring (variation) across the
sheet’s cross-section, which are not reproduced by the thin sheet model. This is because
this latter model produces only symmetric profiles of Bz (Ferriz-Mas et al. 1989). The
MHD profiles of Bz are asymmetric primarily in the sense that the left part exhibits larger
values than the right part. This is associated with lower values of the pressure at these
locations (Figure 3.6). Then Bz has to increase in order to keep Ptot balanced (see Fig-
ure 3.6). The pressure deficit is due to lower pressure plasma flowing downward in these
regions (see Figure 3.10). This strong downflow is associated with convective dynamics
where material that has cooled down radiatively becomes anti-buoyant and flows down.
The variation of the Bz profile in the MHD case in the lower panel is significant (more
than 600 G). This is an extreme case of the scenario described above which produces
variations in Bz in order to keep ptot balanced. It is large at this altitude because β has
its largest value there (see Table 3.1), which implies that variations of P induce relatively
larger variations of Bz compared to higher atmospheric layers.

The distribution of Bx for the thin flux sheet and the MHD case are shown in Figure
3.11. Here Bx is of third order (see section 1.2). The MHD plots are smooth for the three
upper panels (relatively low β). For the lower panel we notice some fluctuations mainly
due to the reasons we discussed earlier for β ∼ 1, in addition to the fact that the convection
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Table 3.2: Relative importance of the series-expansion
Geometrical height from reference [km] -98 42 182 322 462

B2/B0 0.004 0.012 0.044 0.155 0.116
B3/B1 0.161 0.026 0.071 0.063 0.025

disturbs the field lines. These fluctuations of the magnetic field appear more pronounced
for Bx comparing to Bz because of the relatively small amplitude of Bx. The fit between
MHD and thin sheet model is relatively good for the three upper panels, and less good
for the two lower ones. We notice for the three upper panels that there is a systematic
offset between the MHD values and the thin sheet ones. This is due to the fact that the
sheet is slightly inclined from a vertical position. Thus the absolute values of Bx through
horizontal cuts are slightly higher at one side and slightly lower at the other side, which
create this general offset.

Bz and Bx for the flux sheet can be written in a simplified way (see also equations 3.4
and 3.5):

Bz = Bz0 + x2Bz2 + x4Bz4 + ... = B0 + B2 + B4 + ..., (3.47)

Br = xBr1 + x3Br3 + ... = B1 + B3 + ..., (3.48)

We can compare the relative importance of successive terms in these series expan-
sions. Table 3.2 indicates that B2-terms are significantly smaller than B0-terms. The
importance of B2-terms is more pronounced in the upper part of the atmosphere. This is
also noticeable in the upper panels of Figure 3.9. B3-terms are much smaller than B1-
terms, and since B0 > B1 > B2 > B3 > B4 > ..., it is expected that the influence of the
third-order terms on Bx is less marked than the second-order terms on Bz. This is clearly
seen in Figures 3.9 and 3.11. This also confirms that neglecting the fourth-order terms in
Bz is justified.
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Figure 3.9: Vertical component of the magnetic field, plotted along the 5 horizontal lines
in Figure 3.5. The orange triangles represent Bz in the case of a 2nd-order thin flux sheet
model.
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Figure 3.10: Vertical velocity plotted along the 5 horizontal lines in Figure 3.5. The
orange triangles indicate the location of the flux sheet (where the field strength is higher
than 75 percent of the maximum along the line).
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Figure 3.11: Horizontal component of the magnetic field across the flux sheet plotted
along the 5 horizontal cuts in Figure 3.5. The green triangles represents Bx in the case of
a 2nd-order thin flux sheet model.
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3.5 Analysis of the total pressure in the whole simulation
domain

We have seen in the case of a thin flux sheet, that the total pressure in the lower part
of the sheet is of the same order as the external gas pressure (see the two lower panels
in figures 3.6 and 3.7). In these regions the flux sheet is relatively thin. The relative
width of the sheet is measured by comparison to the local scale height. At an altitude
corresponding to the two lower panels the local pressure scale height is of the order of
200 km. In a static atmosphere, the condition Ptot roughly constant through the sheet,
would be the consequence of a constant P and Bz through the sheet. Thus such a magnetic
configuration could be modelled by a 0th-order flux sheet approximation. In the case of
MHD simulations, we have seen that Bz is roughly constant but still has some fluctuations
increasing with depth. In order to keep the balance of Ptot, variations of P are compensated
by variations of B2/(8π). Since in the lower layers β is of order unity, variations of P are
compensated by non-negligible variations of B2/(8π).

In the three higher panels of Figure 3.7 we see that the total pressure in the center
of the sheet is higher than that at the boundaries. This is due to magnetic tension forces
which play an increasingly important role with altitude (decreasing β). So, in the higher
layers of the atmosphere, magnetic forces (magnetic tension and pressure) play a more
and more dominant role comparing to gas pressure-forces, getting closer to a force-free
equilibrium in the highest parts of the atmosphere. In such a case, magnetic pressure
gradients are balanced by magnetic tension forces. Since magnetic tension forces are
pointing inward, magnetic pressure gradient has to point outward. This results in higher
values of Bz at the center of the sheet.

The properties described above have been so far discussed only in the case of a thin
flux sheet. In order to have a more complete view of the situation for the rest of the
simulation box, which includes thicker magnetic concentrations, we map the gas and
total pressures at three heights (the lowest, the middle and the highest altitudes shown in
Figure 3.5).

Figure 3.12 represents gas pressure at a geometrical height indicated by the lower
horizontal line (at −98 km) in Figure 3.5. Locations where the magnetic flux density is
higher than 500 G are outlined by dark contours. We notice that the gas pressure is higher
at the centers of granules (see also Figure 3.2 for locations of granules and intergranules).
This is a common pattern for convection cells formed by granules. So, hot plasma is
rising up to the surface of the sun which forms granules; then this plasma cools down
radiatively above the surface due to the dramatic increase of photons mean free path, thus
energy can escape from the system radiatively. The relatively cooled plasma returns back
to intergranular lanes (mass conservation). Notice that regions with higher magnetic flux
density have lower pressure than the neighbouring intergranular lanes. This is due to the
fact that stability requires the total pressure inside flux concentrations, precisely at the
interface separating magnetic and non-magnetic plasma, to be equal to the gas pressure
outside. Thus the gas pressure inside magnetic structures is lower than the external gas
pressure.

The total pressure inside flux concentrations (Figure 3.13) at the same height as Fig-
ure 3.12 is roughly close to gas pressure outside, and does not vary significantly within
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Figure 3.12: Gas pressure at a geometrical height of −98 km indicated by the lower line
on Figure 3.5. The black contours enclose the regions where Bz is higher than 500 G.
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Figure 3.13: Total pressure (gas +magnetic pressures) at a geometrical height of −98 km.

each individual flux concentrations. As we have seen previously, this does not imply that
Bz is constant, but rather that curvature forces are negligible in comparison to pressure
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Figure 3.14: Gas pressure at a geometrical height of 182 km, indicated by the third (start-
ing from below) horizontal line in Figure 3.5.
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Figure 3.15: Total pressure (gas +magnetic pressures) at a geometrical height of 182 km.

forces. On the one hand, the relative constance of Ptot is an argument in favour of mod-
eling flux concentrations using a 0th-order thin flux tube/sheet model. On the other hand,
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Table 3.3: Standard deviations and mean value of Ptot

Altitude [km] -98 182 462
Standard deviation of Ptot in non-magnetic regions (STD1) [cgs] 27703.0 9707.59 1055.04

Standard deviation of Ptot in magnetic regions (STD2) [cgs] 32709.4 7950.80 2151.41
Mean value of Ptot in non-magnetic regions (mean1) [cgs] 254220.0 57750.9 4901.33

Mean value of Ptot in magnetic regions (mean2) [cgs] 249696.0 47409.8 8626.20
STD1/mean1 0.108972 0.168094 0.215256
STD2/mean2 0.130997 0.167704 0.249405

the constancy of Ptot does not imply the constancy of Bz, it is a necessary condition (but
not sufficient) for the 0th-order thin flux tube/sheet models.

The presence of the 2nd-order term (or higher-orders) will make the total pressure
to have higher values at the center of flux concentrations. So, one way of measuring
the importance of the second-order approximation (or higher-order) is to compute the
standard deviation and the mean value of the total pressure inside magnetic elements and
compare them to the corresponding values outside magnetic regions (see Table 3.3). Thus
if (STD2/mean2)> (STD1/mean1) and mean2 > mean1, this can be interpreted as the
presence of higher-order terms than the 0th-order.

At an altitude of −98 km (Figure 3.13), mean2 is slightly lower than mean1 be-
cause magnetic flux concentrations are located in intergranular lanes where the pressure
at this altitude is slightly lower than the average pressure over the simulation domain.
STD2/mean2 is larger than STD1/mean1, this does not result from higher-order terms,
but rather indicates the presence of fluctuations inside magnetic elements. We notice also
in Figure 3.13 the presence of regions with smoother variations than the average, e.g. the
flux sheet at the top left corner which we studied in the previous section. Note that, in Fig-
ure 3.13, locations with particularly low total pressure are generally unrelated to magnetic
flux concentrations. They are associated with strong downflows.

At higher altitudes (182 km), we see in Figure 3.14 that magnetic structures have
expanded. The gas pressure has lower values in intergranular lanes, and particularly low
values inside magnetic elements. The total pressure inside magnetic concentrations (Fig-
ure 3.15) is lower in intergranular lanes even when there is no (or low) magnetic field
(e.g. the region around the coordinates (3Mm, 2.8Mm)). The mean value mean1 is higher
than mean2 (table 3.3), for similar reasons as in lower altitudes. STD2/mean2 is simi-
lar to STD1/mean1, then the normalized fluctuations of Ptot inside and outside magnetic
elements are similar. In this situation, there is no clear indication about the existence
(or not) of higher-order terms than the zeroth-order. This rather shows that there is no
predominant contribution from higher-order terms.

Near the top of the box, at a geometrical height of 462 km, indicated by the upper
line in Figure 3.5, we notice that the total pressure has rather smooth variations (Fig-
ure 3.17) and increases towards the center of flux concentrations. This effect which we
have already mentioned in the previous section for the case of a thin flux sheet, is even
more pronounced in stronger flux concentrations. The plasma β is small at these heights,
thus we get a nearly force-free equilibrium. At this height, mean2 is clearly larger than
mean1 and STD2/mean2 is larger than STD1/mean1. This indicates that the total pres-
sure is not a 0th-order function. This is clearly seen in Figure 3.17, which also shows that
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Figure 3.16: Gas pressure at a geometrical height of 462 km.
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Figure 3.17: Total pressure (gas +magnetic pressures) at a geometrical height of 462 km.

we see this characteristic increase of Ptot only in magnetic flux concentrations and not in
non-magnetic intergranular regions.

At this altitude, a zeroth-order thin tube/sheet model is not applicable anymore. We
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3 Comparison of the thin flux tube approximation with 3D MHD simulations

have indeed seen in the case of a thin sheet that a second-order thin flux sheet approxi-
mation provides a reasonable fit. Nevertheless, before generalizing this conclusion, it is
useful to proceed to a more quantitative study (especially for thick flux tubes). This will
be done in the next section.
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3.6 Analysis of a strong flux concentration

3.6 Analysis of a strong flux concentration

We saw in the previous section, that reasonable continuity and smoothness of total pres-
sure, in the lower part of the atmosphere, is in favour of the applicability of the 0th-order
thin flux tube/sheet approximation. We noticed also that the total pressure is of higher
order than 0 in the upper part of the atmosphere. At these heights, the total pressure in
the center of thick flux concentrations has the largest deviation compared to values in the
weak-field regions. So the total pressure diagnostic brings some indications in favour of
the thin tube/sheet model, but a more quantitative investigation is needed. In this section,
we complete the investigation started earlier in the section on thin flux sheet. This in-
cludes a comparison between Bz and Br from a thick MHD tube and from the thin tube
model presented earlier. The criterions for the choice of a flux tube in the MHD simu-
lations are primarily its width and a relative smoothness of Ptot across it. The selected
flux tube is shown on Figure 3.18 (crossed by a dark line). We see at first that at this
altitude the tube is split, which probably results from the history of its interaction with
convection. We also notice that this "tube" has a cross-section which is far left out from a
perfect circle.

The total pressure (Figure 3.19) is reasonably smooth, although Ptot through the lower
panels exhibits more variations than the case of the thin flux sheet. The main reason for
this is that the actual flux tube is located in a convectively more active region than the
previous flux sheet (see velocity maps Figure 3.2). Ptot in the higher panels is smoother
(lower β). The top panel exhibits a clear enhancement of Ptot towards the tube’s center.

The thin flux tube model reproduces reasonably well the overall shape of Bz in the
three upper panels (Figure 3.20). In the upper two, we notice the existence of a region
with smoother decrease of Bz at the left edge of the flux tube. This results from a small
neighbouring magnetic structure that merges with our main flux tube. It appears at the
highest panels because its expansion with height makes it reach the location of the dark
line (Figure 3.18) at these heights. We don’t aim to reproduce this neighbouring structure,
but only the main flux tube.

In the lower panels of Figure 3.20, we observe that the relatively thick flux tube is
split into two parts. This is probably due to its interaction with convection and other
neighbouring flux concentrations which make it evolve in time, sometimes in a complex
manner. The two separate parts of the flux tube at the lower panel merge while expanding
with height. It is interesting to notice that such flux concentrations in a complex convec-
tive pattern, still tend to behave like a single structure higher-up in the atmosphere. The
merging process, and the decrease of β with height seems to produce a relatively smooth
monolithic structure.

The radial component of magnetic field fits reasonably well with the thin flux tube
model for the three upper panels (Figure 3.21). As we have seen before, the merging of
a small neighbouring flux concentration with the main flux tube, makes Br and Bz appear
wider in the two upper panels. Nevertheless, the fit is reasonably good, since our aim is
to model the main flux tube. We note in the three upper panels in Figure 3.21 that the
3rd-order contribution is much less marked than the 1st-order one.

Notice that the values of Br vary from negative to positive when moving from the left
to the right side through the panels. This is similar to the case of the thin sheet studied
above. It comes here from the morphology of the tube, which has a fan-like structure
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Figure 3.18: Vertical component of the magnetic field vector at a fixed geometrical height
near the averaged visible solar surface (τ5000 = 1), corresponding to an altitude of about
100 km. The dark line indicates the location where we make a similar treatment as in
Figures 3.9, 3.11, and 3.6.

when expanding upwards. Thus, the angle between field lines and the vertical direction
increases when moving from the center of the tube to its boundaries. Since B is parallel
at each point to the field lines, the projection of B on the radial direction increases in
amplitude when moving outward. The sign of Br comes from the direction at which the
field lines are pointing.

For the two lower panels Br is irregular due to the double structure of the flux tube. In
this case Br from a thin flux tube model cannot be expected to reproduce the MHD one.
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Figure 3.19: Profiles of gas pressure (in black) and total pressure (in green), plotted on
a logarithmic scale along the dark line in Figure 3.18, at 5 geometrical heights (the same
heights as used in the thin flux sheet case).
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Figure 3.20: Vertical component of the magnetic field from the MHD data (in black), and
from a thin flux tube model (in orange) plotted along the dark line in Figure 3.18. The 5
plots correspond to the same heights as in Figure 3.9.
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Br for the Flux Tube
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Figure 3.21: Radial component of the magnetic field across the dark line in Figure 3.18.
The black curves are from the MHD data, and the green ones are from a thin flux tube
model.
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Figure 3.22: Vertical component of the magnetic field at a fixed geometrical height near
the averaged visible solar surface (τ5000 = 1). The black contours outline the locations
where Bz is higher than the equipartition field strength (> 450G). The blue line on the
right part shows the location where we will plot a vertical 2D cut (Figure 3.24).

3.7 Very thin flux concentrations

In an ideal situation, the thin flux tube/sheet model presented earlier would be most suited
to be compared to the thinnest flux concentrations in the MHD simulations. In that case
the radius of the tube (or the width of the sheet) would be as small as possible comparing
to typical length scales (e.g. pressure scale height). This picture would have been suited in
and ideal case where flux tubes/sheets have an extremely thin boundary layer (separating
magnetic and non-magnetic regions) and in the case of a steady plasma. The situation at
the photosphere is clearly different. The dynamic state of the plasma at the photosphere
induces considerable distortions to these very thin flux concentrations, especially for the
ones separated from thicker flux concentrations (see Figure 3.22). Also, the radius of such
small flux concentrations is no longer much bigger than the boundary layer thickness. As
a consequence, the shape and flux density distribution of the thinnest magnetic elements
may differ from a thin flux tube/sheet model.

In order for a flux concentration to evolve as a "coherent structure" in a plasma with
density ρ and velocity V , the following condition should be satisfied :

B2

8π
� 1

2
ρv2 (3.49)

where B2/(8π) is the magnetic energy density of the flux concentration. And 0.5ρv2 is the
kinetic energy density of the plasma.
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Figure 3.23: Vertical component of the magnetic field at a geometrical height of 462 km.

In a limit case, we expect a flux tube/sheet to be partially a coherent structure as soon
as its magnetic energy density is bigger than the kinetic energy density of the plasma.
Thus we set a threshold Beq (equipartition field strength) above which a tube/sheet can be
considered as partially coherent.

B > Beq = v
√

4πρ (3.50)

At the surface of the sun we have Beq 	 450 − 700 G. This is a limit below which
we cannot expect to obtain a structure coherent enough to be compared with the thin flux
tube/sheet model.

In order to select very thin flux concentrations in the MHD data, we can thus set as a
first criterion that B > Beq > 450 G, (see contours on Figure 3.22). As second criterion,
we require that the flux concentration remains coherent enough at higher altitude (see
Figure 3.23). We might opt for a third criterion, which is that a flux concentration is
not located at a region where close opposite-polarity fields coexist. Because at these
locations, the field morphology gets complicated, and flux cancellation and reconnection
occur, e.g. at the region located around the coordinates (1 Mm, 2.8 Mm), a reconnection
occurs leading to the formation of a current sheet with a clear increase of temperature.

In Figure 3.22 we notice that some of the very thin flux concentrations (Type A) exist
at the edge of bigger flux structures. Some others (Type B) are separate from larger flux
concentrations. Although they are still distributed preferentially in intergranular lanes. In
Figure 3.23 which represents Bz at a height of 462 km, we realize that most of type B
very-thin flux concentrations are not noticeable anymore. They are mainly driven by the
convection at lower layers, and have thus a poorly coherent structure. Whereas, some of
type A structures keep a relatively coherent morphology. In cases where these structures
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Figure 3.24: Vertical 2D cut in the MHD data showing Bz at the location of the blue line
on Figure 3.22.

are too close to thicker flux concentrations they merge high up in the atmosphere, loosing
then their identity. At this stage only a small fraction of very thin flux concentrations
seems to fulfill all criteria. We will select one of them, at the location shown by the blue
vertical line in Figure 3.22.

A lateral 2D view of this thin structure (Figure 3.24), shows that it is asymmetric and
inclined. The dynamical state of the plasma drives partially this thin flux concentration,
since the energy density is not far from equipartition. This is in disfavour of the represen-
tation of very thin flux concentrations in term of thin flux tube/sheet model.

3.8 Summary and conclusions

Throughout this chapter, we have done a comparative analysis between the thin flux
tube/sheet model and flux concentrations existing in a 3D radiation-MHD simulation.
These latter ones exhibit a wide range of sizes and shapes. We adopted two models (Thin
flux tube and thin flux sheet) depending on the geometry of the studied flux concentration.
We have seen that, for flux concentrations well above the equipartition distribution (see
Sections 5.4 and 3.6) the models reproduces reasonably well the MHD structures. This
was the case especially at the higher layers. The fits were less good in the lower part
of the atmosphere due to higher β and the dynamical nature of the photosphere at these
heights. In this case, it is rather the overall shape of Bz that is reproducible. The 2nd-order
terms have a clear contribution to Bz in the thin flux tube/sheet approximation, especially
in the upper part of the atmosphere. Whereas the 3rd-order terms bring only a relatively
small contribution to Bx or Br (Sections 5.4 and 3.6). In this case Bx and Br are mainly
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reproduced by the 1st-order terms in the thin flux tube approximation.
In the case of very thin flux concentrations with energy densities lower or of the or-

der of the equipartition value, field lines are distorted and driven partly by the dynamic
plasma. This leads to distorted or incoherent flux concentrations which do not have the
necessary symmetry and regularity to be reproduced by a thin flux tube/sheet model.
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4 Stokes polarimetry near the solar
limb

4.1 Introduction

The study of small scale magnetic flux concentrations near the solar limb provides ad-
ditional insight into the existing models of magnetic flux concentrations (Solanki et al.
1998, Frutiger et al. 2003). These flux concentrations have been associated with solar
faculae. Understanding the physical processes behind solar faculae and their magnetic
origin through observations and simulations has been the subject of many investigations
(Lites et al. 2004, Keller et al. 2004, Carlsson et al. 2004, Steiner 2005, Hirzberger and
Wiehr 2005, Okunev and Kneer 2005, De Pontieu et al. 2006). One of the motivations
for studying the facular phenomena is the influence of their brightness on the Sun’s ir-
radiance variation (Fligge and Solanki 2001). From a spectropolarimetric point of view,
it has been shown by Solanki et al. (1998) that a self consistent knowledge of the 3D
structure of magnetic elements is necessary in order to model the observed Stokes signal
near the solar limb. That is because an inclined ray which obliquely crosses a magnetic
flux tube and its neighbouring non-magnetic regions, will be affected by the width of the
flux tube, its horizontal (not only vertical) magnetic field distribution, and the properties
of the plasma inside and outside the flux tube. E.g. the line-of-sight flows on both sides
of the tube might have opposite directions for an inclined ray, so that their contribution
to Stokes-V area asymmetry will have an opposite and often complex effect. This sensi-
tivity of the asymmetry to the details of the atmosphere (e.g. Buente et al. 1993) makes
it a good diagnostic for a self consistent 3D simulations of flux concentrations and their
surrounding plasma.

Here we use fully compressible 3D radiation-MHD simulations (Vögler and Schüssler
2003, Vögler et al. 2005) to study some properties of Stokes profiles at disc center and
at the limb. In the second and third sections we will make an investigation about the
polarimetric signal emerging at two μ values, namely μ = 1 and μ = 0.39, respectively. A
comparison between simulations and spectropolarimetric observations originating from
a plage region at μ = 0.39 is performed in the fourth section. The observations were
recorded with the SOUP instrument at the 1-m Swedish Solar Telescope (SST) in 2006
by Rouppe van der Voort and van Noort.
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Figure 4.1: Normalized continuum intensity map near 6302 Å emerging from the simula-
tion box at disc center.

4.2 Spectropolarimetric properties of a flux element at
μ = 1

4.2.1 Methods and simulations

The 3D radiation-MHD simulations used here include a solution of the fully compress-
ible MHD equations, partial ionization in the equation of state and a non-local non-grey
radiative transfer (Vögler and Schüssler 2003, Vögler et al. 2005). The MHD simulation
box is 6x6 Mm in the horizontal plane and 1.4 Mm in the vertical direction, with a resolu-
tion of 576x576x100 grid points. The mean magnetic field strength is about 200 G. (See
Figures 4.2 and 4.1). In these Figures we can see the fully developed granulation pattern
which has interacted with the magnetic field. The flux gets concentrated in intergranular
lanes as a result of flux expulsion (Weiss 1966, Galloway and Weiss 1981). The Stokes
signal emerging from these 3D radiative-MHD simulations is computed using the STO-
PRO code in the SPINOR package (Solanki 1987, Frutiger et al. 2000). This gives the
four Stokes profiles and the neighbouring continuum intensity (see e.g. Figure 4.1, which
shows the continuum intensity map near 6302 Å).

4.2.2 Analysis of a flux element at μ = 1

Spectropolarimetric studies of the properties of small scale magnetic flux elements have
been carried out several times (e.g. Bellot Rubio et al. 1997, 1999a, Frutiger and Solanki
2001, Rezaei et al. 2007), for reviews see (Solanki 1993, Solanki et al. 2006). Most of
these investigations were conducted at disc center μ = 1 and assume different levels of
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Figure 4.2: Magnetic field strength map at optical depth τ5000 = 1. The dark vertical mark
(in the lower part) indicates the location where we made the 2D vertical cut shown in
Figure 4.3.

sophistication regarding the atmospheric models. We aim here to probe some properties
of Stokes profiles (such as their asymmetries) in terms of the mechanisms producing them
in 3D MHD simulations. This first part will be restricted to disc center.

Figure 4.3 represents a vertical 2D view along a cut in a flux element at the location
indicated by the dark line in Figure 4.2. The magnetic field strength is shown in the
left panel. The line-of-sight velocity map (right panel) indicates the existence of down-
flowing plasma (shown in red i.e. red shifted) just outside the flux tube, and up-flowing
plasma further away. This is a quite general situation where the upflowing plasma at
the center of granules, cools down radiatively, and flows down at inter-granular lanes
just outside the flux tubes (Solanki 1989). The total Stokes circular (TCP) and linear
polarizations (TLP) are defined as:

TCP =
∫
|V |dλ, (4.1)

T LP =

√
(
∫
|Q|dλ)2 + (

∫
|U |dλ)2. (4.2)

The distributions of TCP and TLP coming out of the atmospheric slice in Figure 4.3
are shown in Figure 4.4 (two upper panels). The vertical dashed lines indicate locations
where we carried out a ray analysis (shown in Figure 4.6). The Stokes-V area asymmetry
(δA), and amplitude asymmetry (δa), are respectively defined as:

δA = (Ab − Ar)/(Ab + Ar), , (4.3)
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Figure 4.3: 2D vertical cut of a flux element at the location indicated by a black line
on Figure 4.2. The magnetic field strength is shown in the left panel. The line-of-sight
velocity is represented in the right panel, where red and blue shifts are represented in red
and blue colours respectively. The optical depth τ = 1 is shown by the yellow and blue
lines. The boundaries of the flux element are highlighted in blue in the velocity panel.
The small vertical lines on the top of the two images indicate the locations of some rays
analysed in more detail in Figure 4.6

δa = (ab − ar)/(ab + ar), , (4.4)

where Ab, Ar denotes the area, ab,ab the amplitudes of the blue and red wings of Stokes-V
profiles, respectively.

The distribution of the TCP (Figure 4.4) has maximum values for rays crossing the
central part of the flux tube where the line-of-sight component of the magnetic field is
maximum. The amplitude of the TLP is much smaller than the TCP one, and has a
double peak structure. It is maximum at rays crossing the sides of the flux tube where the
transverse component of the magnetic field is maximum. The curves representing the TCP
and TLP without magnetooptical effects are represented by triangles. The distribution of
the TCP is not affected by magnetooptical effects, whereas the TLP is affected at the
location where the TCP is maximum. Note that the central part of the TLP is not zero in
both cases. This indicated that this non-zero value is not due to magnetooptical effect but
to a slight deviation of the magnetic flux element from a vertical orientation.

The area and amplitude asymmetries are shown in Figure 4.4 along the atmospheric
slice marked in Figure 4.3. They reach their maximum along rays which cross magnetic
regions (canopy-like) in the upper parts of the atmosphere and non-magnetic dowflowing
regions in the lower part of the atmosphere (mainly above the optical depth unity line
in Figure 4.3). A similar scenario as Figure 4.4 has been observed with HINODE’s SP
(Rezaei et al. 2007). The simulated δA has a maximum amplitude of 0.46 while the
observed ones have an amplitude up to 0.25. This difference is partly due to the effect of
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Figure 4.4: From top to bottom (in full lines): Total circular polarization, total linear
polarization, Stokes-V area asymmetry, and Stokes-V amplitude asymmetry, all plotted
along the black line on Figure 4.2. The curves indicated with triangles represent the same
plotted quantities but calculated without magnetooptical effects. The vertical dash-dotted
lines indicate the same locations shown by vertical lines in the previous figure.

the spatial averaging on the asymmetry properties of the Stokes-V . The average values of
the asymmetries displayed in Figure 4.4 are: 〈δA〉 = 0.090 and 〈δa〉 = 0.016. The averaged
Stokes profiles over the profiles outgoing from the atmospheric slice in Figure 4.3 are
shown in Figure 4.5. The asymmetries for the averaged Stokes-V in Figure 4.5 are: δA =
0.063 and δa = 0.130. These values are slightly higher than the ones reported in Marinez
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Figure 4.5: From top to bottom: Stokes-I, V , Q and U. The displayed profiles are the
averages over the 100 Stokes profiles formed along the atmospheric slice in Figure 4.3

Pillet et al. 1997. In this latter work, it is found that at disc center, δA 	 0.04 and
δa 	 0.09. We argue that applying an appropriate spatial and spectral degradation to
the simulated data (to simulate the observation conditions) will decrease the simulated
asymmetries. This might bring a better agreement between simulations and observations.

A closer look at individual rays is shown in Figure 4.6 along the six positions indicated
in Figures 4.3 and 4.4. The six columns correspond to (from left to right) the line-of-sight
magnetic field (BLOS ), the line-of-sight velocity (VLOS ), (-1) times the τ-derivative of BLOS

times the τ-derivative of VLOS , Stokes-I, Stokes-V and Stokes-Q. The uppermost panel
(leftmost ray), has a redshifted Stokes-I profile and positive Stokes-V asymmetries δA
and δa. The existence of positive values of δA is consistent with the condition discussed
in Illing et al. (1975) or Solanki and Pahlke (1988), (see also Solanki 1993):

−d|BLOS (τ)|
dτ

d|VLOS (τ)|
dτ

≥ 0⇒ δA ≥ 0, (4.5)
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4.2 Spectropolarimetric properties of a flux element at μ = 1

−d|BLOS (τ)|
dτ

d|VLOS (τ)|
dτ

≤ 0⇒ δA ≤ 0 (4.6)

This is shown in the third panel, where we notice positive values in the region of for-
mation of the Stokes signal. Thus the ray crosses the left part of the flux tube through
the canopy region which is just above a field-free region where the plasma is downflow-
ing. A similar scenario has been examined in two-layer models, and has been shown to
produce Stokes-V asymmetry (Solanki and Pahlke 1988, Grossmann-Doerth et al. 1988,
1989, Steiner 2000).

The second and third rays (from top to bottom in Figure 4.6; and from left to right in
Figures 4.3 and 4.4) exhibit also positive Stokes-V asymmetries produced by a similar
mechanism as along the previous ray. The Stokes-V signal is stronger in the second
and third rays, because the rays cross the flux tube at optical depth regions closer to the
maximum of the line formation height range, which also corresponds here to regions of
higher magnetic flux density. The fourth and fifth rays cross only magnetized plasma
inside the flux tube. Both rays are mainly located along upflowing plasma regions, except
for the near continuum part of the fourth ray which comes from a downflowing region
(see Stokes-I near the continuum for the fourth ray, and the corresponding τ-distribution
of the velocity). In these two rays, VLOS and BLOS gradients, shown in the third column,
are experiencing positive and negative values in the line formation regions (roughly at
log τ ∈ [−1,−3]). The existence of two opposite signs of the gradient of VLOS and BLOS

is to be taken with special care. Indeed, in the presence of two different signs of the
gradient, the final sign of the asymmetry depends on how much "weight" is given to each
part of the gradient function. This depends in a non trivial way on the contribution of each
atmospheric layer to the line formation.

In the center of the flux tube, we found low values of the asymmetries or even negative
values. This is consistent with previous results by Rezaei et al. (2007) and their Hinode
observations. A closer look at the conditions along the fourth and fifth rays can explain
the reasons why we find such low values of the asymmetries. We need to consider two
main points : 1) The main part of the line is formed in regions (roughly at log τ ∈ [−1,−3])
where the plasma is essentially moving in the same direction with relatively small devi-
ation from its mean velocity. 2) The Zeeman splitting of the line (see the separation of
the two lobes of Stokes-I) has values much larger than the deviation of the Doppler shift
around its mean value. Thus the two σ components of the line experience a quite small
change in their Doppler shift (comparing to the Zeeman splitting) along each ray. Thus
none of the two σ components experiences any significant preferential (comparing to the
other one) increase of the absorption coefficients due to Doppler shifts. The dependence of
the asymmetry on the relative difference between the Zeeman shift and the Doppler shift
was first explained by Grossmann-Doerth et al. (1989). Rays 4 and 5 in Figure 4.6 would
fall in the category of "significantly larger Zeeman splitting comparing to Doppler shift"
in the framework of Grossmann-Doerth et al. (1989). The fact that the plasma moves as
a whole produces a shift of the line center and zero-crossing of the Stokes-V profiles (see
Figure 4.6). The existence of downflows or upflows inside the flux tubes does not change
the above analysis. It would induce a shift of the zero-crossing of Stokes-V mainly in the
rays crossing only inside the tube. As a matter of fact, most of the flux concentrations
in our MHD simulation harbour some small amplitude downflows inside them. This is
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Figure 4.6: From left to right: Magnetic field strength along individual rays, line-of-sight
velocity along individual rays, (-1) times the τ-derivative of BLOS times the τ-derivative
of VLOS , Stokes-I, Stokes-V and Stokes-Q. Positive velocity corresponds to a redshift,
and negative velocity is for a blueshift. The locations of these six rays are indicated in
Figure 4.3 and Figure 4.4
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consistent with observations (Grossmann-Doerth et al. 1996, Martínez Pillet et al. 1997,
Sigwarth et al. 1999, Rezaei et al. 2007). The sixth ray lies far from the magnetic flux
concentration. It crosses the canopy region above log(τ)=−2, and also passes through
upflowing plasma from the neighbouring granule. This has produced a negative value of
δA and δa. The polarized signal has a weak amplitude in this region comparing to the
previous ones.
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Figure 4.7: 2D inclined view at μ = 0.39 of the magnetic flux element shown in Fig-
ure 4.3. The magnetic field strength is shown in the left panel. The line-of-sight velocity
is represented in the right panel, where red and blue shifts are represented in red and blue
colours respectively. The optical depth τ = 1 is shown by the yellow and blue lines. The
boundaries of the flux element are highlighted in black in the velocity panel. The small
vertical lines on the top of the two images indicate the locations of rays analysed in more
detail in Figure 4.11

4.3 Spectropolarimetric properties of a flux element at
μ = 0.39

We proceed now to a similar analysis as in the previous section, but for simulations in-
clined with an angle of 67◦ corresponding to μ = 0.39. This angle was chosen to compare
with observations made with the SST at the same μ. The inclined view of the simulation
box is constructed by interpolating the different physical quantities along rays with the
desired inclination angle (Zakharov 2006). The grid step of 14 km along each inclined
ray is the same as in the original MHD cube at μ = 1. As consequence, the new inclined
MHD cube is 576 × 576 × 100/μ grid points. In the representation shown in Figure 4.7,
rays crossing the atmosphere with an angle of 67◦ are represented vertically, so that the
flux tube appears tilted. Figure 4.7 shows an inclined view of the flux element shown in
Figure 4.3. Since now each ray has a length of 3590 km (14 × 100/0.39 km), we show
only the upper part of the tilted MHD slice in order to focus on regions where the Stokes
signal is formed. At an inclination angle of 67◦ (Figure 4.7), many rays will get contribu-
tions to the computed spectral line from both sides of the flux tube. The field-free plasma
outside the flux tube follows the granulation dynamics. I.e. it moves towards the flux tube
from both sides, so that it appears as red-shifted motion of the field-free plasma (along the
inclined rays) at the disc-center-side of the flux tube (red coloured velocity in Figure 4.7).
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Figure 4.8: From top to bottom : Total circular polarization, total linear polarization,
Stokes-V area asymmetry, and Stokes-V amplitude asymmetry, all plotted along the at-
mospheric slice in Figure 4.7. The vertical dash-dotted lines indicate the same locations
shown by vertical lines in the previous figure.

Similarly, the plasma at the limb-side of the flux tube has a dominant blue-shift.

In Figure 4.8, we plot the total circular polarization, the total linear polarization, δA,
and δa along the atmospheric slice in Figure 4.7. The six vertical dash-dotted lines indi-
cate locations at which we analyse single rays in greater detail (Figure 4.11). The polar-
ized Stokes parameters obtain a contribution only where B �0. The total circular polariza-
tion and total linear polarization in Figure 4.8 have maximum values when the location of
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Figure 4.9: From top to bottom: Stokes-I, V , Q and U. The displayed profiles are the
averages over the Stokes profiles formed along the atmospheric slice in Figure 4.7

the flux tube along rays corresponds to the locations of maxima of the response functions
of the line-of-sight and transverse components of the magnetic field, respectively. Unlike
the situation at disc center, here the total circular and total linear polarizations curves have
somewhat similar shapes. This is due to the fact that a variation of |B| implies a propor-
tional variation of both, the the line-of-sight and transverse components of the magnetic
field.

We notice that the asymmetries δA and δa vary from positive to negative values when
rays cross the flux tube at increasing heights. This is different from the disc-center case
where the asymmetries are mainly positive across the flux tube (Figure 4.4). The mean
values of the asymmetries displayed in Figure 4.8 are: 〈δA〉 = 0.186 and 〈δa〉 = 0.049.
The averaged Stokes profiles over the atmospheric slice are shown in Figure 4.9. The
asymmetries for the averaged Stokes-V are: δA = 0.213 and δa = 0.258. These positive
and relatively large values are due to statistical averaging effect. Figure 4.10 represents
the averaged Stokes signal over the full row (576 Stokes profiles) to which belongs the

72



4.3 Spectropolarimetric properties of a flux element at μ = 0.39

-0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

-0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3
-0.03

-0.02

-0.01

0.00

0.01

0.02

-0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3
-0.015

-0.010

-0.005

0.000

0.005

-0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3
Δλ [A %]

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0.0005

Figure 4.10: From top to bottom: Stokes-I, V , Q and U. The displayed profiles are the
averages over the 576 Stokes profiles formed along the row in the MHD data to which
belongs the magnetic element shown in Figure 4.7

magnetic element shown in Figure 4.7. The asymmetries of the Stokes-V profile displayed
in Figure 4.10 are: δA = -0.063 and δa = -0.024. These values are still subject to statistical
averaging effect but are closer to the observed values than the previous ones. The observed
center-to-limb variations of δA and δa (e.g. Stenflo et al. 1987, Martínez Pillet et al. 1997)
exhibit a change in the sign of the asymmetries in active region close to the solar limb. In
Martínez Pillet et al. (1997), the authors report that at μ = 0.39, δA 	 -0.03 and δa 	 0.007.
The asymmetries of the Stokes-V profile in Figure 4.10 agree also with the observations
of Martínez Pillet et al. (1997) on the fact that δa is larger than δA. The application of a
proper spectral and spatial degradation to the simulated data is likely to produce smaller
absolute values of the asymmetries, producing a better agreement between the observed
and simulated δA and δa.

The first three rays (from left to right in Figures 4.7 and 4.8) and from top to bottom
in Figure 4.11, have positive area and amplitude asymmetries. The gradients of VLOS and
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Figure 4.11: From left to right: Magnetic field strength along individual rays, line-of-sight
velocity along individual rays, (-1) times the τ-derivative of BLOS times the τ-derivative
of VLOS , Stokes-I, Stokes-V and Stokes-Q. Positive velocity correspond to red shift, and
negative velocity is for blue shift. The locations of these six rays are indicated in Fig-
ure 4.7 and Figure 4.8
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BLOS have opposite signs. This is in agrement with Solanki and Pahlke (1988). At ray
4 the Stokes-V amplitude asymmetry is 0, whereas the area asymmetry is still positive.
Between ray 4 and 5, δA is positive or 0, and δa is negative or 0. The multiplied gradients
of VLOS and BLOS have a small contribution from the opposite sign. It is important to note
that in the case where there are two opposite signs of the gradients of VLOS and BLOS , it is
not the sign of the dominant amplitude that determines the sign of δA. The latter depends
on the fraction of the line being formed at each side of the flux tube (with opposite sign of
the gradients of VLOS and BLOS ). E.g. for the 5th ray, the region of formation of the Stokes
signal (roughly log τ ∈[−1,−3]) includes both signs of the gradients (see middle panel in
Figure 4.11). Thus at ray 5 the Stokes-I signal is formed partly in the field-free plasma
at the limb side of the flux tube where the plasma is moving towards the observer. This
translates to a blue-shift of Stokes-I near the continuum. Higher in the atmosphere, the
plasma is moving away from the observer, which produces a red-shift of Stokes-I near the
line center. These two opposite-sign contributions will create opposite-sign gradients of
VLOS and BLOS at the two magnetic/non-magnetic interfaces at each side of the flux tube
(middle panel in Figure 4.11). This will generate opposite sign asymmetries, and in the
case of ray 5, they cancel producing δA = 0.

The 6th ray has negative δA and δa. The Stokes signal is predominantly formed in the
flux tube and its neighbouring limb side plasma. In this side of the tube, the plasma is
moving towards the observer producing then a blue shift of Stokes-I for most of the line
(apart of its central part). This predominance of the line-formation in the limb side of the
flux tube gives a higher weight to the sign of the gradients of VLOS and BLOS in this side
of the tube. Thus the final sign of Stokes-V asymmetry is coming from the sign of the
gradients of VLOS and BLOS in this side of the flux tube. This is in agreement with Solanki
and Pahlke (1988).

It is noticeable that the Stokes-V outcoming from rays 2, 3 and 4 have a flat core,
and the Stokes-V outcoming from rays 1 harbour a sign reversal at the righthand side of
the line core. In order to study the origin of these line core phenomena, we implement
the following numerical experiment. We compute 4 sets of Stokes parameters using the
following setups: 1) We consider the same atmospheric and line synthesis conditions as
in Figure 4.11. 2) We consider the same atmospheric conditions as in Figure 4.11, but
we do not consider magnetooptical effects in the line synthesis. 3) We consider similar
atmospheric conditions as in Figure 4.11, but we assign a homogeneous magnetic field
along the rays (the field strength is equal to the maximum field strength along the rays
in Figure 4.11). Magnetooptical effects are considered too. 4) Similar setup to "3)" but
without magnetooptical effects. The resulting Stokes-V profiles along the 6 rays for the
4 sets are shown in Figure 4.12. The comparison of set 1 and set 2 indicates that mag-
netooptical effects are not responsible of the flat cores observed in the Figure 4.11. The
Stokes-V core flattening is removed when we put magnetic field through the rays (Set 3).
This means (in the case of set 1) and Figure 4.11) that the central part of the spectral line
is subject to absorption outside the magnetic regions inducing a flattening of the central
part of the polarized Stokes parameters and particularly of Stokes-V (Solanki and Pahlke
1988). The magnetooptical effects (in set 3) produce a sign reversal in the central part of
Stokes-V . This in not present in set 4. A temperature enhancement inside the flux tube is
responsible of the sign reversal of the central part of Stokes-V in the first ray (Figure 4.11
and set 1 in Figure 4.12). This is similar to the mechanism describe in Solanki and Pahlke
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Figure 4.12: Stokes-V profiles computed along 6 rays. Set 1 : the atmospheric and line
synthesis parameters are similar to the ones in Figure 4.11. Set 2: the atmospheric param-
eters are similar to the ones in Figure 4.11, but the line synthesis is done with neglecting
magnetooptical effects. Set 3 : The rays are filled with a constant magnetic field (equal to
the maximum |B| along the rays), but the rest of physical parameters are the same as the
previous rays. Magnetooptical effects are considered in the line synthesis. Set 4: Same as
set 3 with no magentooptical effects.
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(1988) where it is shown that a hotter flux tube than the surrounding produces a sign re-
versal at the core of Stokes-V . The enhancement of temperature in ray 1 (set 1) occurs
at the highest part of the magnetic region where there is a larger redshift than in the rest
along the ray, which produces an emission only at the red wing of Stokes-V .

4.4 Comparison with spectropolarimetric observations at
μ = 0.39

We will proceed to a comparison between the emerging Stokes signal from the simulation
run (presented earlier) and a set of high spatial resolution spectropolarimetric images
obtained with the SOUP instrument at the Swedish 1-m Solar Telescope. The observations
have been carried out by L. Rouppe van der Voort and M. van Noort in the beginning of
2006. The observational data consist of 9 images: the four Stokes polarization images
at both + and −50 mÅ from the line center of the Fe I 6302.5 Å line, and a wide band
image. The images are restored using the Multi-Object Multi-Frame Blind Deconvolution
(MOMFBD) image restoration method (van Noort et al. 2005). The SOUP images are
based on 480 exposures at each line position so that the effective exposure time amounts
to 7.2 s. The combined use of the SST adaptive optics system and MOMFBD post-
processing resulted in a spatial resolution in the Stokes observations that approaches the
diffraction limit of the telescope (close to 0.2 arcsec).

In order to compare these observations with MHD simulations, we have to apply the
appropriate degradation to the simulations in order to bring them to comparable conditions
with observations. To do so, we carry out the following steps: 1) We choose a quiet-sun
simulation run and convolve the synthetic Stokes profiles in the spectral dimension with a
Lyot-type filter of FWHM = 70 mÅ (similar to SOUP). 2) In order to account for the lower
spatial resolution in the observations, we apply a low-pass filter to the synthetic images
which has the shape of a top-hat function and effectively removes power at the highest
spatial frequencies - beyond the spatial resolution of the observations. In addition, we
convolve the synthetic images with a Lorentzian profile which accounts for the far wings
of the PSF that are not corrected for in the MOMFBD restoration. 3) We select a quiet
region from the observed Stokes-I images either at + 50 mÅ or −50 mÅ and compare it
with the synthetic ones. The matching of the two data sets is done by comparing their
power spectra (Figure 4.13 upper panel) and their standard deviations. This is done
through an iterative process where both the FWHM of the PSF and Lorenz profile are
allowed to change until the two data-sets agree with each other (in the sense of the above
two parameters).

The two middle panels of Figure 4.13 indicate the observed (right one) and degraded-
simulated (left one) Stokes-I maps at −50 mÅ from line center (Fe I 6302.5 Å). The
simulated map corresponds to a quiet region where the mean field strength is about 20 G
at τ=1. The power spectra corresponding to the Stokes-I images at −50 mÅ are shown
in the upper panel (the full line corresponds to the observed image and the dashed line
is for the simulated one). One notices the good agreement between the power spectra of
the two data. The standard deviations of the observed and simulated images in the middle
panels are 7.63 percent and 7.64 percent, respectively. The observed (right panel) and
degraded-simulated (left panel) Stokes-I images at +50 mÅ from the center of the line
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Figure 4.13: Upper panel: integrated power spectra for the two middle images (full line:
observations, dashed line: simulations). Middle left panel: simulated Stokes-I maps at
−50 mÅ from line center Fe I 6302.5 Å. Middle right panel: observed Stokes-I maps at
−50 mÅ from line center Fe I 6302.5 Å. Lower left panel: simulated Stokes-I maps at
+50 mÅ from line center Fe I 6302.5 Å. Lower right panel: observed Stokes-I maps at
+50 mÅ from line center Fe I 6302.5 Å.

are displayed in the lowest panels. Their power spectra are close to the ones in the upper
panel, therefore we don’t display them here. The standard deviations of the observed and
simulated images at +50 mÅ are 11.6 and 11.4 percent, respectively. The corresponding
function (in the real space) to a top-hat function (in the Fourier space) is a sine cardinal
function. The fit between the observed and simulated images has been achieved for a sine
cardinal function with FWHM 	 2.5 arcsec.

The so obtained degrading parameters (providing the best agreement between the ob-
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4.4 Comparison with spectropolarimetric observations at μ = 0.39

served and simulated quiet sun images) are applied to degrade simulations of more active
regions, like the ones in Figure 4.14.

The upper image in Figure 4.14 displays an observed Stokes-V image at −50 mÅ from
the center of the line Fe I 6302.5 Å. The three vertical white lines indicate the positions
where the signal is plotted in Figure 4.15 (left panels). The lower image in Figure 4.14
is a degraded simulated Stokes-V map at −50 mÅ. The MHD simulation run used to
obtain this image is the same as in the previous section. The mean unsigned magnetic
field strength is about 200 G at τ=1. The vertical white slits indicate the locations where
the signal is plotted in Figure 4.15 (right panels). The simulations (lower panel of Fig-
ure 4.14) harbour a more homogeneous distribution of the flux than observations. This is
due to their periodic boundary conditions, such that the flux that leaves the box from one
lateral side, enters again from the opposite side. The observed region presented in Fig-
ure 4.14 contains more sparse magnetic features surrounded by a quiet area. This makes
the morphology of these magnetic features less confined by surrounding activity. Thus
the distribution of flux and its expansion with altitude might not be fully reproduced by
simulations. In that sense, a global statistical comparison between the observed and sim-
ulated Stokes signals may not be adequate. A comparison between the Stokes-V signals
in the two images in Figure 4.14 can be done by plotting the signal along slits (e.g. the
white slits). The resulting signal is shown in Figure 4.15.

The upper left panel in Figure 4.15 indicates the Stokes signal across "averagely
strong" flux concentrations in Figure 4.14. The signal along this first curve is close to
the average "typical" strength associated with flux concentrations in Figure 4.14. In this
case the maximum signal is ∈ [0.06 - 0.08]. The second half of the middle left panel is
associated with a relatively weak flux concentration where the signal has a maximum of
0.025. The lower left panel shows the signal across a strong flux concentration. In this
case the signal reaches a maximum value close to 0.095. The simulated signal displayed
in the upper right and middle right panels indicate that typical simulated flux concentra-
tions have a maximum signal near 0.05. This signal is smaller than the observed one.
The lower right panel indicates that the maximum signal in a relatively strong simulated
flux concentration reaches about 0.065. If we use simulations with higher field strength
(e.g. 400 G), the obtained signal is higher than the observed one (Yelles Chaouche et al.
2008). This indicates that the observed Stokes signal is reasonably reproduced by an
MHD simulation run with an average field strength between 200 and 400 G.
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Figure 4.14: Upper panel: observed Stokes-V at −50 mÅ from line center FeI 6302.5
Å. Lower panel: Stokes-V from simulations degraded to the resolution of observations.
White slits indicate the positions where we plot the Stokes-V signal in Figure 4.15.
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Figure 4.15: Stokes-V at −50 mÅ from line center FeI 6302.5 Å at the positions indicated
by the white silts in Figure 4.14. Left panels (from top to bottom) correspond to the
observed signal (from left to right in the upper panel of Figure 4.14). Right panels (from
top to bottom) correspond to the simulated signal (from left to right in the lower panel of
Figure 4.14)
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4.5 Summary and conclusion

We studied some spectropolarimetric properties of magnetic elements at μ = 1 (disc cen-
ter) and μ = 0.39 (near the limb). At disc center, the asymmetries produced are mainly
positive. Their distribution across the magnetic element is close to the one observed by
HINODE’s SOT (Rezaei et al. 2007). Near the limb at μ = 0.39, the asymmetries vary
from positive to negative values when measured from the center-side of the flux element
towards the limb. The mechanisms leading to such asymmetries have been discussed in
sections 5.2 and 5.3. At both μ-values, we have seen that the sign of δA follows the
law proposed by Illing et al. (1975) and Solanki and Pahlke (1988). The values of the
asymmetries (δA and δa) for an averaged Stokes-V profile (averaged over a large enough
sample of Stokes-V profiles) indicate that δa is typically larger than δA. This is in agree-
ment with observations (e.g. Martínez Pillet et al. 1997). We believe that an appropriate
spectral and spatial degradation of the synthetic spectra (to mimic observation conditions)
will allow a better agreement between the simulated and observed values of δA and δa.

We have made a comparative study between high-resolution observations and simula-
tions of spectropolarimetric signals at μ = 0.39. The comparison has been made possible
by introducing suitable instrumental and seeing degradation to the simulated Stokes sig-
nal. The observed spectropolarimetric signal is reproduced by simulations with a mean
field strength situated between 200 G and 400 G. A more complete comparison could
be done if we would use observations with higher spectral sampling. In this case, the
τ-distribution of physical quantities (such as temperature, magnetic field vector, line-of-
sight velocity) would be better studied since it has a direct impact on the properties of the
Stokes parameters.
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5 Flux emergence at the solar
photosphere

5.1 Introduction

Studies of magnetic flux emergence in the photosphere with the help of Stokes param-
eters started with the work of (Brants 1985a,b, Zwaan et al. 1985). Later it was shown
that active regions are formed by successive emergence of flux patches containing only a
small fraction of the total flux of the active region (Strous et al. 1996, Strous and Zwaan
1999). These active regions exist in a hierarchy varying from "Large active regions"
to "Ephemeral active regions". The largest ones have a total flux up to 4 x 1022 Mx
(Zwaan 1987). After initial work restricted to spectropolarimetric observations of Stokes-
I, Stokes-V and continuum images (Brants 1985a,b, Strous 1994), the full Stokes vector
has been used (Lites et al. 1998, Kubo et al. 2003). In the chromosphere there have been
also several studies using the full Stokes vector (Solanki et al. 2003, Lagg et al. 2004,
2007). Recently, observational studies of flux emergence with high spectral and spatial
resolution has been recorded with Hinode’s Spectropolarimeter (Okamoto et al. 2008,
Ishikawa et al. 2008 and Cheung et al. 2008). The emerging flux regions are consist of
horizontally oriented flux elements, which are the tops of emerging loops. The reported
field strength of these horizontal flux elements varies between observational studies :
500 ± 300 G (Brants 1985a,b); 200 < |B| < 600 G (Lites et al. 1998, Sigwarth 2000);
400 < |B| < 700 G (Kubo et al. 2003); 650 G (Okamoto et al. 2008). The rising flux
elements have an upward velocity of ≤ 1 km/s. The various estimates of this velocity are
: 0.5 km/s (Brants 1985a,b, Strous et al. 1996); ∼ 1 km/s (Lites et al. 1998); < 1 km/s
(Kubo et al. 2003); 0.3 km/s (Okamoto et al. 2008).

It has been observed that the granulation pattern in emerging flux regions exhibits an
abnormal elongated darkening along parts of granules located at the emerging flux region.
This has been observed in the continuum and in the core of the Zeeman-insensitive line
Fe I 557.6 nm (Strous 1994, Strous et al. 1996, Strous and Zwaan 1999). These transient
darkening alignments last about 10 minutes.

It has been shown by Lites (2005) and Okamoto et al. (2008) that flux elements emerg-
ing in the photosphere exhibit a twisted field structure. These emerging twisted flux ropes
may contribute to the magnetic helicity of chromospheric prominences.

In recent years there has been a growing body of work aiming to model magnetic flux
emergence from the convection zone to the solar atmosphere (e.g. Fan et al. 2003, Fan
2004, Shibata et al. 1989). Most of the modelling effort has been oriented to study emer-
gence in the chromosphere and the corona. These simulations have typically ignored the
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effect of convection as well as radiative energy transport in the underlying layer. A more
focussed work on emergence of flux from the sub-surface layers to the photosphere has
been carried out by Cheung et al. (2007). This has been done using a 3D radiation MHD
simulation using the MURaM code (Vögler and Schüssler 2003, Vögler et al. 2005). It
takes into account non-local and non-gray radiative energy transport, and includes effects
of partial ionization.

In the present work, we study the spectropolarimetric properties of such MHD sim-
ulated flux emergence. This provides a bridge between the properties of the observed
emerging flux regions and the 3D radiative MHD simulations. We concentrate here on
analysing the emergence of a long twisted flux tube (Cheung et al. 2007) and give a de-
tailed comparison (between observations and 3D simulations) of different aspects of the
flux emergence.

A description of the MHD simulation setup is given in section 5.2. This is followed
by a study of the continuum and circularly polarized Stokes signal characterizing the flux
emerging region. The properties of a buoyantly rising flux tube are analysed in section
5.3. We study also the associated spectropolarimetric signature of this emerging flux tube.
Some of the most complete spectropolarimetric observation work has been done by Lites
et al. (1998) and Kubo et al. (2003). We present a comparison with these observations
in section 5.4. We also include in this section some comparisons and discussions with
the recent observations of Okamoto et al. (2008) obtained using Hinode’s SP. A general
discussion and concluding remarks are presented in section 5.5.

5.2 3D simulations and some of their observational prop-
erties

The simulation of an emerging flux tube (Cheung et al. 2007) was carried out using a
compressible 3D radiation MHD code MURaM (Vögler et al. 2005), which solves the
MHD equations taking into account energy exchange via radiative transfer as well as the
effect of partial ionization in the equation of state.

The horizontal size of the simulation domain is 24 × 12 Mm, spanned by 480 and
240 grid points, respectively. The height of the domain is 2.3 Mm, which is spanned by
144 grid points. The resulting grid spacing in the horizontal and vertical directions is 50
and 16 km respectively. The vertical side boundaries are periodic. Both the bottom and
top boundaries are open and allow mass transfer. The top boundary is at about 500 km
above the base of the photosphere, τ500 = 1, where τ500 is the continuum optical depth
at 500 nm. The magnetic field above the upper boundary is matched to a potential field.
At the lower boundary of the simulation domain, the magnetic filed is constrained to be
vertically oriented (Cheung et al. 2007)

At t = 0, a horizontal, axisymmetric flux tube was introduced, with its axis at 1.35
Mm below the visible surface. The initial longitudinal and transverse components of the
magnetic field are given by:

Bl(r) = B0 exp (−r2/R2
0), (5.1)

Bθ(r) =
λr
R0

Bl, (5.2)
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for r ∈ [0, 2R0], where r is the radial distance from the tube axis. R0 = 200 km is the
characteristic radius of the tube and B0 = 8500 G is the magnetic field strength at the tube
axis. The parameter λ = 0.5 specifies the amount of twist in the tube. The plasma-β (ratio
between gas and magnetic pressures, both taken inside the tube) is approximately equal
to 1 at the center of the tube. The initial longitudinal flux of the tube is Φ0 = 1019 Mx.
The flux tube has uniform specific entropy equal to the average value of the surrounding
upflows.

The setup described above allows the flux tube to rise to the solar surface and remain
partly coherent (as a bulk) until reaching the solar surface where the granulation dynamics
redistributes the field (Cheung et al. 2007). In order for a flux tube to rise in the subsurface
convective layers, its buoyancy force must overcome the downward-directed drag of the
convective downflows. The interaction of flux tubes with convection has also been studied
by Fan et al. (2003), who performed anelastic simulations of flux tube rise in convective
surroundings. The twisted structure of the flux tube maintains its coherence against con-
vective flows, since the tension forces due to the transverse field counteract the pressure
forces which try to pull the flux tube apart. Cheung et al. (2007) and Murray and Hood
(2008) have investigated the effects of different twist profiles on the properties of a rising
flux tube in the subsurface layers of the sun. The latter authors found that, regardless of
the specific twist profile, tubes with stronger tension forces have a faster growth rate of
the magnetic buoyancy instability, while tubes with weaker tension forces expand to a
greater degree in the horizontal direction.

In order to study the observational properties of this flux emergence simulations, we
calculate the Stokes signal for Fe I 6302Å and the continuum intensity in the vicinity of
the line. This is done in LTE using the STOPRO code in the SPINOR package (Solanki
1987, Frutiger et al. 2000). The continuum images from six snapshots covering the flux
emergence sequence are presented in Figure 5.1. The images are degraded to Hinode’s SP
resolution employing an optical model of the telescope and taking into account a defocus
value typical of the Hinode’s SP following Danilovic et al. (2008). A Stokes-V time-
sequence at -60 mÅ from the line center is shown in Figure 5.2. The images have been
obtained after degrading the Stokes signal to spatial and spectral conditions similar to
Hinode’s SP for Fe I 6302 Å. The spectral degradation is done by convolving the Stokes
profiles with a spectral filter approximated by a Gaussian with FWHM = 25 mÅ. A
time sequence of maps showing the magnetic field strength at τ5000 = 1 is presented in
Figure 5.3.

The upper left panel of Figure 5.1 at t = 7.7 min, shows the intensity at an early stage
of the emergence. At this time, parts of the flux tube are just beginning to transverse
the visible surface of the sun (see upper left panel in Figure 5.3). The flux tube reaches
heights slightly above τ = 1. This produces a relatively weak polarized signal (see Fig-
ure 5.2 for Stokes-V at -60 mÅ from the center of Fe I 6302 Å). We note an enhancement
in the continuum intensity at locations where the magnetic field strength is the highest.
This is because the plasma temperature inside the rising flux tube is higher than the aver-
age granular temperature. This enhancement of the continuum intensity is persistent for
several minutes at the early phases of flux rope emergence (see snapshot at t = 9.7 min
and t = 11.3 min). The rise of the flux tube occurs mainly inside granules and influences
the local morphology of the granules. At t = 9.7 min and t = 11.3 min the flux rope
emergence has produced typically larger and more elongated granules than the average.
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Figure 5.1: Time sequence of normalized continuum intensity maps near 5000Å covering
the flux tube’s emergence at the solar surface. The time is counted starting from the
introduction of the flux tube at -1.35 Mm below the visible solar surface. The images are
degraded to Hinode’s SP resolution

86



5.2 3D simulations and some of their observational properties

 

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15
S

to
ke

s-
V

 a
t -

60
 m

A
Time = 7.7 min

0 2 4 6 8 10 12
0

5

10

15

20

M
m

 

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

S
to

ke
s-

V
 a

t -
60

 m
A

Time = 9.7 min

0 2 4 6 8 10 12
0

5

10

15

20

 

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

S
to

ke
s-

V
 a

t -
60

 m
A

Time = 11.3 min

0 2 4 6 8 10 12
0

5

10

15

20

 

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

S
to

ke
s-

V
 a

t -
60

 m
A

Time = 13.0 min

0 2 4 6 8 10 12
Mm

0

5

10

15

20

M
m

 

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

S
to

ke
s-

V
 a

t -
60

 m
A

Time = 16.1 min

0 2 4 6 8 10 12
Mm

0

5

10

15

20

 

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

S
to

ke
s-

V
 a

t -
60

 m
A

Time = 23.4 min

0 2 4 6 8 10 12
Mm

0

5

10

15

20

Figure 5.2: Time sequence of maps showing the Stokes-V signal at -60 mÅ from the
line center of Fe I 6302.5 Å. The signal is clipped to ±0.15 Ic, with Ic being the local
continuum intensity. The images are degraded to spatial and spectral conditions similar
to Hinode’s SP near 6302.5 Å. Individual snapshots refer to the same times as those of
Figure 5.1.
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At the lateral sides of the flux tube, downflow lanes are formed. In continuum intensity
and Stokes-V maps (Figures 5.1 and 5.2), the emerging flux rope appears as an aligned
structure. The enhancement of continuum intensity within the magnetized granules is
largest at t = 9.7 min. The Stokes-V maps at t = 9.7 min and t = 11.3 min indicate that
the field has different polarities in the right and left parts of the field of view. This is due
to the strongly twisted field in the tube. The polarized signal covers an increasingly larger
area with time. At later times (t = 13.0 and 16.1 min), the continuum intensity maps
show the occurrence of a substantial darkening in some locations at the central part of the
flux tube. This is particularly clear at t = 16.1 min. These dark regions are associated
with an upflow in contrast to intergranular lanes which are associated with downflows.
These transient darkenings have been reported in observational investigations (Brants and
Steenbeek 1985, Strous and Zwaan 1999), and more recently supported by observations
using Hinode’s SP (Cheung et al. 2008). The darkening occurs both in the continuum
intensity and in the core of Zeeman-insensitive lines. This is due to the lower temperature
at the locations of these dark regions. This drop in temperature is due to the radiative
cooling of the flux tube. Thus initially the rising flux tube is hotter than the neighbour-
ing granules above τ = 1. This flux tube cools down radiatively and looses gradually its
buoyancy in the stable photospheric stratification. The twisted structure of the flux tube
prevents the convectively driven external plasma from crossing the field lined and heat-
ing the central part of the flux tube. This makes the central part of the flux tube cooler
than the rest, so that it appears darker. This situation is different from small scale verti-
cally oriented flux tube in which the central part appears brighter. In a vertically oriented
small scale flux tube, the flux density above the solar surface is typically larger than that
of the horizontally oriented emerging flux tube. This results (for vertical flux tubes) in
a significant pressure and density decrease in the magnetic regions. This will result in a
Wilson depression reaching few hundred kilometers below the average solar surface. That
mean photons emitted in deeper (hotter) layers are observed. Thus the central parts appear
brighter. In the present emerging flux tube at t = 13.0 and 16.1 min, the magnetic field
above the solar surface is relatively weak comparing to vertical flux tubes. This does not
produce a sufficiently large pressure decrease to shift the optical depth scale to remark-
ably lower altitude. Furthermore, the plasma in the emerging flux tube is partly confined
in magnetic regions. Thus the radiatively cooled plasma is prevented from flowing down
freely, which would have caused depressions and thus the shift of the optical depth unity
surface to lower altitude.

At a later stage (t = 23.4 min) one does not see any longer the central darkening of the
flux tube. The granules covering the flux tube area appear elongated and are preferentially
oriented perpendicularly to the tube’s main axes. That is because the horizontal outflows
driven by the expanding tube causes the granular plasma to preferentially follow this
outflow motion.

At t = 16.0 and 23.4 min, the locations of the strongest circularly polarized signal
(Figure 5.2) are largely correlated with the strongest magnetic flux density (Figure 5.3).
This indicates that the magnetic field is rearranged in a more vertical configuration (es-
pecially at t = 23.4 min). In this latest snapshot, the magnetic flux is essentially located
in intergranular lanes located in the former emergence area. The vertically oriented flux
concentrations have a typical kilo-Gauss field strength. This is a result of convective in-
tensification of the magnetic flux (Parker 1978, Spruit 1979, Schüssler 1990, Nordlund
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Figure 5.3: Magnetic field strength at τ5000 = 1. The maps show the same time sequence
as Figures 5.1 and 5.2 . The dark lines indicate the locations where the vertical cuts
through the MHD data are presented in Figures 5.4 to 5.9 .
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and Stein 1990, Grossmann-Doerth et al. 1998, Vögler et al. 2005, Cheung et al. 2007).

5.3 The buoyant rise of the emerging flux tube

The flux rope begins its rise at -1.35 Mm below the visible solar surface (τ = 1). At the
beginning of the rise the time reference is set to t = 0 min. The buoyancy force accelerates
the flux tube upward.

Figure 5.4 shows a vertical cut through the MHD data at the location shown by the
dark line crossing the flux tube in the upper left panel in Figure 5.3 at t = 7.7 min.
The displayed panels correspond to, from top to bottom, the temperature fluctuations
with respect to horizontal average (to better reveal horizontal structures), vertical velocity,
magnetic field strength and inclination relative to the vertical. The red and blue colour-
codes in the velocity panel stand for redshift and blueshift, respectively. The full lines
across the panels show the locations of the optical depth unity (τ = 1). The dashed
lines indicate the maximum of the contribution function of Stokes-V . The dash-dotted
lines show the location of the maximum of the contribution function of Stokes-I. Since
the contribution functions are wavelength dependent, we integrate them over wavelengths,
and then define their maximum. The rising flux tube brings hot plasma to the photosphere,
so that the magnetized plasma (near τ = 1) is hotter than the surroundings at similar
geometrical height. This makes the optical depth unity line geometrically higher inside
the flux tube than outside. At this early emergence phase (t = 7.7 min), the magnetic
flux tube has only a small part above the solar surface, the resulting polarized signal is
relatively weak (Figure 5.2) and formed over the magnetized plasma which is mainly
located low in the atmosphere (dashed lines in Figure 5.4) near optical depth unity at this
early phase of emergence. The twisted configuration of the field lines makes the magnetic
field vector largely horizontal in the upper part of the flux tube (inclination in Figure 5.4)
and mainly vertical at each side of the tube’s cross section as shown in Figure 5.4. This
situation produces weak circularly polarized light (Figure 5.2) at t = 7.7 min since most
of the magnetic field above the solar surface is horizontally oriented. Stokes-I has a
relatively regular formation height, with a slight increase above the flux tube. This is due
to the overall change in the optical depth above the emerging flux tube, which has caused
the optical depth scale to shift towards higher altitudes.

The parts of the flux tube that reach the solar surface start to cool down radiatively,
due to the considerable increase of the photon mean free path above the solar surface
(Figure 5.5 at t = 9.7 min) (Cheung et al. 2007). The radiatively cooled plasma becomes
denser and looses its buoyancy. We note though that the flux tube as a whole continues
rising even in these non-buoyant layers. This is due to the fact that the rising sub-surface
parts of the flux tube keep pushing the plasma above the surface upward. Part of the
material above the surface also has a lateral motion as a reaction to the pressure excess
caused by the continuously rising plasma into the emergence site. Also, the cooled dense
plasma overlying the emergence zone partly descends back to the convection zone at each
side of the flux tube. This is followed by a concentration of vertically oriented magnetic
field at each side of the flux tube (Figure 5.5). This field is oppositely oriented at each
side of the flux tube depending on the dominant field orientation provided by the twisted
emerging flux tube (see the orientation of the magnetic field at each side of the flux tube
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5.3 The buoyant rise of the emerging flux tube

Figure 5.4: Vertical cut through the MHD data at the location shown by the black line
in the upper left panel in Figure 5.3 at t = 7.7 min. The panels represent, from top
to bottom, the temperature fluctuations with respect to horizontal average, line-of-sight
velocity (blue represents upflow), magnetic field strength and inclination. The full lines
indicate the location of τ5000 = 1. The dash-dotted lines show the height at which the
contribution function of Stokes-I reaches its maximum, and the dashed lines indicate the
same for Stokes-V
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5 Flux emergence at the solar photosphere

Figure 5.5: Same as Figure 5.4 but for the location shown by the black line in Figure 5.3
at t = 9.7 min
.
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5.3 The buoyant rise of the emerging flux tube

Figure 5.6: Similar to Figure 5.4 at t = 11.3 min

in Figure 5.3). These vertically oriented flux concentrations produce an enhancement of
the circularly polarized signal at each side of the flux tube, as shown in Figure 5.2.

93



5 Flux emergence at the solar photosphere

At later times t = 11.3 and 13.0 min (Figures 5.6 and 5.7), the flux tube is more
extended in the lateral dimension than in the vertical. The vertically oriented fields con-
centrated at each side of the flux tube have moved away form each other. The central
part of the flux tube has reached the photosphere. The evolution of the emerging flux
tube is influenced by the convection dynamics. This is especially the case at the outer
parts of the emerging flux tube where the field configuration is more complex than the
central part. This latter part is still carrying a relatively regularly twisted core with a field
strength approaching 1 kilo Gauss. Note that the polarized signal is formed over a re-
gion sampling mainly sub-kilo Gauss field. It has been shown by Fan et al. (2003) and
Cheung et al. (2007), that flux tubes with field strength of the order of the equipartition
field strength are not passively carried by the convection. In this case the kinetic energy
density of the convective flow is of the same order as the magnetic energy density of the
flux tube. The twisted morphology of the flux tube ensures more coherence against the
convective flows, because the tension forces due to the transverse field counteract the ex-
ternal pressure forces which tend to distort the flux tube (Cheung et al. 2007, Murray and
Hood 2008). This makes the morphology of a twisted flux tube with equipartition field
strength less sensitive to the surrounding granulation dynamics than similar flux tube with
less twist. The granulation pattern is affected by the twisted flux tube. This results in the
granulation pattern shown over the emergence sequence in Figures 5.1, 5.2.

At t = 16.1 min (Figure 5.8), one can still see the downflows at each side of the flux
tube where the flux is predominantly vertical. The flux tube is wider, and one notices the
appearance of downflowing plasma above the solar surface in the body of the flux tube
(e.g. near the abscissa x = 2400km). The horizontally oriented core of the flux tube has
greatly shrunk. Most of the flux is located in the vertical downflow lanes. This produces a
strong circularly polarized signal correlated with downflow lanes in the emergence area.
The core area (around x = 3900km), is relatively cooler than the surroundings. This
explains the appearance of a darkening at the central part of the flux tube in the continuum
images (Figure 5.1).

In Figure 5.9, t = 23.4 min, the magnetic flux is mainly distributed as vertically
oriented flux concentrations (see also Figures 5.2 and 5.3 for a more general overview).
Thus, the magnetic flux initially brought by the emerging flux tube has been rearranged as
vertically oriented flux concentrations. These flux elements are located in inter-granular
lanes as a result of flux expulsion (Weiss 1966, Galloway and Weiss 1981). The vertically
oriented flux elements have a field strength of about 1-2 kG resulting from convective
intensification of the magnetic flux. The maximum of the contribution function of Stokes-
I is shifted to lower altitudes near the magnetic flux concentrations. Because the partially
evacuated flux tube makes the upper layers of the atmosphere more transparent (optically
thinner), this shifts the optical depth scale towards lower altitudes.

5.4 Comparison with spectropolarimetric observations

5.4.1 Observation conditions and the Milne-Eddington inversion

Spectropolarimetric observational studies of flux emergence in active regions outside
sunspots have been performed by Lites et al. (1998) and Kubo et al. (2003). In order
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Figure 5.7: Similar to Figure 5.4 at t = 13.0 min
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5 Flux emergence at the solar photosphere

Figure 5.8: Similar to Figure 5.4 at t = 16.1 min
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5.4 Comparison with spectropolarimetric observations

Figure 5.9: Similar to Figure 5.4 at t = 23.4 min
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5 Flux emergence at the solar photosphere

to compare our results with these observational results, we degrade our synthetic data to
approximate the observational conditions and then follow a similar inversion procedure
as described in Kubo et al. (2003).

The observations on which these two publications are based have been done with
the Advanced Stokes Polarimeter (ASP) at the NSO. The slit spectropolarimeter has ob-
served a flux emergence area in the two iron spectral lines Fe I 6301.5 Å and Fe I 6302.5
Å recorded at a spectral resolution of 25 mÅ. The obtained spatial resolution varies form
1" to 3", depending on the seeing conditions. The pixel size is 0.37". In order to repro-
duce the observation conditions, we have reduced the spectral resolution and sampling of
the synthetic Stokes spectra to match the observed ones. The spectral transmission func-
tion was assumed to be a Gaussian with FWHM = 25 mÅ. The spatial smearing of the
synthetic data is done by convolving with a Gaussian with FWHM= 750km to account
for the limited spatial resolution of the telescope. We also include a convolution with a
Lorentzian profile with FWHM = 5500km to account for degradations due to the scat-
tered light. To account for the photon noise we add a normally distributed noise with a
standard deviations of 10−3. This will be divided by the square-root of Stokes-I to account
for the amount of light at each spectral position.

The observed spectra were inverted using a Milne-Eddington code (Skumanich and
Lites 1987, Lites and Skumanich 1990). This is based on fitting the observed Stokes
profiles with synthetic ones obtained from an analytic solution of the Unno-Rachkovsky
equations (Unno 1956, Rachkowsky 1967) in a Milne-Eddington atmosphere (see e.g.
Landi degl’Innocenti 1992). We invert the spectra using the Milne-Eddington code He-
LIx (Lagg et al. 2004). This code allows to find the minimum of the merit function
using either a Levenberg-Marquardt algorithm or a genetical one. We have tested the
Levenberg-Marquardt algorithm using synthetic Stokes spectra and compared the results
with the response function averaged physical parameters from the MHD data (e.g. |B|,
line-of-sight velocity, etc.). It turned out that the physical parameters retrieved with the
Levenberg-Marquardt algorithm were in poor agreement with the original MHD data. We
have made similar tests with the genetical algorithm. These have revealed good agree-
ment between the response-function averaged physical parameters from the MHD data
and the ones retrieved by the genetical algorithm. We choose then in the following to uses
the HeLIx code with the genetical algorithm mode. The two spectral lines Fe I 6301.5
Å and Fe I 6302.5 Å were inverted simultaneously in the work by Kubo et al. (2003)
and in the present work. The existence of two atmospheric components within each pixel
was allowed for. One of these harboured a magnetic field, while the other was field-free
and represented scattered light as well as the field-free gas in the resolution element. The
fraction of the surface area occupied by magnetic field within each pixel is called "fill-
ing factor". The inversion procedure looks for the optimal combination of parameters
corresponding to the minimum of the merit function. The following free parameters are
considered by Lites et al. (1998) and Kubo et al. (2003): the magnetic field strength, its
inclination and azimuth, the ratio of line center to continuum opacity of each line, the
Doppler width of each line, the damping constant of the two lines, the positions of the
wavelength centers of the two lines, the slope and surface value of the source function,
the Doppler shift of the scattered light, and the filling factor. In our inversions we consider
similar free parameters apart of the positions of the wavelength centers of the two lines,
since they are already known in synthetic spectra.
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5.4 Comparison with spectropolarimetric observations

5.4.2 Inversion results and comparison with observations

Figure 5.10 shows a time sequence of the magnetic field maps retrieved from inversion.
From top to bottom, t = 11.3, 13.0, 16.1 and 23.4 min. The colour coded maps show the
amplitude of the vertical component of the magnetic field. The orientation of the horizon-
tal components of the field is indicated by lines (to take into account the 180◦ ambiguity).
At first, we notice that the emerging flux appears more smoothly distributed compared to
Figures 5.2 and 5.3. This is due to the low resolution (about 1 arcsec) of these synthetic
data. The twisted structure of the emerging flux tube is revealed by the orientations of
the field lines. This orientation changes between the two snapshots at t = 11.3 min and
t = 16.1 min. A similar situation has been observed by Okamoto et al. (2008) using Hin-
ode’s spectropolarimeter (SP) with the same iron lines as used here. At t = 11.3 min the
spectral lines are sampling the upper part of the emerging flux tube where the field lines
are following a positive-to-negative polarity orientation. Later at t = 16.1 min, the flux
tube has further emerged and the spectral lines are sampling its lower part where the field
lines, in this twisted structure, are oriented from negative to positive polarity. We point
out some differences between the discussions and suggestions in Okamoto et al. (2008)
and the findings of the present work : In Okamoto et al. (2008), the authors support the
idea that the flux rope has emerged from the photosphere to the corona, and mention that
the altitude reached by the flux rope might be of the order of the tube’s diameter. We have
seen in the previous section (and in Cheung et al. 2007) that the flux tube upon emergence
is not cylindric but has a rather flattened shape resulting from the flux tube’s expansion
in the lateral direction. It has been also shown that even though most of the magnetized
plasma becomes anti-buoyant after reaching the photosphere, the sub-photospheric parts
of the flux tube continue to emerge in the photosphere showing then a blue shift along
most of the flux emergence in the region of formation of the iron lines Fe I 6301.5 Å and
Fe I 6302.5 Å. The scatter plots in Figure 5.11 (determined from inversions) show the
inclination angle versus the magnetic field strength (left panels), and the inclination angle
versus the line-of-sight velocity (left panels) along the emergence sequence presented in
Figure 5.10 (from top to bottom). This indicates that the horizontally oriented emerg-
ing flux has an upflow (blueshift) along most of the emergence sequence. This blueshift
should not be interpreted as an upward motion of the flux tube as a nearly homogeneous
cylinder (like the work by Okamoto et al. might suggest) but is rather a signature of an
upflowing material in the photosphere. Wether the emerging twisted flux tube observed
by Okamoto et al. 2008 is a major source of helicity for the overlying filament is not clear
according to the findings of the present simulations and inversions (see also Cheung et al.
2007).

In order to compare the results of the present inversions with those of Lites et al.
(1998) and Kubo et al. (2003), we also compute histograms representing the distributions
of the magnetic field strength, inclination, and line-of-sight velocity along the emergence
sequence (Figure 5.12). From top to bottom, the panels cover the four emergence times
presented in Figure 5.10. Following the observational analysis of Lites et al. (1998) and
Kubo et al. (2003), the histograms in Figure 5.12 and the scatter plots in Figure 5.11 are
calculated for pixels where the total degree of polarization integrated over the line profile
of Fe I 6302.5 Å is greater than 0.4 percent. This is to ensure considering data points
essentially above the noise level.
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Figure 5.10: Maps of the retrieved magnetic field vector from inversions. The colour
code indicates the amplitude of the vertical (line-of-sight) component of the magnetic
field. The orientation of the horizontal field components is shown by lines. The maps
correspond to (from top to bottom) : t = 11.3, 13.0, 16.1 and 23.4 min
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5.4 Comparison with spectropolarimetric observations
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Figure 5.11: Scatter plots of some parameters retrieved from the inversion. Left panels :
inclination angle versus the magnetic field strength. Right panels : the inclination angle
versus the line-of-sight velocity. From top to bottom, the panels corresond to the same
time sequence as in Figure 5.10
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5 Flux emergence at the solar photosphere

The top row of panels in Figure 5.12 corresponding to t = 11.3 min indicate that the
emerging flux is distributed mainly over field strength between 400 G and 600 G. This
field is essentially close to a horizontal distribution (middle panel). More precisely the
distribution of the field inclination harbours maxima around 105 degrees, 60 degrees and
90 degrees. The two former values are statistically more significant. This dominantly
double maxima distribution of field inclination is due to the twisted configuration of field
lines in the emerging flux tube. The uppermost right panel in Figure 5.12 indicates the
line-of-sight velocity. It exhibits a maximum around −1.2 km/s (the negative sign stands
for upward motion). The scatter plots in the top row of panels of Figure 5.11 indicate that
the nearly horizontally emerging flux is associated with upflow motion with values up to
−2.3 km/s and a field strength of about 600 G. At t = 13.0 min, the distribution of field
strength (Figure 5.12) has a maximum situated between 400 and 500 G. The double peak
distribution of the inclination is still present. The Vlos distribution has a maximum in the
interval [-0.2, -0.8] km/s. The corresponding scatter plots in Figure 5.11 show that the
nearly horizontally oriented field has an upward motion with lower amplitude than in the
previous snapshot. Part of the field with nearly vertical distribution (below 20 degree and
above 160 degree) has reached kilo-Gauss field strength and exhibits a dowflow motion
(second row from the top in Figure 5.11). The scatter plots in Lites et al. (1998) and Kubo
et al. (2003) exhibit horizontal field strength between 200 G and 700 G. This is in good
agreement with the inversion results at t = 11.3 min, t = 13.0 min and t = 16.1 min.
The observed upward motion of the horizontally oriented field is typically < 1 km/s. This
is also in agreement with the results of the scatter plots at t = 13.0 min and t = 16.1
min. The scatter plots at these two emergence times appear to reproduce at best the hor-
izontal field properties as apparent from the scatter plots in Lites et al. (1998) and Kubo
et al. (2003). We notice though some differences between the scatter plots obtained from
observations and simulations. Namely the vertical field strength reported by observa-
tions is larger than the one obtained in simulations. This might be due to the fact that
the observed emergence region contains a pre-existing vertical field (since the emergence
happened in plage regions). This pre-existing vertical flux is expected to have typical
kilo-Gauss values (Vögler et al. 2005). In contrast, the simulated flux emerges in a field
free region. Another difference between the observed and simulated scatter plots repre-
senting the field inclination versus its strength is that the observed ones have V-like shapes
whereas the simulated ones have W-like shapes. This lack of data points at intermediate
inclination angles is clearer in the work of Kubo et al. (2003) (see the lowest panels of
Figure 8 in their work). While the scatter plots of Lites et al. (1998) (Figure 3 in their
work) exhibit some data points with low |B| at intermediate inclination angles (mainly
from the neighbouring plage region as indicated in Lites et al. (1998)). The histograms
presented in Kubo et al. (2003) (Figures 6 and 7, corresponding to regions B1 and B2
in their work) compare at best with the histograms at t = 13.0 min in Figure 5.12. We
notice also some differences between the observed and simulated histograms. Namely,
the simulated field inclination exhibit a characteristic double peak due to the twisted con-
figuration of the field lines in the emerging flux tube. We notice also some double peak in
the region B2 (Figure 7 in Kubo et al. 2003), and a slight double peak for the region B1
with filling factor higher than 80 percent (Figure 6 in Kubo et al. 2003). Nevertheless the
separation of the two peaks in the simulated histograms is larger than the observed ones.
This indicates that the simulated emerging flux tube has a larger twist than the observed
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ones.
At t = 16.1 min we notice that the two peaks in the distribution of inclination in

Figure 5.12 have become closer to each other. This indicates that the twist of the emerging
flux tube has been partly dissipated due the interaction of the flux tube with the convective
granulation motion. At t = 23.4 min, we observe a single peak in the distribution of the
field inclination. This corresponds to field strengths of about 200 G (Figure 5.12). The
corresponding scatter plots in Figure 5.11 show that the horizontally oriented field has a
slight or zero upward velocity, while the nearly vertically oriented flux is associated with
downflows.

5.5 Discussion and concluding remarks

The inversion results presented in the previous section are consistent with many of the ob-
served properties of flux emergence regions (Lites et al. 1998, Sigwarth 2000, Kubo et al.
2003). The inversion results show that at t = 11.3 min, t = 13.0 min and t = 16.1 min, the
rising flux tube has a spectropolarimetric signature showing that the horizontally oriented
magnetic flux has a typical field strength of 400 to 600 G while the central part of the flux
tube reaches kilo-Gauss field strength at the base of the photosphere. Nevertheless the
spectral lines are formed over a region where the field strength is dominantly of sub-kilo-
Gauss values. We also have seen that the field is mainly horizontal while it emerges into
the photosphere. Simulations and observations indicate that the emerging flux reaches the
solar surface with a nearly horizontal field of about equipartition field strength or slightly
higher. This underlines the importance of the interaction of the rising flux tubes with the
granular dynamics. It has been shown in sections 5.2 and 5.3 (also in Cheung et al. 2007)
that the rising flux tube has produced elongated granules (as an effect of the flux tube on
the granules), and later the granular dynamics has rearranged the emerging flux in small
vertically-oriented flux concentrations (as an effect of the granular dynamics on the rising
flux tube). The emerging flux is redistributed by flux expulsion to become vertically ori-
ented flux concentrations in intergranular lanes (Weiss 1966, Galloway and Weiss 1981).
Their typical field strength reaches kilo-Gauss values as a result of convective intensifi-
cation (Schüssler 1990, Nordlund and Stein 1990, Grossmann-Doerth et al. 1998, Vögler
et al. 2005, Cheung et al. 2007).

There are some differences between the observed and simulated flux emergences. The
comparison between the observed and simulated distributions of field inclination indicates
that the amount of twist in the simulated flux tube is larger than for the observed ones. We
note that, unlike the observations, the simulated flux tube emerges in a field free region
with no pre-existing field.

The twisted structure of the flux tube is revealed by the inversions of synthetic spectra
along the emergence sequence. Such signature of twisted emerging flux tube has been
observed by Okamoto et al. (2008) using Hinode’s spectropolarimeter with the same iron
lines as used here. We have seen that a blueshift is associated with the emergence event for
most of the emergence sequence. This blue shift should not be interpreted as an upward
motion of the flux tube as a nearly homogeneous cylinder (like what could be interpreted
from the work by Okamoto et al. 2008). It has been shown that the emerging magnetized
plasma expands laterally, and is essentially redistributed as vertically oriented flux con-
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Figure 5.12: Histograms of magnetic field inclination, magnetic field strength |B|, and
line-of-sight velocity. From top to bottom, the panels correspond to the same time se-
quence as Figure 5.10
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5.5 Discussion and concluding remarks

centrations. The scenario presented by Okamoto et al. (2008) proposing the emergence
of twisted flux tubes as a major source of helicity for the overlying filament is not clear
according to the findings of the present simulation and inversions (see also Cheung et al.
2007). We propose further observational investigations using simultaneously lines formed
at different heights enabling to record the velocity and magnetic field at the photosphere
and chromosphere.

Observations report that the flux often emerges in the form of loop-like structures.
From a simulation point of view this field configuration can be reproduced by prescrib-
ing higher entropy at the middle part of the flux rope at the beginning of the numerical
experiment. This will make the central part rise faster than the rest, thus producing an
Ω-like shape. One can further assign a lower entropy than average to the two "ends" of
the flux tube, making them anti-buoyant and producing thus a more pronounced shape of
the Ω-like rising loop. A first analysis of such a simulation run has been carried out by
Cheung et al. (2007, 2008) without spectropolarimetric study. We believe that a further
spectropolarimetric analysis is needed to study the observational signatures of such flux
loops.

105





6 Outlook

We have seen that at an inclined view, the polarized signal outgoing from small scale mag-
netic elements is formed over a relatively localized region. This can provide an ideal sit-
uation for performing spectroploarimetric diagnostic of these flux elements. The Center-
to-Limb Variations (CLV) of Stokes-V profiles and their asymmetries carry valuable in-
formation on the properties of small scale magnetic flux elements and their dynamical
surrounding plasma (Stenflo et al. 1987, Solanki 1987, Buente et al. 1993, Martínez Pillet
et al. 1997), for a review see (Solanki 1993). A natural next step of our work is to inves-
tigate the CLV variations of Stokes-V amplitude and area asymmetries. This is already
a work in progress. The diagnostic potential of the linearly polarized signal (Stokes-Q
and U) has not been fully used in the past. Though this reveals important physical prop-
erties of flux concentrations like temperature, magnetic field, and internal flow velocity
(Solanki 1987, Stenflo et al. 1987, Martínez Pillet et al. 1997, Solanki et al. 1998, Leka
and Steiner 2001). So far, there have been only few attempts to study diagnostics based on
the linearly polarized signal in the framework of MHD simulations (e.g. Leka and Steiner
2001). The CLV diagnostics using Stokes-Q (or

√
Q2 + U2) asymmetries between the σ

and π components carry information about the 3D structure of flux concentrations. This
diagnostic is sensitive to the temperature and magnetic field of flux elements (Solanki
1987, Stenflo et al. 1987). More generally we have seen that the polarized Stokes sig-
nal is influenced in a complex way by the atmospheric conditions inside and outside flux
concentrations since the magnetic flux and plasma mutually influence each other in a
magneto-convective system. Thus a promising way for studying magnetic flux elements
is to compare the simulated and observed CLV variations of the linearly polarized Stokes
profiles. Also, the ratio between the σ components of : on one hand Stokes-V , and on the
other hand Stokes-Q (or

√
Q2 + U2), provides diagnostics about the internal magnetic,

velocity and temperature structure of flux concentrations since they are proportional to
the line-of-sight and transverse components of the magnetic field respectively, and thus
form at slightly different optical depths near the limb.

The magnetic flux emergence in the photosphere covers a wide range of fluxes (Zwaan
1987, Lites et al. 1998, De Pontieu 2002, Okamoto et al. 2008). This suggests the use of
different simulation setups in order to study a given event. Observations also report the
emergence of loop-like structures. We are then challenged with new (and also confirmed)
hight resolution spectropolarimetric observations in active regions and quiet sun (De Pon-
tieu 2002). Regarding the emergence event studied in chapter 5, we propose to use a
simulation run with less twist. This will probably affect the coherence of the rising flux
rope but will probably bring a better agreement between simulations and observations. A
second important simulation scenario, is to study loop-like rising flux ropes. We already
have started the analysis of such structures following the simulations of Cheung et al.
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6 Outlook

(2007). The use of deeper boxes and higher fluxes is a necessary step too (Cheung et al.
2008). The influence of the upper boundary conditions of these simulation can be stud-
ied by implementing different heights of simulation boxes and different upper boundary
conditions for the plasma flows and the magnetic field.

The rapidly growing computational resources and the increasing observational resolu-
tion, opens perspectives to the study of several solar physics domains. Many stimulating
questions can be addressed in the few next years by extending the available realistic 3D
MHD simulations to the chromosphere (e.g. Hansteen and Gudiksen 2005). The non-
LTE nature of this layer makes it so-far still largely unexplored by MHD simulations.
The many questions concerning the second solar spectrum, and the nature of non-LTE
processes bring the necessary motivations for such a work.
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